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Abstract

Background: Microbial lipases represent the most important class of biocatalysts used for a wealth of applications
in organic synthesis. An often applied reaction is the lipase-catalyzed transesterification of vinyl esters and alcohols
resulting in the formation of acetaldehyde which is known to deactivate microbial lipases, presumably by structural
changes caused by initial Schiff-base formation at solvent accessible lysine residues. Previous studies showed that
several lipases were sensitive toward acetaldehyde deactivation whereas others were insensitive; however, a
general explanation of the acetaldehyde-induced inactivation mechanism is missing.

Results: Based on five microbial lipases from Candida rugosa, Rhizopus oryzae, Pseudomonas fluorescens and Bacillus
subtilis we demonstrate that the protonation state of lysine ε-amino groups is decisive for their sensitivity toward
acetaldehyde. Analysis of the diverse modification products of Bacillus subtilis lipases in the presence of acetaldehyde
revealed several stable products such as α,β-unsaturated polyenals, which result from base and/or amino acid
catalyzed aldol condensation of acetaldehyde. Our studies indicate that these products induce the formation of
stable Michael-adducts at solvent-accessible amino acids and thus lead to enzyme deactivation. Further, our results
indicate Schiff-base formation with acetaldehyde to be involved in crosslinking of lipase molecules.

Conclusions: Differences in stability observed with various commercially available microbial lipases most probably
result from different purification procedures carried out by the respective manufacturers. We observed that the pH of
the buffer used prior to lyophilization of the enzyme sample is of utmost importance. The mechanism of
acetaldehyde-induced deactivation of microbial lipases involves the generation of α,β-unsaturated polyenals from
acetaldehyde which subsequently form stable Michael-adducts with the enzymes. Lyophilization of the enzymes
from buffer at pH 6.0 can provide an easy and effective way to stabilize lipases toward inactivation by acetaldehyde.

Background
Microbial lipases (triacylglycerol hydrolases, EC 3.1.1.3)
belong to the a/b-hydrolase family of enzymes [1,2] and
catalyze the hydrolysis of triglycerides to glycerol and
fatty acids [3,4]. Furthermore, lipases are the most fre-
quently used biocatalysts in organic chemistry due to its
ready availability and low cost production, lack of cofac-
tors, broad substrate specificity and high enantioselectiv-
ity as well as high stability in non-aqueous media such
as ionic liquids, supercritical fluids and organic solvents
[5,6]. Under non-aqueous reaction conditions lipases
catalyze the synthesis of esters by esterification, inter-
esterification, and transesterification [4,7,8].

Lipase catalyzed transesterifications of alcohols with
esters are equilibrium reactions that need to be shifted
toward the product site. Therefore, several activated
esters including enol- and ethoxyvinyl esters have been
tested as substrates [9,10] with enol esters such as iso-
propenyl acetate or vinyl acetate being the most useful
acyl donors [11]. After cleavage, the enol tautomerizes
to a carbonyl compound (acetaldehyde or acetone)
which can no longer serve as a substrate for the back
reaction, thus rendering the system fast and irreversible
and also facilitating downstream processing due to the
volatility of the carbonyl product [9,11]. Furthermore,
the stoichiometrically generated acetaldehyde can be
used in a high-throughput assay to detect transesterifica-
tion activities of lipases and esterases directly in the
organic phase [12]. Despite of these advantages, alde-
hydes are generally known to act as alkylating reagents
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by forming Schiff-bases in a Maillard-type reaction, in
particular with enzyme lysine ε-amino groups. Although
Schiff-base formation as such is a reversible reaction,
several follow-up reactions finally render this modifica-
tion irreversible [13]. Hence, acetaldehyde affects various
enzymatic properties as shown for different enzymes of
biotechnological significance such as lipases, 2-deoxy-
D-ribose 5-phosphate aldolase (DERA), and thiamine-
diphosphate dependent enzymes, respectively [14-17].
Acetaldehyde treatment of commercial lipase prepara-
tions from Candida rugosa and Galactomyces geotri-
chum (formerly Geotrichum candidum) resulted in
reduced activity and enantioselectivity, whereas only
moderate effects were observed with lipases from Pseu-
domonas sp. or Rhizopus oryzae [18,19]. C. rugosa lipase
was stabilized by immobilization, either covalently on an
epoxy-activated carrier resin or by adsorption on Celite
545 [18,20]. Aldehyde-based deactivation also represents
a problem in several lipase-based industrial biotransfor-
mations, e.g. in the formation of trans-2-methoxycyclo-
hexanol and 3-(4-methoxyphenyl) glycidic acid [21].
Only recently, the activity of C. rugosa lipase was signifi-
cantly increased by immobilisation of the enzyme in
crosslinked-enzyme aggregates (CLEAS) together with
BSA as a “proteic feeder” [22]. Further, activity has been
improved by “pH-tuning” of lipases prior to their use in
organic solvents, meaning that the enzyme was lyophi-
lized from a buffer with optimal pH for biocatalysis [23].
Current hypotheses infer that the sensitivity of lipases

