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Abstract: Each cell in our body is designed with a self-destructive trigger, and if damaged, can
happily sacrifice itself for the sake of the body. This process of self-destruction to safeguard the
adjacent normal cells is known as programmed cell death or apoptosis. Cancer cells outsmart normal
cells and evade apoptosis and it is one of the major hallmarks of cancer. The cardinal quest for
anti-cancer drug discovery (bioactive or synthetic compounds) is to be able to re-induce the so called
“programmed cell death” in cancer cells. The importance of bioactive compounds as the linchpin
of cancer therapeutics is well known as many effective chemotherapeutic drugs such as vincristine,
vinblastine, doxorubicin, etoposide and paclitaxel have natural product origins. The present review
discusses various bioactive compounds with known anticancer potential, underlying mechanisms by
which they induce cell death and their preclinical/clinical development. Most bioactive compounds
can concurrently target multiple signaling pathways that are important for cancer cell survival while
sparing normal cells hence they can potentially be the silver bullets for targeting cancer growth and
metastatic progression.
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1. Bioactive Compounds in Cancer

Breast cancer is one of the major health concerns for women and the second leading cause of cancer
related mortality in the United States (https://www.cdc.gov/cancer/breast/statistics/ index.htm) [1].
In spite of major advancements in novel therapeutic strategies, development of drug resistance is
common in all breast cancer subtypes. A significant number of cancers develop resistance towards
drugs and relapse accounting for one of the most concerning issue with conventional therapies [2,3].
Conventional therapies mostly fail because of the dysregulation of the balance between cell growth
and apoptosis [4]. Although the typical path of development of single target drugs for cancer has
produced multiple successful targeted approaches, it has not been able to circumvent the problem of
drug resistance and tumor recurrence. Cancer cells exhibit simultaneous activation of multiple cell
surface receptors and signaling pathways hence targeting one node typically leads to the activation
of alternative pathways. Development of novel anti-cancer drugs with low toxicity and improved
efficacy is the need of the hour [5].

Also known as nutraceuticals, chemicals present in plants and certain foods as natural constituents
are termed as bioactive compounds [6]. Bioactive compounds have been used for millennia in Ayurvedic
and traditional Chinese therapy for various ailments [7] and have shown efficacy as anti-inflammatory,
anti-depressant, anti-microbial as well as anti-cancer agents [5,8]. The discovery of bioactive compounds
from plant sources not only established the basis of traditional medicine but is also proving to be an
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indispensable source of pharmacological agents for modern drug development [9]. Numerous research
studies have provided substantial support over the decades for the suitability and effectiveness of
several bioactive compounds against cancer [10]. Many successful drugs such as vincristine, vinblastine,
doxorubicin, etoposide and paclitaxel have natural product origins. Several bioactive compounds
have shown to increase apoptosis of cancer cells through different mechanisms of action [11] and
many others have been reported to reduce cancer cell proliferation, induce apoptosis, inhibit invasion
and migration and overcome chemo-resistance [5,12]. It has also been shown that several bioactive
compounds isolated from medicinal plants delay metastasis and prevent angiogenesis [13,14]. Reports
reveal that bioactive compounds affect intracellular signaling associated with carcinogenesis [14,15].
Together, these studies impart solid preclinical support for the clinical development of these bioactive
compounds (Figure 1) [16].

Cancers 2019, 11, x FOR PEER REVIEW  2 of 25 

 

drug development [9]. Numerous research studies have provided substantial support over the 

decades for the suitability and effectiveness of several bioactive compounds against cancer [10]. Many 

successful drugs such as vincristine, vinblastine, doxorubicin, etoposide and paclitaxel have natural 

product origins. Several bioactive compounds have shown to increase apoptosis of cancer cells 

through different mechanisms of action [11] and many others have been reported to reduce cancer 

cell proliferation, induce apoptosis, inhibit invasion and migration and overcome chemo-resistance 

[5,12]. It has also been shown that several bioactive compounds isolated from medicinal plants delay 

metastasis and prevent angiogenesis [13,14]. Reports reveal that bioactive compounds affect 

intracellular signaling associated with carcinogenesis [14,15]. Together, these studies impart solid 

preclinical support for the clinical development of these bioactive compounds (Figure 1) [16].  

  

Figure 1. Schematic illustrating the anti-cancer potential of bioactive compounds. Bioactive 

compounds can inhibit cancer cell proliferation, induce apoptosis, activate multiple tumor 

suppressors, inhibit angiogenesis, inhibit invasion and migration potential of cancer cells and 

reduce/inhibit inflammation. Bioactive compounds are multifunctional. 

Cancer therapeutics has seen a gradual paradigm shift from monotherapy towards 

combinational treatment approach and the synergistic effects of multiple bioactive compounds with 

standard chemotherapy supports this notion. The combination regimen involving bioactive 

compounds has shown decreased cell proliferation and clonogenicity of breast cancer cells [17]. 

Evidences suggest that bioactive compounds in combination with chemotherapy increases the 

efficacy and decreases the toxicity of chemotherapeutic agents [18]. The Dietary guidelines 

recommend the consumption of whole plant products as chemo preventive agents based on the 

health advantages observed in epidemiological studies [19] but achieving high levels of 

phytochemicals in target tissues is always a challenge. One advantage of developing bioactive 

compounds for cancer prevention and treatment is that these small molecules can be easily taken in 

effective doses with little or no toxicities. Recent mechanistic studies with various bioactive molecules 

have shown that most bioactive molecules do not target a single protein or pathway but exert 

Figure 1. Schematic illustrating the anti-cancer potential of bioactive compounds. Bioactive compounds
can inhibit cancer cell proliferation, induce apoptosis, activate multiple tumor suppressors, inhibit
angiogenesis, inhibit invasion and migration potential of cancer cells and reduce/inhibit inflammation.
Bioactive compounds are multifunctional.