toward acetaldehyde depends on: (1) the microbial
source from which the lipase originates; (2) its molecu-
lar weight; (3) the number of lysine residues; (4) their
solvent accessibility; (5) a covalent modification of lid-
domain residues (for G. geotrichum and C. rugosa
lipases); and (6) the pKa-values of the lysine ε-amino
groups [19,24]. The latter hypothesis assumed that the
nucleophilicity of lysine ε-amino groups would define
their contribution to the deactivation reaction and cal-
culated pKa-values were used to predict Schiff-base for-
mations with lysine ε-amino groups of higher pKa-values
and thus increasing acetaldehyde sensitivity of the
respective lipase [24]. Comprehensive mutagenesis stu-
dies of 2-deoxy-D-ribose 5-phosphate aldolase [15] and
prolipase from R. oryzae [14] failed to achieve complete
stabilisation against aldehyde deactivation and further-
more indicated the involvement of several different sites
in these enzymes.
In this study, we demonstrate that the protonation

state of lysine ε-amino groups in microbial lipases has a
significant impact on their sensitivity against acetalde-
hyde. We also show that a,b-unsaturated polyenals
derived from aldol condensation of acetaldehyde in the
presence of primary amino compounds or NaOH have a
major impact on the deactivation process, most probably

by forming stable Michael-adducts with lysine and other
side chains.

Results and Discussion
The protonation state determines the sensitivity of
lipases toward acetaldehyde
Schiff-base formation depends on the protonation state
of primary amino groups, as only a deprotonated amino
group (-NH2) can nucleophilically attack the acetalde-
hyde carbonyl group. Thus, it can be predicted that
enzyme deactivation caused by Schiff-base formation
should depend on the pH of the respective reaction buf-
fer. If biotransformations are performed in organic sol-
vents with lyophilized or immobilized enzymes, their
protonation state is affected by the so-called “pH-
memory effect” meaning that lyophilization traps the
protonation state of a protein in solution [25,26]. Differ-
ent commercial enzyme preparations presumably exhibit
different protonation states and additionally, stabilizing
additives and/or protein impurities are commonly found
resulting in heterogeneities which clearly can influence
the deactivation behavior of the respective biocatalyst
[27-32]. Therefore, we have adjusted the protonation
states of lipases from Candida rugosa (CRL), Rhizopus
oryzae (ROL), Pseudomonas fluorescens (PFL), and Bacil-
lus subtilis lipases (BSL A and B) by lyophilizing them
from buffers of pH 6 and pH 10, respectively, being far
below or equal to the average pKa of the lysine ε-amino
groups. The freeze-dried enzymes were then treated
with acetaldehyde in toluene and the residual activity
was determined. We employed toluene as the solvent
for our investigation because it is of significant technical
importance and is frequently used in technical lipase
processes [21]. It is worth to mention that acetaldehyde-
treated lipases were not treated with reducing agents
such as sodium cyanoborohydride to stabilize Schiff-
bases by converting them into stable secondary amines.
Hence, the obtained results can be attributed solely to
the formation of stable acetaldehyde-protein adducts
resulting from Schiff-bases as precursors.
Three of the studied lipases, namely CRL, ROL, and

PFL, were previously investigated, with regard to their
acetaldehyde sensitivity [19]. CRL was deactivated
strongly (-76%), ROL moderately (-17%), and PFL
remained nearly unaffected (-2%) upon overnight incu-
bation with acetaldehyde (0.1 M) in toluene [19]. All
enzymes tested showed a significant decrease in activity
with increasing acetaldehyde concentrations after lyophi-
lization at pH 10, whereas no (PFL) or only a moderate
(ROL and CRL) deactivation occurred in preparations
lyophilized at pH 6 (Figure 1). These results demon-
strate that even CRL, which was previously classified as
highly sensitive against acetaldehyde [19], can be stabi-
lized by lyophilization at a pH far below the average pKa
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Figure 1 Deactivation of microbial lipases with acetaldehyde after lyophilization at pH 6 and pH 10, respectively. A) R. oryzae lipase
(ROL). B) C. rugosa lipase (CRL). C) P. fluorescens lipase (PFL). D) B. subtilis lipase A (BSL-A). E) B. subtilis lipase B (BSL-B). Lipases from C. rugosa,
R. oryzae, and P. fluorescens were dissolved in citrate/NaOH-buffer (100 mM, pH 6) or Na2CO3/NaHCO3-buffer (100 mM, pH 10), respectively, at a
final concentration of 10 mg/mL. BSL-A and BSL-B were stored in glycine/NaOH-buffer (10 mM, pH 10) and diluted 1:2 with glycine/NaOH
(10 mM, pH 10) and citrate/NaOH-buffer (100 mM, pH 6), respectively to a final concentration of 0.5 mg/mL. Samples were incubated in screw-
capped vials for 1 h at - 80°C prior to lyophilization carried out overnight at 0.011 mbar. The lyophilized enzymes were treated with toluene,
sonicated for 3 min to obtain homogenous dispersions, than incubated with acetaldehyde (0-1 M for BSL-A, BSL-B, and PFL, and 0-2.5 M for CRL
and ROL, respectively) and incubated for 24 h at room temperature. Lipases were extracted from the organic phase with 800 μL Na2HPO4/
KH2PO4-buffer (50 mM, pH 8), and the centrifuged solution was assayed for residual activity using the p-nitrophenylpalmitate assay [63].
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of its lysine ε-amino groups. These results support find-
ings of Majumder and Gupta [22], who achieved stabili-
zation of CRL. On the other hand, lipases previously
described as moderately (ROL) or completely (PFL)
stable against acetaldehyde [19] can be rendered sensi-
tive by lyophilization at a pH equal to the pKa of their
lysine ε-amino groups (Figure 1 A-C). The uniform
deactivation behaviour of ROL, CRL, and PFL identifies
the lipase protonation state including the ratio of NH2-
to NH3

+- groups as key parameters for acetaldehyde
sensitivity. Previous findings suggested a modification of
the lid-domain covering the active site as a putative
cause of deactivation in G. geotrichum and C. rugosa
lipases [24]. Thus, we compared the deactivation beha-
viour of BSL-A and BSL-B which share a compact mini-
mal a/b-hydrolase fold lacking a lid [33,34]. These
lipases (Figure 1D+E) show the same deactivation
kinetics as CRL, ROL, and PFL (Figure 1A-C) indicating
that the modification of the lipase core structure domi-
nates the deactivation behaviour. Additionally, isoelectric
focusing experiments revealed a significant shift of the
isoelectric point (pI) from about pH 9.5 for the
untreated lipase sample toward pH 6 for the acetalde-
hyde treated sample (Figure 2C). This result suggests
that an initial Schiff-base modification may be followed
by the formation of stable acetaldehyde-protein adducts.
Furthermore, a prediction of the pKa-values [35] of sol-
vent accessible lysine residues for all lipases whose
structures are solved and deposited in the protein data
base (http://www.pdb.org) revealed similar pKa-values in
all cases, including four of five lipases studied in this
work (Additional file 1, Tab. S1). Thus, it can be con-
cluded that acetaldehyde will affect other lipases in a
similar manner.

Acetaldehyde induces cross-links
Formaldehyde-induced modifications of model peptides
and insulin demonstrated that a Schiff-base modified
lysine residue can form stable intra- and intermolecular
cross-links with the side chains of arginine, asparagine,
glutamine, histidine, tryptophan, and tyrosine [36,37].
Further, intramolecular cross-links may result from the
reaction of lysine-bound Schiff-bases with neighbouring
peptide bonds forming 4-imidazolidinone rings [36].
Investigation of possible cross-linked products was per-
formed using BSL-B as a model enzyme. The enzyme
was incubated with different concentrations of acetalde-
hyde (0-0.5 M) in aqueous solution at pH 10 where
BSL-B shows maximum activity and stability [38]. Ana-
lysis by SDS-PAGE revealed additional bands with
higher molecular weight (~ 40 kDa and ~ 60 kDa)
appearing at an acetaldehyde concentration of 0.08 M
(Figure 2A). The intensity of these bands increased with
increasing acetaldehyde concentrations indicating the

formation of BSLB-dimers (~ 40 kDa) and trimers (~ 60
kDa) respectively, presumably caused by intermolecular
cross-link formation. Parallel determination of the
hydrolytic lipase activity and the soluble protein concen-
tration revealed deactivation already at an acetaldehyde
concentration of 0.08 M (Figure 2B). Increasing the

Figure 2 Acetaldehyde induced modification and inactivation
of BSL-B. A) Sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) of B. subtilis lipase B (BSL-B) treated with
acetaldehyde (0-0.5 M) in glycine/NaOH buffer (10 mM, pH 10). S:
Molecular weight standard. Arrows indicate putative lipase dimers
(~ 40 kDa) and trimers (~ 60 kDa). B) Soluble protein concentration
and residual hydrolytic activity of BSL-B after treatment for 24 h
with acetaldehyde (0-1.8 M) in glycine/NaOH buffer (10 mM, pH 10).
C) Isoelectric focusing (IEF) gel (pH 3-10) of BSL-B after treatment
with (0.5 M) and without acetaldehyde in glycine/NaOH (10 mM, pH
10). M: IEF marker. -: BSL-B without acetaldehyde. +: BSL-B with
acetaldehyde.
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acetaldehyde concentration to 0.5 M led to a complete
deactivation of BSL-B, whereas considerable protein
aggregation could be detected only at concentrations
above 1.3 M (Figure 2B). Furthermore, a shift toward
higher molecular weight was observed for the mono-
meric form of BSL-B (Figure 2A) which might be
explained by a shift of the isoelectric point (pI) due to
acetaldehyde-induced modifications. Alves et al. [39]
demonstrated that the electrophoretic mobility of a
highly acidic protein could be increased by modifying
acidic amino acid residues, resulting in an increased pI.
This change of the pI increases the ability of the protein
to bind SDS [39,40]. For BSL-B, acetaldehyde induced
modification results in a decrease of the pI (Figure 2C),
which in turn probably decreases its ability to bind SDS
and thus, explains the observed mobility shift
(Figure 2A) [41]. Intramolecular cross-links, which most
probably also occur, will potentially not give rise to a
defined shift of the electrophoretic mobility, because
there a several modification sites present on the protein
surface, which prevents the formation of specific
crossed-linked products. Separate substitution of each
lysine residue in BSL-B against arginine and alanine,
respectively, did not result in decreased lipase activity
(Additional file 2, Figure S1). Thus, acetaldehyde-
induced deactivation is not the consequence of modifi-
cation of a single “hot-spot” lysine residue as previously
suggested for G. geotrichum and C. rugosa lipases [24].