Cancer therapeutics has seen a gradual paradigm shift from monotherapy towards combinational
treatment approach and the synergistic effects of multiple bioactive compounds with standard
chemotherapy supports this notion. The combination regimen involving bioactive compounds has
shown decreased cell proliferation and clonogenicity of breast cancer cells [17]. Evidences suggest
that bioactive compounds in combination with chemotherapy increases the efficacy and decreases
the toxicity of chemotherapeutic agents [18]. The Dietary guidelines recommend the consumption
of whole plant products as chemo preventive agents based on the health advantages observed in
epidemiological studies [19] but achieving high levels of phytochemicals in target tissues is always a
challenge. One advantage of developing bioactive compounds for cancer prevention and treatment
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is that these small molecules can be easily taken in effective doses with little or no toxicities. Recent
mechanistic studies with various bioactive molecules have shown that most bioactive molecules do
not target a single protein or pathway but exert pleiotropic effects concurrently affecting multiple
pathways. While outwardly, this may seem like a shortcoming especially in light of the preference for
single-target agents but this key characteristic allows bioactive compounds to evade the development
of resistance due to the activation of supporting alternative pathways, a problem observed with most
single-target drugs [20]. In addition, the effective doses of most bioactive agents do not exert any
toxicities or side effects making them ideal preventative and anticancer agents. In this review, we
discuss various bioactive compounds (Figure 2), their underlying mechanisms and their efficacy in
breast cancer prevention and therapy.
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Figure 2. Structures of bioactive compounds. We discuss the anti-cancer potential, underlying molecular
mechanisms and clinical development of these select bioactive compounds in this review.

2. Withaferin A, a Steroidal Lactone from Ashwagandha

Withaferin A (WFA), a steroidal lactone isolated from Withania somnifera commonly known as
Ashwagandha, Indian ginseng or winter cherry, is the most potent bioactive compound among the
14 withanolides isolated from this plant. It has been known for its anti-inflammatory, anti-angiogenic,
cardioprotective and anti-carcinogenic properties [21–23]. WFA modulates cell cycle in breast cancer
cells and causes G2 and M phase arrest [24]. In vivo and in vitro studies from our group and others
have revealed that WFA inhibits clonogenicity and induces apoptosis in breast cancer cells [25,26].
WFA administration is correlated with enhanced apoptosis, reduced mammary tumors and decreased
pulmonary metastasis in the MMTV (mouse mammary tumor virus)-transgenic model [26]. Reports
reveal that WFA-mediated apoptosis is dependent on Bcl-2 [22], ROS [27], Bax and Bak, respectively [28].
Involvement of ROS in WFA-induced cells death has also been shown in breast cancer cells [29,30].
WFA modulates multiple oncogenic signaling pathways in cancer cells to impart its anti-cancer effects.
WFA induces anti-tumor effects via STAT3 inhibition in multiple myeloma and neuroblastoma [31].
Sehrawat et al., reported that WFA-mediated apoptosis is associated with the dysregulation of the
mitochondrial dynamics in breast cancer cells [32]. In addition, FOXO3 regulates WFA mediated
apoptosis in breast cancer cells with its transcriptional target, Bim, which causes reduced cell
proliferation and increased tumor mass apoptosis in WFA-treated in vivo models [22]. Our recent



Cancers 2019, 11, 1563 4 of 24

findings demonstrate that WFA induces apoptosis by downregulating ATP levels and enhancing the
activation of AMPK [33]. Importantly, combining 2-deoxyglucose (2-DG) and WFA synergistically
enhances apoptosis in breast cancer cells proposing that a combinational regimen may prove more
beneficial than either monotherapy [33]. Exhibiting the involvement of downstream effector molecules,
Zhang et al., demonstrated that WFA induces caspase 3 and caspase7 leading to apoptosis in MCF-7
cells [34]. Several studies have reported the involvement of tumor suppressor p53 in WFA’s biological
functions. Hahm et al., reported that silencing of p53 attenuates WFA-induced apoptosis in breast
cancer cells [35]. It has been demonstrated that the growth inhibitory effects of WFA are via induction
of p53, p21 and phospho-p38MAPK, as well as by down regulation of ERα, RET and HSF1 [34].
On the contrary, p53-independent effects of WFA have also been demonstrated. WFA-induced
apoptosis in breast cancer cells is associated with XIAP, c-IAP-2, and survivin suppression respectively,
regardless of p53 or estrogen receptor [28]. Previous study from our lab has shown that WFA treatment
activates death receptor 5 (DR5) which leads to efficient growth inhibition [25]. However, WFA
has been reported to cause apoptosis in human breast cancer cells through intrinsic and extrinsic
mechanism via modulating mitochondrial membrane potential, DNA condensation, cytoplasmic
histone-associated DNA fragmentation that causes the degradation cytoskeletal protein and poly
(ADP-Ribose) polymerase cleavage [22]. WFA treatment inhibits self-renewal of breast cancer stem cells
in vitro and in vivo [36]. Treating breast cancer cells with a combination of WFA and sulforaphane (SFN)
induces apoptosis via upregulation Bax/Bcl-2 ratio and downregulation of HDAC1 expression [37].
Combining WFA with chemotherapy may prove effective as WFA and cisplatin combination effectively
inhibits ovarian cancer cells in vitro and in vivo by eliminating the cancer stem cells [38,39]. Cisplatin
and WFA combination treatment has also shown benefit in triple negative breast cancer reducing the
cellular proliferation and promoting apoptosis [40]. In summary, the polypharmaceutical effects of
WFA holds promise as an anti-cancer compound and warrants further clinical exploration.