Acetaldehyde sensitivity of BSL-B depends on enzyme
concentration
BSL-B samples (0.025 - 0.5 mg/mL in 10 mM glycine/
NaOH-buffer, pH 10) were incubated for 2 h in the pre-
sence of 500 mM acetaldehyde resulting in a molar
excess of at least 2000 acetaldehyde molecules per BSL-
B molecule. At higher lipase concentrations no (0.25
and 0.5 mg/mL) or only moderate deactivation (0.1 mg/
mL) was observed whereas at lower concentrations (≤0.1
mg/mL) the residual specific lipase activity linearly
decreased with decreasing enzyme concentrations
(Figure 3).
The deactivation behaviour of BSL-B may be

explained by spontaneous aggregate formation, a phe-
nomenon that has already been described for lipases of
C. rugosa [42], P. fluorescens [43], P. aeruginosa [44],
Staphylococcus aureus [45], and BSL-A [46], which is
74% identical to BSL-B [33].
The formation of active and soluble BSL-B aggregates

was analyzed by dynamic light scattering over a time
range of 24 h (Additional file 3, Tab. S2). Aggregate for-
mation could be detected only at BSL-B concentrations
exceeding 0.1 mg/mL. These results indicate that con-
centration dependent formation of higher molecular
lipase aggregates lead to a decelerated deactivation

process, probably due to a decreased accessibility of
modifiable amino acid side chains within the aggregates.

Acetaldehyde forms a,b-unsaturated polyenals which
modify BSL-B
Incubation of BSL-B with acetaldehyde in aqueous or
non-aqueous solvents (i.e. toluene) resulted in the forma-
tion of a yellow to brownish colour (Figure 4A and 4B).
The influence of different buffer components on colour
formation was analyzed by incubating 500 mM acetalde-
hyde dissolved in water in the presence of glycine, NaOH
and glycine/NaOH, respectively. In all cases, the incuba-
tion of acetaldehyde with glycine and/or NaOH led to a
yellow to reddish-brown coloured solution (Figure 4B,
upper row). The influence of a protein on colour forma-
tion was tested with a highly purified preparation of
bovine serum albumin (BSA). Upon addition of acetalde-
hyde, the initially yellow-orange colour shifted to red-
brown and finally to black after further addition of
glycine and/or NaOH (Figure 4B, middle row). After pre-
cipitation with TCA, the protein pellets also were
coloured orange to brown (Figure 4B, lower row). Thus,
we concluded that (1) in the presence of a base (NaOH)
and/or a primary amino compounds (glycine, BSA) acet-
aldehyde forms coloured compounds; (2) colour forma-
tion is intensified by combining a base with primary
amino compounds; and (3) the coloured compounds can
bind to a protein.
In order to further analyze the coloured reaction pro-

ducts formed in an aqueous solution containing 500 mM
acetaldehyde and 20 mM glycine/NaOH-buffer or
10 mM NaOH, respectively, they were extracted from the

Figure 3 Acetaldehyde-induced deactivation of BSL-B at
different protein concentrations. Lipase samples were incubated
in the presence 500 mM acetaldehyde for 2 h at 37°C and residual
enzyme activity determined with p-nitrophenylpalmitate as the
substrate.
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aqueous solution and subjected to GC/MS analysis,
which clearly revealed the presence of a,b-unsaturated
polyenals in aqueous acetaldehyde/NaOH-samples with
2,4-hexadienal (m/z: 96, 95, 67) and 2,4,6-octatrienal
(m/z: 122) being the most prominent compounds in the
yellow coloured acetaldehyde/NaOH sample (see upper
row of Figure 4B). Our results are supported by earlier

findings reported in the literature, which also demon-
strated the formation of a,b-unsaturated polyenals from
acetaldehyde in the presence of bases and primary amino
compounds in aqueous solution [47-50]. Specifically,
10 mM glycine in an aqueous 500 mM acetaldehyde
solution was shown to catalyze the formation 2,4-hexa-
dienal, 2,4,6-octatrienal, 2,4,6,8-decatetraenal, and longer

Figure 4 Acetaldehyde-induced colouration of microbial lipases in toluene (A) and in the presence of different buffer components (B).
A) Lipases from C. rugosa (Sigma type VII, CRL), P. fluorescens (Amano AK, PFL), R. oryzae (Amano F-AP15, ROL), BSL-A, and BSL-B were lyophilized
from buffer adjusted to pH = 10 and incubated in the presence (+) or absence (-) of 500 mM acetaldehyde in toluene. B) Influence of
acetaldehyde (500 mM), NaOH (10 mM), and glycine (10 mM) on colour of solutions (upper row), solubilized (middle row) and precipitated
(lower row) BSA (1 mg/mL). Therefore, water or BSA in water was incubated with (+) or without (-) acetaldehyde and the buffer components
glycine and NaOH. Subsequently, all samples containing BSA were treated with TCA to document the colour of the protein pellet (BSA in water
after TCA-precipitation).
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chained polyenals, which leads to a reddish-brown to
black colour [50]. Hence, we assume that the colour for-
mation we have observed is caused by the formation of
a,b-unsaturated polyenals and the colour differences
result from the different sizes of the respective conju-
gated π-electron systems formed.

a,b-unsaturated polyenals bind to BSL-B by
Michael addition
In comparison to acetaldehyde, a,b-unsaturated polye-
nals cannot only induce the formation of unstable Schiff-
bases with primary amino groups, but are also capable of
forming stable Michael-adducts by reaction of their dou-
ble bond in a,b-position with the nucleophilic side chains
of arginine, histidine, lysine and serine [51,52]. We ana-
lyzed differently composed samples (BSA (1 mg/mL),
BSL-B (1 mg/mL), glycine (10 mM), NaOH (10 mM),
and acetaldehyde (500 mM) in different combinations) to
detect protein-bound carbonyl groups which are formed
only by Michael-addition of a,b-unsaturated polyenals.
The 2,4-dinitrophenylhydrazine (DNPH)-assay revealed
the formation of protein-carbonyl compounds only in the
presence of NaOH and/or primary amino compounds
(glycine or protein). In the presence of glycine, a three-
to five-fold higher number of carbonyl groups was
detected indicating a high catalytic efficiency of glycine
as aldol condensation catalyst. The lower values deter-
mined for BSL-B as compared to BSA can be attributed
to a lower number of modifiable amino acid residues (60
lysine residues per BSA molecule versus 10 per BSL-B
molecule). A more precise localization of the modifica-
tion sites was attempted by analysis of acetaldehyde-trea-
ted BSL-B with MALDI-TOF-MS. MS-spectra showed
considerable heterogeneity and sufficient material for
analyses was difficult to obtain due to the modification of
predominantly lysine residues which hampered trypsin
digestion during sample preparation. Nevertheless, we
succeeded to identify a modified peptide fragment with
Mw = 1507.711 Dalton consisting of amino acids Asn26-
Lys37. Michael-addition of crotonaldehyde to the native
Asn26-Lys37 fragment (Mw = 1437.712 Da) would result
in a theoretical molecular mass shift of 70.09 Da to
give 1507.802 Da. This result is the first indication that
a,b-unsaturated polyenals can interact with BSL-B and
form stable Michael-adducts with surface exposed amino
acid residues. Further indications were obtained by
studying the direct inactivation of BSL-B with 2,4-hexa-
dienal (see below), which was among the major a,b-unsa-
turated polyenals identified in our samples.

2,4-Hexadienal inactivates BSL-B not only by modification
of lysine residues
In order to investigate the direct effect of a,b-unsatu-
rated polyenals, we tested the ability of 2,4-hexadienal

to inactivate BSL-B at concentrations of 0 mM, 10 mM,
25 mM, and 50 mM. As expected, BSL-B activity
decreased with increasing 2,4-hexadienal concentrations.
It is interesting to note that incubation of BSL-B with
50 mM 2,4-hexadienal reduced the hydrolytic activity to
19% after 24 h whereas no activity decrease was
detected after incubation with the same concentration
of acetaldehyde (Figure 2B).
To identify the influence of primary amino groups (free

glycine, N-termini, and lysine side chains, respectively)
on the acetaldehyde induced deactivation, we analyzed
differently treated BSL-B samples by SDS-PAGE and IEF,
determined their residual hydrolytic activity, and also
documented the colour after incubation with 500 mM
acetaldehyde (Figure 5). Comprehensive modification of
primary amino groups with methylacetimidate (Figure 5,
samples 4 and 5, line A and B) abolished the formation
of intermolecular cross-links and also a decrease of the
pI (compare to Figure 2). These results clearly indicate
that both reactions are caused by Schiff-base modified
lysine side chains. Subsequently, methylacetimidate was
removed and acetaldehyde (samples 3-5) and fresh gly-
cine/NaOH-buffer was added (sample 5). The addition of
fresh glycine/NaOH buffer introduced unmodified gly-
cine into the sample and its free amino groups can initi-
ate the formation of a,b-unsaturated polyenals, which
was additionally proven by the formation of coloured
compounds in samples 3 und 5 (line D). Determination
of the hydrolytic activity of samples 4 and 5 demon-
strated that the activity of sample 5, which contained a,
b-unsaturated polyenals, decreased by ~ 40% relative to
sample 4 (defined as 100%). As all solvent accessible
amino groups in BSL-B were modified by methylacetimi-
date, this effect can only be explained by modification of
amino acid side chains other than those of lysine (e.g. of
arginine, histidine, cysteine) with a,b-unsaturated
polyenals, as has earlier been demonstrated [51,52]. In
summary, about 40% of the acetaldehyde induced deacti-
vation of BSL-B can be traced back to Michael-adduct
formation at arginine, histidine, and serine side chains
(BSL-B possesses no cysteine residues) and about 60% to
the Michael-addition of a,b-unsaturated polyenals to
lysine ε-amino groups.

Conclusions
Lipase-catalyzed transesterification reactions of vinyl esters
result in the formation of acetaldehyde which is known to
deactivate microbial lipases. Until now, deactivation was
thought to be caused by structural changes resulting from
initial Schiff-base formation at solvent accessible lysine
residues of the enzymes [19,24]. Using BSL-B as a model
enzyme we demonstrate that acetaldehyde induced modi-
fications lead to an increase of the enzymes’ molecular
mass presumably caused by intermolecular cross-linking
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and a decrease of the isoelectric point, respectively. These
stable modifications of the enzyme can be explained by
Michael-addition of a,b-unsaturated polyenals, formed by
aldol condensation of acetaldehyde in the presence of
bases and/or amino acids [49-52]. Moreover, we found
indications that these polyenals act as non-competitive
inhibitors of the enzyme.
Our results further demonstrated that acetaldehyde-

induced inactivation of microbial lipases can be
avoided by adjusting the protonation state of the
enzymes. Thus, “pH-tuning” of lipases cannot only
preserve activity but also stability of the enzymes by
effectively shielding surface exposed amino groups

through protonation. This pre-treatment can avoid the
formation of a,b-unsaturated polyenals (if no other
bases are present) and protonates primary amino
groups which are, besides other nucleophilic side
chains, most accessible to Michael-addition. As pH-
changes may affect the activity and stability of the
enzymes, a prerequisite of pH-tuning is sufficient sta-
bility and activity at weak acidic to neutral pH.
Besides, free amino acids such as glycine, which is fre-
quently used as a buffer component for lipase prepara-
tions, should be avoided for lipase preparations used in
transesterification reactions with vinyl esters as they
amplify the inactivation process.
Our findings also explain the higher stability of several

immobilized lipase preparations which is caused by the
minimization of solvent-accessible amino groups and
other nucleophilic groups. In summary, our results
allow us to propose a refined mechanism for acetalde-
hyde-induced deactivation of microbial lipases as
summarized in Figure 6.