3. Honokiol, a Polyphenol from Magnolia

In traditional Asian medicine magnolia species have been used for many centuries to treat anxiety,
nervous system disorders, fever, gastrointestinal symptoms, and stroke [41–45]. The potential of
polyphenols as effective agents against cancer has been acknowledged for the past two decades [46].
Magnolol, one of the bioactive components of Magnolia officianalis, is demonstrated to possess inhibitory
effects on multiple cancer cell lines [47–51]. Zhou et al., reported that magnolol induces apoptosis
and G2/M arrest in MCF-7 cells [52]. Honokiol (HNK) is the major small molecule polyphonic
compound derived from Magnolia grandiflora and it has been used in traditional Chinese and Japanese
medicine. Preclinical in vitro and in vivo studies reveal anti-tumor, anti-angiogenic, anti-inflammatory
and anti-oxidative properties of HNK [41,53,54]. HNK induces apoptosis and inhibits growth in breast
and other cancer cells [41,55,56]. Our research group has shown that HNK inhibits breast cancer
growth using various in vitro and in vivo models [54]. Hou et al., demonstrated that HNK induces
apoptosis in mouse 4T1 breast cancer model and inhibits cancer cell proliferation in vitro and in vivo [57].
HNK inhibits nuclear translocation of NFkB and induces TNF-α mediated apoptosis [58]. Tumor
microenvironment tend to be hypoxic in nature and HIF-1α helps the cancer cells to adapt to the low
oxygen environment [59]. HNK decreases the expression level of HIF-1α and suppresses the hypoxia
induced cancer-promoting pathway [60]. Our research group showed that HNK inhibits growth
of breast cancer cells by inducing AMP-activated protein kinase in a LKB1-dependent manner [54]
and inhibits epithelial-mesenchymal transition and stemness by modulating Stat3/Zeb1/E-Cadherin
axis [61]. HNK treatment also effectively inhibits stemness in breast cancer by concurrent activation
of tumor suppressor LKB1 and suppression of oncogenic Stat3 signaling [62]. Downregulation of
Snail/slug by HNK targets EMT in breast cancer [63]. HNK synergistically induces apoptosis in
combination with mTOR inhibitor, rapamycin, in breast cancer cells [64]. HNK modulates TNFα
induced Nur77 expression in breast cancer cells [65]. HNK has also shown efficacy in hyperleptinemic
obese state where oncogenic hyperactive leptin signaling drives tumor progression. HNK treatment
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inhibits Wnt1-MTA-1-β-catenin signaling and activates LKB1-miR34a axis leading to the inhibition of
breast tumor progression [66,67]. We have shown that HNK impedes cell motility and stem-like breast
cancer cell phenotype by decreasing mammosphere formation, OCT4, Nanog, SOX2, and ALDH1,
respectively [62]. Studies have suggested that early progenitor cells in breast cancer preserve the
capability of self-renewal and differentiation to repopulate the entire tumor [68]. In addition, breast
cancer stem cells markers, like aldehyde dehydrogenase (ALDH1), CD24, CD166, CD47, and CD44 are
present in abundance in the breast tumor samples [68,69]. HNK attenuates the self-renewal of oral
cancer stem cells and reduces the expression of ALDH1 and CD44 cancer stem cell markers [70]. HNK
is indeed an attractive bioactive compound with strong anti-cancer potential. Recently, a transdermal
approach was developed to facilitate localized delivery of Honokiol that might prove beneficial [71].
Solid preclinical support for honokiol’s anti-cancer potential and an understanding of underlying
signaling mechanisms to guide the correlative biomarkers is already present, and now the field is
awaiting clinical studies for further development of this promising bioactive compound.

4. Benzyl Isothiocyanate, an Isothiocynate from Cruciferous Vegetables

Epidemiological studies have reported that the consumption of cruciferous vegetables is associated
with reduced cancer risk [72,73]. Cruciferous vegetables have a high content of glucosinolates and
their metabolites, especially isothiocyanates [73–75]. Characteristically harboring the N=C=S group,
the isothiocyanate class of chemicals is responsible for the well-established medicinal properties of
isothiocyanate-rich vegetables and fruits. ITCs naturally occur in abundance in cruciferous vegetables
such as broccoli, Brussels sprouts and cauliflower and play an important role in the chemoprevention
properties of these vegetables. In a population-based study, broccoli intake inversely correlates with
breast cancer in premenopausal women [76,77]. Over the past few decades, research has provided
extensive preclinical evidence for the effectiveness of various ITCs against cancer progression [78–80].
Benzyl isothiocyanate (BITC), 1-naphthyl isothiocyanate (NITC), phenethyl isothiocyanate (PEITC) and
sulforaphane (SFN) are the most significant ITCs that have been extensively researched against various
cancers including breast cancer [79]. BITC and SFN reduce cell growth [79], induce apoptosis [81],
inhibit spontaneous tumorigenesis in genetically-engineered models and significantly reduce tumor
progression in xenografts models [82–84]. BITC administration reduces mammary tumor incidence
and tumor progression in MMTV-neu mice and tumors in BITC treated group exhibit fewer Ki-67
positive cells and an increase in apoptotic bodies [85]. Yu et al., was first to demonstrate apoptosis
induction by ITC in a caspase-3-dependent mechanism [86]. BITC mediated apoptotic-induction in
breast cancer cells involves reactive oxygen species generation, increase in pro-apoptotic proteins
such as Bax/Bak, reduction in anti-apoptotic proteins such as Bcl-2/Bcl-xL and activation of caspases
including caspase 9, caspase 3, and caspase 8 [87]. BITC treatment leads to c-Jun N-terminal kinase
(JNK) and p38 mitogen-activated protein kinase (p38 MAPK) activation that plays an important role
in BITC’s biological function as their inhibition abrogates BITC-mediated cell death [88]. JNK and
p38 MAPK leads to increased Bax translocation from the cytosol to the mitochondria in breast cancer
cells [88] and an ectopic expression of the catalytically inactive JNK kinase 2 mutant significantly
suppresses the BITC medicated conformational change of Bax [88]. It is interesting to note that BITC can
inhibit transcriptional activation of estrogen-responsive genes and disrupt estrogen-estrogen receptor
axis in ER-positive breast cancer cells [89]. BITC treated breast cancer cells exhibit FoxO1-mediated
autophagy and induces apoptosis via attenuation of mTOR activity in vitro and in vivo [90]. Inhibition
of epithelial-mesenchymal transition (EMT) [91], stemness [92] as well as inhibition of various
important oncogenic pathways including Wnt/catenin [93] in response to BITC has been observed.
Both p53 dependent and –independent role of BITC has been shown [94,95]. Kim et al., showed that
BITC-induced cell death is facilitated by down regulation of X-linked inhibitor of apoptosis (XIAP) in
a p53-independent manner [94]. Our research group showed that BITC is effective in breast cancer
cells harboring wild type p53 or mutant p53. In the presence of wild type p53, BITC increases p53
phosphorylation and decreases PRAS40 phosphorylation leading to accumulation of active p53 that
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acts as a transcription factor for tumor suppressor LKB1, and also tethers with LKB1 to upregulate
p53-responsive genes. In breast cancer cells harboring mutant p53, BITC dissociates the mutant p53-p73
complex releasing p73 from sequestration. Upon release, p73 activates LKB1 expression and tethers
with LKB1 to upregulate p53-responsive genes leading to growth inhibition [95]. Adipocytokine leptin
has been shown to turn on an oncogenic signaling cascade and stimulate breast cancer growth in obese
state [96–101]. Interestingly, BITC treatment can block leptin-induced breast cancer growth by directly
inhibiting leptin-mediated Stat3 activation [102]. BITC treated breast cancer cells show decreased tumor
progression and lower expression of epithelial-mesenchymal transition (EMT) markers [91]. BITC
administration in the MMTV-neu mice reduces tumor progression and stemness [103]. Several studies
have shown that BITC selectively affects cancer cells and exhibits minimal toxicity against normal
cells. BITC effectively suppresses growth of breast cancer cells while normal mammary epithelial cells
remain largely unaffected [87,93]. Similarly, human pancreatic cancer cells show increased apoptosis in
response to BITC treatment whereas immortalized human pancreatic cells do not respond to BITC [104].
BITC is reported to inhibit growth and induce apoptosis in human oral cancer cells while exhibiting
low toxicity to normal cells [105]. These preclinical studies have provided important insights into the
anti-cancer efficacy of BITC however clinical validation is still pending.

5. Resveratrol, a Polyphenolic Phytoestrogen

Resveratrol (3,5,4’-trihydroxy-trans-stilbene) is a non-flavonoid, polyphenolic phytoestrogen
majorly present in plants like grapes (Vitis vinifera), blueberries, mulberries, soy, pomegranate and
peanuts [106–108]. Resveratrol was first appreciated in the context of “French Paradox” where
resveratrol present in red wine was considered protective against heart disease and obesity in French
population despite their high-fat French diet intake [109]. Although it is known today that the beneficial
effects of French diet are because of the combination of resveratrol and various other plant-based
components and not resveratrol alone, it is still well regarded for its health benefits. Multiple clinical
trials have evaluated the efficacy of resveratrol for T2DM, obesity, prediabetes, diabetic neuropathy,
NAFLD, fatty liver, brain function, memory, schizophrenia, and Parkinson’s disease [110]. Many trials
are currently undergoing to evaluate the benefits of resveratrol in various cancers including colon,
colorectal, multiple myeloma and breast cancer [110]. Multiple studies have shown anti-tumor effects of
resveratrol in many cancer types [111–115] and its efficacy as a chemopreventive and therapeutic agent
is supported by epidemiological and preclinical research [116]. Activation of caspases is an important
downstream event in apoptotic induction. Resveratrol has been shown to induce apoptotic death of
cancer cells in a caspase-dependent as well as caspase-independent manner [117–119]. In estrogen
receptor positive breast cancer cells, resveratrol mediates apoptotic cell death via Bcl-2 downregulation
that is independent of cytochrome c release and cleavage of caspases 3/8 and PARP [117]. A caspase-3
activation dependent mechanism for apoptotic induction by resveratrol has been shown in estrogen
receptor negative breast cancer cells [118]. Modulation of mitochondrial membrane potential, release
of cytochrome c, activation of Second Mitochondria-derived Activator of Caspase/direct inhibitor of
apoptosis-binding protein with low pI (Smac/DIABLO) and Ca2+-activated protease calpain have
also been implicated in resveratrol-mediated apoptotic induction [120]. Interestingly, activation of
upstream kinase ERK leads to Bcl-2 suppression in breast cancer cells treated with resveratrol resulting
in apoptotic cell death [121]. Resveratrol is also known to inhibit Akt, mammalian target of rapamycin
(mTOR), PI3K as well as Wnt/catenin pathway leading to decreased cancer cell growth [122,123].
Another study showed that resveratrol treatment decreases stem cell population in NOD/SCID mice
and down-regulates Wnt/β-catenin self–renewal pathway [124]. Examining the involvement of signal
transducer and activator of transcription 3 (Stat3) in resveratrol function, Kotha et al., showed that
resveratrol inhibits the tyrosine kinase activity of Src leading to the inhibition of Stat3 in breast
cancer cells [125]. Resveratrol treatment causes induction of p53, p21 and BRCA in breast cancer
cells [126–128] via various pathways, one important mechanism being the modulation of epigenetic
modulators protein arginine methyltransferase 5 (PRMT5) and enhancer of Zeste homolog 2 (EZH2)
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and causing changes in histone methylation marks [128]. Owing to its structural resemblance to
diethylstilbestrol, a synthetic estrogen, resveratrol has been considered a phytoestrogen that binds to
estrogen receptor-α and -β and modulates the expression of ER-responsive genes [129,130]. Multiple
studies have evaluated the effectiveness of resveratrol in enhancing the efficacy of chemotherapy or
re-sensitizing chemotherapy-resistance cells [131–133]. By modulating the SIRT1 and β-catenin axis,
resveratrol sensitizes chemotherapy-resistant breast cancer cells to doxorubicin leading to effective
inhibition of growth, migration, and EMT [131]. Involvement of miR-122-5p has also been shown in
resveratrol-mediated chemo sensitization of Adriamycin-resistant breast cancer cells [132]. Owing to a
large number of preclinical studies, the role and importance of resveratrol is already well-established
in breast cancer therapeutics and chemoprevention. Multiple ongoing clinical trials will help propel
this bioactive compound in clinical arena.