Methods
Materials
The following chemicals were of analytical grade: acetal-
dehyde (Fluka, Taufkirchen, Germany), citric acid
monohydrate (Carl Roth, Karlsruhe, Germany), glycine
(Carl Roth, Karlsruhe, Germany), KH2PO4 (Carl Roth,
Karlsruhe, Germany), sodium dodecyl sulfate (Carl Roth,
Karlsruhe, Germany), NaOH (Carl Roth, Karlsruhe, Ger-
many), Na2HPO4 (Carl Roth, Karlsruhe, Germany), and
TCA (Carl Roth, Karlsruhe, Germany).
All other chemicals used in this study were of at least

technical grade.

Enzymes and other proteins
Samples of lyophilized lipases (triacylglycerol hydrolases,
EC 3.1.1.3) from C. rugosa (CRL, Sigma type VII),
R. oryzae (ROL, Amano F-AP15), and Pseudomonas
fluorescens (PFL, Amano AK) were purchased from
Sigma-Aldrich (Taufkirchen, Germany). Lyophilized
BSA was purchased from Sigma-Aldrich (Taufkirchen,
Germany). Lipases A and B from B. subtilis (BSL-A and
BSL-B) were produced and purified as described pre-
viously [53]. Briefly, for large-scale production of BSL-A
and BSL-B, high cell density fed-batch cultivation using
E. coli BL21(DE3) as a host, carrying pET19b derived
expression plasmids were performed in an Infors fer-
menter (30 L) [53-55]. After purification by immobi-
lized-metal affinity chromatography (IMAC) [56] using a
Ni-nitrilo-triacetic acid (NTA) superflow column
(30 mL, QIAGEN, Hilden, Germany), imidazole was
removed by gel filtration chromatography (G-25 col-
umn, Amersham Pharmacia Biotech) using glycine/
NaOH-buffer (10 mM, pH 10).

Figure 5 Acetaldehyde-induced deactivation of BSL-B depends on
the number of modifiable amino acid residues and on the
presence of primary amino compounds in the solvent. To
investigate the influence protein-bound primary amino groups
(N-terminus and ε-amino groups) as well free glycine on the deactivation
process, BSL-B (1 mg/mL) has (1) been incubated with (+) or without (-)
metylacetimidate; (2) then transferred (+) into fresh glycine/NaOH-buffer
(10 mM, pH 10) or not (-); and (3) incubated with (+) or without (-) 500
mM acetaldehyde for 24 h. Subsequently, all samples have been analyzed
with SDS-PAGE (A) and IEF (B). Furthermore, the residual hydrolytic activity
(C) and the colour (D) of all samples containing acetaldehyde have been
documented. S: SDS-PAGE and IEF-Standard. 1: - methylacetimidate,
- glycine/NaOH-buffer, - acetaldehyde. 2: + methyl-acetimidate, -
glycine/NaOH-buffer, -acetaldehyde. 3: - methylacetimidate, - glycine/
NaOH-buffer, + acetaldehyde. 4: + methyl-acetimidate, - glycine/NaOH-
buffer, + acetaldehyde. 5: + methylacetimidate, + glycine/NaOH-buffer, +
acetaldehyde.
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Figure 6 How acetaldehyde inactivates microbial lipases. Deprotonated (-NH2) or protonated (-NH3
+) amino groups can be generated by

lyophilization from buffers of the respective pH. Only deprotonated amino groups are able to form Schiff bases with acetaldehyde; they can
induce the formation of intra- and intermolecular cross-links. Furthermore, bases and/or amino compounds (protein-bound amino groups, free
amino compounds in the buffer) can catalyze the aldol condensation of acetaldehyde to α,β-unsaturated aldehydes which result in a yellow to
brownish-black colour of the respective solution or protein. Finally, the formation of Michael-adducts between the enzyme and the α,β-
unsaturated aldehydes leads to inactivation. At lower enzyme concentrations, the inactivation process proceeds fast; whereas fast aggregation of
the enzyme at higher concentrations hampers the covalent modification thereby decelerating the inactivation process.
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Determination of protein concentrations
Protein concentrations were determined with the Brad-
ford method [57] using bovine serum albumin (BSA) as
the standard.

Adjustment of lipase protonation state
Lipases from C. rugosa, R. oryzae, and P. fluorescens
were dissolved in citrate/NaOH-buffer (100 mM, pH 6)
or Na2CO3/NaHCO3-buffer (100 mM, pH 10) respec-
tively at a final concentration of 10 mg/mL. BSL-A and
BSL-B were stored in glycine/NaOH-buffer (10 mM, pH
10) and diluted 1:2 with glycine/NaOH (10 mM, pH 10)
and citrate/NaOH-buffer (100 mM, pH 6), respectively
to a final concentration of 0.5 mg/mL. Samples were
incubated in screw-capped vials for 1 h at - 80°C prior
to lyophilization carried out overnight at 0.011 mbar. In
order to avoid pH-shifts due to the change of tempera-
ture during freezing, buffers with a small delta pKa/dT
were chosen: citrate buffer: dpKa/dT = 0; carbonate buf-
fer: dpKa/dT = -0.009.