6. Curcumin, the Golden Spice

Curcumin is a hydrophobic, polyphenolic constituent of turmeric, the yellow spice extracted
from the plant Curcuma longa. Curcuma longa grows naturally in Indian subcontinent and South
East Asia. The use of turmeric dates to 1900 BCE as a major spice in Indian cuisine and it is
commonly used in various homemade and Ayurvedic medicines [134]. Curcumin is the major
curcuminoid found in turmeric [134] and has shown to be non-toxic, anti-oxidant, anti-inflammatory
and anti-carcinogenic [135]. The contribution of curcumin in science is evident from the establishment
of the Curcumin Resource Database (CRDB) incorporating 1186 curcumin analogs, 195 molecular
targets, 9075 peer reviewed publications, 489 patents and 176 varieties of C. longa [136]. Curcumin
inhibits the proliferation of both normal and malignant cells in a non-selective manner, although its
apoptotic effect in malignant cells is more profound [137]. Curcumin treatment increases the expression
as well as DNA-binding activity of p53 that culminates in modulation of Bax protein and apoptotic
induction [138]. Breast cancer cells treated with curcumin show increased levels of pro-apoptotic
protein Bax and decreased the expression of anti-apoptotic protein Bcl-2, resulting in an increase in
ratio of Bax/Bcl-2 [139,140]. Curcumin derivative (MTH-3) follows extrinsic pathway of apoptosis
by upregulating DR5 and FADD and down-regulating anti-apoptotic proteins [141]. Furthermore,
MTH-3 shows a substantial rise in levels of CHOP and decreased the levels of IRE1α [141]. These
findings indicate that MTH3 causes apoptosis in breast cancer cells via an ER-regulated mechanism
through both extrinsic and intrinsic pathways [141]. Curcumin functions via modulating both
extrinsic and intrinsic apoptosis pathways. Curcumin inhibits BCL-2 and XIAP resulting in enhanced
expression of BAX and BAK members of the Bcl2 family of intrinsic apoptosis regulators [142].
Curcumin mediated cell cycle arrest at the G2/M phase and growth inhibition of breast cancer cells
involves reduction in CDC25 and CDC2 expression. Inhibition of Akt phosphorylation, mTOR and
Bcl2 along with increased BAX expression and caspase 3 cleavage are also involved in mediating
apoptosis in curcumin treated breast cancer cells [143]. Interestingly, curcumin abrogates fatty
acid synthase expression and activity in ER negative breast cancer cells exhibiting its potential as
a FAS inhibitor [140]. High expression of FAS is observed in many tumor types and these results
indicated that curcumin might inhibit multiple tumor types via FAS inhibition. AMPK activation in
cancer cells is known to modulate downstream mTOR pathway leading to tumor growth inhibition.
Curcumin activates AMPK in breast cancer cells including triple negative breast cancer cells and
regulates ERK, p38, and COX-2 [144]. AMPK stimulation in response to curcumin also leads to
activation of autophagy pathway and Akt degradation aiding in inhibition of proliferation and
migration of breast cancer cells [145]. A study investigating the combined treatment of curcumin
and β-interferon (IFN-β)/retinoic acid (RA) showed that curcumin synergistically increases the
efficacy of β-interferon (IFN-β)/retinoic acid (RA) in breast cancer cells by upregulating GRIM-19
via Stat3-independent and –dependent pathways [146]. Although antitumor effects of curcumin
are well documented in preclinical arena, its negative effect on the efficacy of chemotherapy has
also been proposed [147]. Using in vitro and in vivo breast cancer models, it was shown that
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curcumin blocks camptothecin, mechlorethamine and doxorubicin induced apoptosis and lowers
cyclophosphamide mediated tumor inhibition by inhibiting ROS generation and JNK pathway [147].
However, a plethora of studies showed that curcumin has the potential to function as a chemosensitizer
and improves the efficacy of various chemotherapy drugs including bortezomib, paclitaxel, cisplatin,
doxorubicin, gemcitabine, 5-FU, oxaliplatin, vincristine, butyrate, celecoxib, vinorelbine, etoposide,
sulfinosine, thalidomide, and melphalan in multiple cancer types (reviewed in [148]). Also,
curcumin is effective as a radiosensitizer for many cancer types [148]. Aggarwal, et al., revealed that
curcumin potentiates paclitaxel cytotoxicity in breast cancer cells and inhibits lung metastasis in
xenograft model [149]. Zhang et al., showed that the combination of curcumin and 5-FU increases
apoptosis by blocking autophagy and downregulating AKT activity [150]. Combining curcumin
and paclitaxel increases the effectiveness of paclitaxel leading to enhanced apoptosis and G2/M cell
cycle arrest by increasing caspase-3/7 activity, PARP cleavage and decreasing nuclear factor (NF)-kB
transcription factor [151]. Many chemotherapeutic drugs such as doxorubicin are associated with
cardiotoxicity which can be successfully overcome by co-administration of curcumin [152]. HO-3867
(3,5-bis(4-fluoro-benzylidene)-1-[(2,2,5,5-tetramethyl-2,5-dihydro-1-hydroxypyrrol-3-yl)methyl]
piperidin-4-one), a synthetic analog of curcumin, has been shown to reduce cardiotoxicity but
maintain antitumor efficacy when combined with doxorubicin [152]. Mechanistically, curcumin
treatment induces the crosstalk between p53 and p300 while alleviating SMAR1-p65NFkB activation
leading to resensitization of doxorubicin-resistant cells to doxorubicin [153]. Curcumin treatment
also inhibits doxorubicin-induced EMT by inhibiting TGF-β and PI3K/Akt pathways in TNBC and
improves the efficacy of doxorubicin [154]. Multidrug resistance can be reversed with a combined
treatment of curcumin and doxorubicin using poly(butyl cyanoacrylate) nanoparticles (PBCA-NPs)
with co-encapsulated doxorubicin (DOX) and curcumin (CUR) [155]. Co-delivery of curcumin
and doxorubicin using core-shell nanoparticles (NPs) with hydrophobic PLLA core loaded with
curcumin (Cur) and hydrophilic heparin shell adsorbing doxorubicin (DOX) exhibits promising results
for effective breast tumor inhibition [156]. Various research groups have developed nanoparticles
containing curcumin alone or in combination with chemotherapies to enhance therapeutic efficacy
and bioavailability [157–159]. Development of curcumin-loaded solid nanoparticles (Cur-SLN) [157],
non-spherical mesoporous silica nanoparticles (MSNAs) [158], and HER2 aptamer-decorated
curcumin-loaded human serum albumin nanoparticle (Apt-HSA/CCM NP) [159] are just few examples
of nanoparticle approaches. There are multiple other formulations using liposomes, micelles, polymer
nanoparticles, nanogels, cyclodextrin complexes, solid lipid nanoparticles (SLN), phytosomes, and
gold nanoparticles being developed to further curcumin research [160,161].

7. Genistein, a Phytoestrogen from Soy

Genistein (5,7-dihydroxy-3-(4-hydroxyphenyl) chromen-4-one) is an isoflavone phytoestrogen
compound present in soybeans and soy food products and is recognized for its beneficial health
effects as well as for its chemopreventive and therapeutic properties against multiple cancers [162–165].
Genistein can effectively bind to estrogen receptors owing to its structural similarity to endogenous
17β-estradiol (E2) [166] raising concerns regarding its potential as a cancer-promoting agent especially
for ER-positive breast cancer [167,168]. Additional factors such as genistein intake mode (minimally
processed soy foods, MPSFs vs. soy protein isolates) and time of exposure along with individual’s
characteristics such as metabolic function, menopausal status, estrogen receptor expression and gene
mutations also play an important role in mediating the chemo preventative or cancer-promoting
functions of genistein [169]. It is interesting to note that level of soy exposure modulates its biological
impact with higher intake of soy associated with lower breast cancer risk [170]. Importantly, clinical
studies conducted in Asian population where the soy intake is much higher (5–20 mg/day) show a
protective effect of soy on breast cancer risk whereas no correlation is observed in western population
with low soy intake (0.8–0.15 mg per day) [170]. In vitro and in vivo studies support the dose-specific
effect of genistein with low doses (≤10 µmol/L) increasing the estrogenic activity while the higher doses
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(≥10 µmol/L) mediate anti-cancer effects [171,172]. Shim et al., reported that genistein treatment at
micromolar concentrations stimulates apoptosis in breast cancer cells via activating calpain, caspase-7
and polymerase (ADP-ribose) in breast cancer cells. Additionally, genistein treated MCF7 cells exhibit
enhanced phosphorylation of p38 mitogen-activated protein kinase and apoptosis signaling kinase
1 while ERK 1