Acetaldehyde-induced deactivation under non-aqueous
conditions
The lyophilized enzymes were (1) treated with toluene; (2)
sonicated for 3 min (Sonorex ultrasonic bath, BANDELIN
electronic, Berlin, Germany) to obtain homogenous dis-
persions in organic solvent; (3) treated with acetaldehyde
(0-1 M for BSL-A, BSL-B, and PFL, and 0-2.5 M for CRL
and ROL respectively); and (4) incubated for 24 h at room
temperature in an overhead mixer (Reax 2 overhead
mixer, Heidolph Instruments, Schwabach, Germany).
Lipases were extracted from the organic phase with
800 μL Na2HPO4/KH2PO4-buffer (50 mM, pH 8) and the
solution subsequently clarified by centrifugation.

Analysis of aldol products of acetaldehyde in the
presence of glycine and NaOH
In order to identify the nature of the coloured products,
500 mM acetaldehyde was incubated in the presence of
a 20 mM glycine/NaOH buffer and in 10 mM NaOH
without glycine. After incubation at 37°C overnight, the
reaction products were extracted with dichloromethane
and subjected to GC/MS analysis (Siemens, Varian).

Treatment of BSL-B with methylacetimidate
BSL-B was treated with methylacetimidate which results
in specific modification of primary amino groups which
retain their positive charge and still exhibit high stability
at alkaline pH [58]. 2 × 1 mL BSL-B solution (1.0 mg/
mL in 10 mM glycine/NaOH-buffer, pH 10) were mixed
with 1 mL methylacetimidate solution (0.9 M methyla-
cetimidate in 1 M NaOH, pH 9.5) and incubated for 1 h
at room temperature as described previously [59]. An
untreated sample without methylacetimidate was used

as a control. The glycine/NaOH-buffer in one of the
BSL-B samples was substituted with fresh glycine/
NaOH-buffer (10 mM, pH 10) using a Sartorius Vivas-
pin-20 centrifugal concentrator column (4°C, 3000 g)
and precipitated proteins were removed by centrifuga-
tion. Residual hydrolytic lipase activity was determined
with p-nitrophenylpalmitate as the substrate.

Acetaldehyde- and 2,4-hexadienal-induced deactivation of
BSL-B
BSL-B (0.025-0.5 mg/mL) dissolved in glycine/NaOH-
buffer (10 mM, pH 10) was mixed with acetaldehyde
(final concentration: 0-1.8 M), or 2,4-hexadienal (final
concentration: 0-50 mM), incubated for 2 h or 24 h at
37°C in a thermo mixer (Eppendorf, Germany) at
300 rpm and the solution clarified by centrifugation.

Acetaldehyde-induced modification of bovine serum
albumin
The reaction of acetaldehyde (0-0.5 M) with buffer com-
ponents and BSA (1 mg/ml) was performed by incuba-
tion of samples for 24 h at 37°C in a thermo mixer
(Eppendorf, Germany) at 300 rpm and precipitation with
trichloroacetic acid (TCA) as described [60] by mixing
samples with 1/10 volume of 70% (w/v) TCA, incubation
on ice for 30 min and subsequent centrifugation.

Determination of lipase activity
Lipase indicator plates [61] were prepared by addition of
50% (v/v) tributyrin and 5% (w/v) gum arabic to molten
Luria-Bertani agar medium (500 ml) [62]. Esterase and
lipase activity is indicated by the formation of clear
halos around the colonies of E. coli BL21(DE3) expres-
sing an active lipolytic enzyme. Lipase activity in solu-
tion was measured with p-nitrophenylpalmitate as the
substrate as described [63].

Dinitrophenylhydrazine assay
Protein-bound carbonyl groups were detected as pre-
viously described [64] by addition to each sample of
500 μL 2,4-dinitrophenylhydrazine (DNPH) solution (0.1%
(w/v) DNPH in 2 M HCl) for 1 h at room temperature
with mixing every 15 min (test tube shaker Reax top, Hei-
dolph, Schwabach, Germany). Proteins were precipitated
with 500 μL 20% (w/v) TCA by incubation for 15 min on
ice and isolated by centrifugation for 30 min. The pellets
were washed 3-times with 1 mL 1:1 (v/v) ethyl acetate/
ethanol, resuspended in 6 M guanidinium-hydrochloride,
133 mM Tris-HCl buffer containing 13 mM EDTA and
the absorption determined at 375 nm.

QuikChange®-PCR
Each lysine residue of BSL-B was replaced by alanine
and arginine, respectively, using the QuikChange®
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method (Stratagene, [65]). Plasmid pET19b carrying the
B. subtilis lipB gene was amplified using specific muta-
genesis oligonucleotide primers (Additional file 4, Tab.
S3) and competent E coli DH5a and BL21(DE3) cells
were transformed with plasmids containing the mutant
genes using a standard procedure [66].

Protein gel electrophoresis
Sodium dodecyl sulfate polyacrylamide gel electrophor-
esis (SDS-PAGE) was performed using a 5% stacking
and a 12% separating gel [67]. Samples of 20 μg BSL-B
were loaded per lane and PageRuler™ prestained pro-
tein ladder (Fermentas, St. Leon-Rot, Germany) was
used as molecular mass standard. Gels were stained as
described [68].