2 phosphorylation remained unaltered [173]. Another study revealed that genistein
could block cell proliferation and induce apoptosis by inactivating the IGF-1R-PI3K/Akt pathway
and decreasing the expression of Bcl-2/Bax [174]. Genistein treatment reduces the survival of breast
cancer stem cells by blocking downstream hedgehog signaling leading to apoptosis [175]. Interestingly,
genistein treatment increases the radiosensitivity of breast cancer cells. Breast cancer cells irradiated in
the presence of genistein show increased DNA damage and cell cycle inhibition at G2/M phase via
activation of ATM, Chk2, Cdc25C and Cdc2 checkpoint pathway. Breast cancer cells cotreated with
genistein and radiation also exhibit upregulation of Bax and p73 and downregulation of Bcl2 [176].
Genistein-containing diet does not affect mammary gland proliferation but increases the apoptotic
index and expression of PTEN in mammary glands of young adult rats [177]. Treatment with serum
from these genistein-fed rats increases apoptosis and PTEN expression in MCF-7 breast cancer cells
and, interestingly, silencing of PTEN abrogates the anti-cancer effects of serum from genistein-fed
rats [177]. Investigating the chemopreventive potential of genistein, Katdare et al., showed that
genistein can modulate cell cycle progression and induce apoptosis in 184-B5/HER breast epithelial
cells, a model for comedo-form ductal carcinoma in situ (comedo-DCIS) via downregulation of
Her2/neu signaling cascade, upregulation of p16INK4 and BCL2 [178]. This study showed that
genistein administration can potentially prevent the progression of DCIS to invasive ductal carcinoma.
Invasion and migration are important characteristics of an invasive cancer and genistein blocks invasion
and migration of breast cancer cells by inhibiting S-phase kinase-associated protein 2 (Skp2), which
is an important kinase frequently upregulated in multiple cancers [179]. Combined treatment with
genistein and doxorubicin increases intracellular buildup of doxorubicin and increases efficacy of
chemotherapy [180,181]. Inhibition of NK-kB has been implicated in synergistic effect of genistein
on various chemotherapy drugs such as cisplatin, docetaxel and doxorubicin [181,182]. Contrasting
with the synergistic or additive effect of genistein in potentiating the efficacy of chemotherapy, it has
been shown that genistein interferes with the anti-tumor impact of cisplatin in breast cancer cells [172].
Importantly, anti-cisplatin effect of genistein is abrogated in the presence of estrogen in ER-positive
breast cancer cells, an effect not observed in ER-negative breast cancer cells [172]. While mechanistic
studies are still needed to fully decipher the pathways underlying the pro-tumor vs. anti-tumor effects
of genistein, multiple studies have shown how the beneficial effects of genistein can be achieved by
carefully titrating its dose in single as well as combination regimens.

8. Epigallocatechin-3-Gallate (EGCG), a Green Tea Polyphenol

Epidemiological studies conducted in Japan showed the chemopreventive effects of drinking green
tea on breast cancer in women who consumed approximately 10 cups of green tea/day [183]. Many case
control and cohort studies have evaluated the effect of green tea on breast cancer and have shown that
green tea consumption is associated with a decreased risk of breast cancer [184,185]. Beneficial effects
of green tea are associated with catechins class of phytochemicals such as epigallocatechin-3-gallate
(EGCG), epicatechingallate (ECG), epigallocatechin (EGC), and epicatechin (EC). EGCG, the ester
of epigallocatechin and gallic acid accounts for 40% of total catechins in green tea leaves and is the
most important catechin with antioxidant, anti-inflammatory, and anti-carcinogenic potential [186].
Treatment with physiological concentrations of EGCG leads to growth inhibition in breast cancer cells
mediated in part by ERα down-regulation, insulin-like growth factor binding protein-2 (IGFBP-2)
reduction and p53/p21 upregulation [187]. Nude mice treated with EGCG exhibit inhibition of breast
tumor progression and downregulation of multiple key effector molecules including Cyclin D, Cyclin
E, CDK 4, CDK 1 and PCNA [188]. Deguchi et al., revealed that breast cancer cells treated with EGCG
show increased phosphorylation of JNK/SAPK and p38 which in turn inhibit cdc2 phosphorylation and
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modulate the expression of Cyclin A, Cyclin Bl, and Cdks, resulting in G2 arrest [189]. Inhibition of Akt
along with activation of caspase 3/9 and upregulation of p53 and PTEN leads to apoptotic induction
in breast cancer cells treated with EGCG [190,191]. Another study investigating the involvement
of Akt in EGCG function showed that EGCG induces growth-inhibition and apoptosis-induction
through survivin suppression mediated by blockade of Akt pathway [192]. Induction of apoptosis
upon EGCG treatment is associated with enhanced p53 expression, increased release of cytochrome
c from mitochondria to cytosol, elevated expression of Apaf-1, and activation of caspase-3 and
polymerase (ADP-Ribose) [191]. Also, mouse mammary epithelial cell 4T1 treated with EGCG showed
increased p53, Apaf-1, caspase 3 cleavage and high cytochrome C release [193]. A study investigating
the dose-dependent effect of EGCG shows that treatment with 50 µM EGCG increases oxidative
stress, activation of JNK, and cleavage of caspase 3/9 leading to apoptotic induction while a higher
concentration (100–400 µM) causes a necrotic cell death [194]. EGCG also functions through cell
membrane-related signaling pathways and alters EGFR, LR, FAS, E-cadherin and β-catenin leading to
suppression of cell proliferation, induction of apoptosis through nuclear condensation, and increased
caspase-3 activity [195]. EGCG treatment inhibits telomerase activity by decreasing hTERT levels
resulting in inhibition of cell growth and induction of apoptosis in MCF-7 breast cancer cells [196].
EGCG mediated growth inhibition and apoptotic induction involves downregulation of miR-25 whose
restoration abrogates EGCG-induced apoptosis [197]. Therapeutic efficacy of EGCG has been well
established and now efforts are being made to improve its bioavailability, stability and efficacy via
utilizing various nanoparticles. Encapsulation of EGCG in the matrix of solid lipid nanoparticles
and further conjugation with gastrin releasing peptide receptors (GRPR)-specific peptide not only
provides stability to EGCG but also provides specificity towards GRPR overexpressed on breast cancer
cells. Treatment with EGCG nanoparticles achieves significantly improved tumor growth inhibition
in C57/BL6 mice [198]. EGCG loaded arginyl-glycyl-aspartic acid (RGD)-containing nanostructured
lipid carriers (NLC) exhibit improved cytotoxicity and apoptosis in breast cancer cells proposing
that EGCG-loaded NLC-RGD may prove beneficial for cancer treatment [199]. FA-NPS-PEG and
FA-PEG-NPS also show anti-tumor efficacy in breast cancer cells [200]. Collectively, EGCG shows
great potential as a chemopreventive and therapeutic agent.

9. Bioactive Compounds Based Anti-Cancer Drugs in Clinical Trials

It is important to note that many successful anti-cancer drugs such as taxol, Vinca alkaloids,
combrestatin, epipodophyllotoxin, camptothecin, and their analogues have plant-based origins.
Analogues of antimitotic agent paclitaxel/taxol including DHA-paclitaxel, ortataxel, taxol-HMPA
polymer, and paclitaxel poliglumex are currently being evaluated in phase I-III clinical trials.
Topoisomerase I/II inhibitor-camptothecin-based analogues and podophyllotoxin analogues as well as
microtubule destabilizing agents—Vinca alkaloids (vinblastine, and vincristine)—analogues are being
developed for the clinic (reviewed in [201]). In addition to these drugs with bioactive origins, there are
multiple other bioactive compounds that have strong preclinical supporting data underlining their
potential as chemopreventive and therapeutic agents against multiple cancers including breast cancer.
Clinical development of some of these compounds has begun albeit with a focus on disease conditions
other than cancer. (Table 1).

Table 1. Clinical Development of Bioactive Compounds.

Bioactive Compound Clinical Trials Phase ClinicalTrials.Gov
Identifier

Withania somnifera
(Sensoril or

Ashwagandha)

A randomized study conducted for
schizophrenia Interventional NCT01793935

Curcumin and
Ashwagandha extract

To study the safety and efficacy of Curcumin
and Ashwagandha extract in osteosarcoma.

Phase 1 and
Phase 2 NCT00689195
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Table 1. Cont.

Bioactive Compound Clinical Trials Phase ClinicalTrials.Gov
Identifier

WFA
To evaluate the cognitive abilities in persons

with bipolar disorder and to study the residual
mood/anxiety symptoms

Phase 3 NCFT00761761

WFA To study the safety and efficacy of the drug in
patients having generalized anxiety disorder Phase 2 NCT01311180

Resveratrol
Colon cancer patients were randomly given

resveratrol at different concentration to study
Wnt signaling pathway.

Phase 1 NCT00256334

Resveratrol
To study the effect of Notch signaling in

neuroendocrine tumor treated with
Resveratrol.

Interventional NCT01476592

Resveratrol
To study the effect of resveratrol in colorectal
cancer and also studied for tolerability, target

tissue levels and pharmacodynamics.
Phase 1 NCT00433576

Resveratrol
A randomized trial to determine the disposition
and characterize dietary polyphenols in normal

and breast cancer patient.
Interventional NCT03482401

Resveratrol
A randomized double-blind study, resveratrol
was given for two weeks in non-diabetic obese

subjects.
Phase 2 NCT02247596

Isothiocyanate A randomized clinical trial, to study phenethyl
isothiocyanate in lung cancer patients. Phase 2 NCT00691132

Isothiocyanate

A randomized phase II study, patients received
broccoli sprout extract through oral three times

daily for 8 weeks to breast cancer patients,
ductal carcinoma in situ and/or atypical ductal

hyperplasia

Phase 2
NCT00843167

PMID:26511489
PMID:26329135

Curcumin

A randomized, double-blind,
placebo-controlled study of curcumin for the

prevention of acute radiation-induced
dermatitis during postoperative radiotherapy

for breast cancer.

Phase 2 NCT01042938

Curcumin

A randomized A randomized study treating
docetaxel alone or together with curcumin in

HER2 negative patients with metastatic breast
cancer

Phase 2 NCT00852332

Genistein A randomized study of genistein treatment in
high risk of breast cancer patients. Phase 2 NCT00290758

PMID: 22307566

Genistein A randomized, phase 1 trial of genistein in
preventing breast or endometrial cancer Phase 1 NCT00099008

PMID:18446090

EGCG
A randomized phase 1 study, to find the effect
of catechin extract in hormone negative stage

I-III breast cancer patients
Phase 1 NCT00516243

EGCG A phase 2 trial, to study the effect of green tea
extract in breast cancer Phase 2

NCT00917735
PMID 30926986,

28747487, 27806972,
26701796, 26581683

In a randomized, interventional clinical trial for schizophrenia patients, significant benefits were
noted upon administration of a standardized extract of Withania somnifera (WSE) as compared to
placebo control. This study successfully showed that a dose of WSE (1000 mg/day) provided beneficial
effects with minimal side effects. Inflammatory markers and cytokine levels were also measured [202]
(NCT01793935). Multiple other clinical trials have examined/are examining the clinical benefits of
Withania somnifera extracts for schizophrenia (WSE 500 mg/day for 12 weeks; NCT03437668); cognitive
impairment in elderly subjects (NCT03780621); periodontitis (Ashwagandha capsules 500 mg/day for
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30 days; NCT03533972, NCT00010634); endurance exercise performance (NCT03596307), generalized
anxiety disorder (NCT01311180); and bipolar disorder (Ashwagandha capsules 250/500 mg/day,
NCT00761761). In a multicenter, observational, prospective study including patients with mood
disorder, sleep disorder, anxiety or depression, the effects of soy isoflavones in combination with
magnolia extract were studied (NCT01805674).

Bioactive compounds are being considered for cancer prevention in high risk population. Phenethyl
isothiocyanate was given to the recruits orally 4 times a day for 30 days (NCT00005883) in a phase I
trial to examine whether phenethyl isothiocyanate can prevent lung cancer in smokers. It is important
to examine the bioavailability of bioactive compounds and a randomized early phase I trial examined
bioavailability and absorption of bioactive compounds in broccoli (NCT01743924). In another phase
II trial, women with breast cancer/precancerous state (ductal carcinoma in situ and atypical ductal
hyperplasia) received broccoli sprout extract three times daily for 2–8 weeks with an aim to examine
sulforaphane metabolism, HDAC activity, Ki-67 index and apoptosis (NCT00843167). Results from this
trial showed that isothiocyanates, including sulforaphane, were present in urine samples in micromolar
concentration along with changes in Ki-67 levels and HDAC activity in tumor samples of the patients
in intervention arm.