Isoelectric focusing (IEF)
BSL-B samples in glycine/NaOH-buffer (10 mM, pH 10)
were treated with acetaldehyde (0.5 M), incubated over-
night at 37°C in a thermomixer (Eppendorf, Germany)
at 300 rpm, concentrated using a micro-concentrator
column (Centricon-3, Amicon, USA) and loaded on a
pre-cast vertical IEF gel (Novex® pH 3-10, Invitrogen,
Germany) [69]. The SERVA® liquid mix IEF marker
(SERVA® electrophoresis, Germany) was used as the pI
standard and gels were stained as described [68].

Dynamic light scattering (DLS)
Aggregation of BSL-B in glycine/NaOH-buffer (10 mM,
pH 10) was analyzed in a temperature controlled Protein
Solutions™ DynaPro™ dynamic light scattering instru-
ment (Wyatt Technology Corporation, USA). BSL-B
samples (0.1-0.5 mg/mL) were incubated for 24 h at
37°C and the hydrodynamic radii and polydispersities
were calculated at frequent intervals using Dynamics V6
software (Wyatt Technology Corporation, USA).

MALDI-TOF-mass spectrometry
BSL-B (0.5 mg/mL) was dissolved in glycine/NaOH-buf-
fer (10 mM, pH 10), incubated with 0 mM, 50 mM, and
500 mM acetaldehyde for 24 h at 37°C in a thermo
mixer (Eppendorf, Germany) at 300 rpm, and analyzed
by SDS-PAGE. Coomassie-stained protein bands were
cut out and gel slices were incubated 2 times for 10 min
in 650 μL 0.1 M ammonium bicarbonate in 30% (v/v)
acetonitrile, dried for 20 min in a vacuum centrifuge,
rehydrated in 6 μL Tris/HCl-buffer (3 mM, pH 8.8) and
digested with 10 ng/μL trypsine (Promega) overnight at
room temperature. Peptides were isolated by addition of
5 μL A. bidest., incubation for 15 min at room tempera-
ture, addition of 5 μL 0.2% (v/v) trifluoroacetic acid in
30% (v/v) acetonitrile and incubation for 10 min at
room temperature. For MALDI-TOF-MS-analysis 0.5 μL
of the peptide solution were co-crystallized on a steal

plate (Bruker Daltonics) with 0.5 μL matrix (a-cyano-4-
hydroxy-trans-cinnamic acid in 50% (v/v) acetonitrile
and 0.25% (w/v) trifluoro acetic acid). External calibra-
tion was performed by using the Peptide Calibration
Standard for mass spectrometry (Bruker Daltonics).
The samples were analyzed with an Ultraflex MALDI-
TOF/TOF mass spectrometer III (Bruker Daltonics) in
positive reflector mode at an acceleration potential of
26.3 kV.

Identification of colored compounds
A solution of 1 mL 10 mM NaOH was incubated with
500 mM acetaldehyde; the coloured compounds were
extracted with dichlormethane and analyzed by coupled
gas chromatography and mass spectrometry.

Calculation of pKa - and solvent accessibility values
Solvent accessibility and pKa-value calculations were
performed with the PROPKA web interface (http://
propka.ki.ku.dk/~drogers/) [35] using all lipase structure
coordinates available at the Brookhaven Protein
Database (http://www.pdb.org) and a homology based
structural model for BSL-B [33], respectively.

Additional material

Additional file 1: Table S1: Predicted pKa-values of solvent accessible
lysine ε-amino groups derived from all available lipase protein structures.

Additional file 2: Figure S1: Tributyrine plate assay of BSL-B wild
type and BSL-B point variants. Tributyrine plate assay of BSL-B wild
type as well as BSL-B point variants in which each lysine residue is
substituted by alanine and arginine, respectively. -: E. coli BL21(DE3)
carrying the empty vector pET19b. WT: E. coli BL21(DE3) expressing BSL-B
wild type enzyme (pET19b + lipB). K X A/R: E. coli BL21(DE3) expressing
BSL-B in which the lysine residue (K) at position X is substituted with
alanine (A) or arginine (R).

Additional file 3: Table S2: Periodically measured DLS data of
differently concentrated BSL-B samples.

Additional file 4: Table S3: PCR Primers. QuikChange-PCR-primer
sequences for site-directed mutagenesis of each lysine residue in BSL-B
for alanine and arginine, respectively. Each primer pair (e.g. lipB-K25R-fw
und lipB-K25A-fw) differs only in the mutagenesis sequence (bold and
underlined).

List of abbreviations used
BSL-A: Bacillus subtilis lipase A; BSL-B: Bacillus subtilis lipase B; CRL: Candida
rugosa lipase; DERA: 2-deoxy-D-ribose 5-phosphate aldolase; DLS: dynamic
light scattering; DNPH: 2,4-dinitrophenylhydrazine; GC/MS: gas
chromatography/mass spectrometry; IEF: isoelectric focusing; MALDI-TOF-MS:
matrix assisted laser desorption/ionization time of flight mass spectrometry;
PFL: Pseudomonas fluorescens lipase; pNPP: para-nitrophenyl palmitate; ROL:
Rhizopus oryzae lipase; SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel
electrophoresis; TCA: trichloroacetic acid.
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