Resveratrol has been examined for many clinical conditions, such as diabetes, heart failure,
pulmonary disease and inflammation (NCT03762096, NCT02245932 and NCT02244879). In a phase
I trial, resveratrol was given to colon cancer patients to examine the alteration in Wnt signaling
pathway in response to resveratrol (NCT00256334). Resveratrol administration led to inhibition of
Wnt pathway in normal colonic mucosa indicating a potential chemopreventive effect of resveratrol
in colon cancer [203]. Patients with low-grade GI neuroendocrine tumors were treated with oral
resveratrol (5 g/day) to determine the well-tolerated dose of resveratrol and its effect on tumor markers
and Notch1 signaling pathway (NCT01476592). Another phase 1 clinical trial determined the safety,
pharmacokinetics and modulation of insulin-like growth factor-1 (IGF-1) and IGF-binding protein-3
(IGFBP-3) in response to repeat dosing of resveratrol. Healthy participants received different doses
of resveratrol once a day for 29 days. It was observed that 2.5/5 g of resveratrol treatment resulted
in decreased IGF-1 and IGFBP-3 in the circulation albeit mild gastrointestinal symptoms were also
observed (NCT00098969) [204].

More than 200 clinical trials have been conducted or are ongoing to evaluate the effect of
curcumin on various disease conditions (ClinicalTrials.gov). An interventional, randomized double-blind
study evaluated the efficacy of curcumin for the prevention of radiation-induced dermatitis in
breast cancer patients. Breast cancer patients undergoing radiation treatment were given 2.0 g of
curcumin thrice/daily for the course of radiation treatment (~4–7 weeks) (NCT01042938). Additional
clinical trials (NCT02556632, NCT01246973) have also examined the effect of curcumin-based gel
or oral-curcumin on radiation induced dermatitis. A phase II study examined the efficacy of
curcumin intervention to reduce NF-kB DNA binding and IL6 levels in chemotherapy-treated breast
cancer patients undergoing radiotherapy (NCT01740323). Chemopreventive effects of curcumin
were examined in women with obesity and other high-risk factors for breast cancer development
and levels of pro-inflammatory biomarkers in plasma and breast adipose tissues were examined
(NCT01975363). Multiple clinical trials are currently evaluating the beneficial effects of curcumin for
breast cancer prevention, combination-treatment (NCT03072992) and alleviating various breast cancer
treatment-related side effects such as aromatase inhibitor-induced joint disease (NCT03865992).

10. Conclusions

Despite major advances in the development of novel cancer therapeutics, cancer is still the second
leading cause of mortality world-wide with ~9.6 million people succumbing to cancer in 2018. Low
and middle-income countries endure a bigger burden with 70% of cancer related deaths occurring
in these parts of the world (https://www.who.int/en/news-room/fact-sheets/detail/cancer). Owing to
these facts there is an urgent need to develop more affordable and effective therapeutic and preventive
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strategies to counteract the upsurge of cancer incidences. With the better understanding of molecular
subtypes of various cancers, past few years have seen a dramatic increase in “one gene, one drug,
one disease” approach to develop novel targeted therapeutic approaches. Although this approach
has resulted in many effective drugs, the activation of alternative pathways often circumvents the
inhibitory effect of ‘the targeted gene’ leading to the development of resistance. Resistant tumors are
often more aggressive than the primary disease and are usually unresponsive to standard treatments
owing to the heterogeneity within tumor and the presence of cancer stem cells. Combining various
single target drugs is also being evaluated but these cocktails have not proven to be the ‘silver bullets’
either. Nature has performed the best combinatorial chemistry and blessed us with innumerable
bioactive compounds that target various hallmarks of cancers simultaneously [205,206]. A plethora of
epidemiological studies have shown the beneficial effects of bioactive compounds in various disease
states including cancer. Most of these bioactive compounds have been successfully used in traditional
medicines such as Ayurvedic, Chinese, Unani, and Homeopathy. As discussed in this review, large
numbers of preclinical studies utilizing various in vitro and in vivo model systems have shown the
chemopreventive and therapeutic role of various bioactive compounds laying a solid foundation for
further clinical development (Table 2). Despite these evidences, clinical studies to evaluate the efficacy
of bioactive compounds have been rather limited as the cancer research field has been focusing mainly
on synthetic molecules targeting a single gene/protein. It is well known that cancer progression is
mediated by an interaction of various signaling pathways but the very fact that bioactive compounds
simultaneously modulate various pathways goes against them as the cancer research field remains
too focused on single target drugs. Bioactive compounds can be optimal chemopreventive agents
since they selectively target cancer cells with no or low toxicity to normal cells, many of them can be
included in daily diet, are already part of the food system and are comparatively cheaper.

Table 2. Mechanistic Underpinnings of Bioactive Compounds.

Bioactive Compounds Models Specific Mechanism of Action References

Withaferin A (WFA) Human breast cancer,
liver cancer

↑ PARP
↑expression of Bim-S and Bim EL

↓expression of Bcl2
↑ generation of ROS
↑Bax and Bak

↓expression of XIAP
G2/M arrest, ↓ PCNA and ↑apoptosis

[22,27,28,33,37]

Honokiol (HNK) Human breast cancer ↑G2/M arrest
↑ AMPK [52,54]

Benzyl Isothiocyanate
(BITC) Human breast cancer

↑ROS
↑Increased caspase 3

↓mTOR
↓XIAP

[87,88,90,94]

Resveratrol Human breast cancer
↓Bcl-2, ↓Bcl-XL,

↑Bax
↑Increased caspase 3

[117,118]

Curcumin Human breast cancer

↓Bcl-2, ↑Bax,
↑Caspase 3, ↑AMPK, ↓AKT

↓pAKT/↓mTOR
↑PARP

↑Caspase3 and ↑caspase 7

[139,143,145,151]

Genistein Human breast cancer
↑Caspase7, p38MAPK

↓Bcl2
↑ATM/Chk2/Cdc25C/Cdc2

[173,174,176]

Epigallocatechin-3-gallate
(EGCG) Human breast cancer

↓Cdc
↑Bax, Bcl2, ↑ADP ribose, ↑Caspase 3

↑hTERT
[189–191,196]
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