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Abstract: Ageing is an inevitable fundamental process for people and is their greatest risk factor for
neurodegenerative disease. The ageing processes bring changes in cells that can drive the organisms
to experience loss of nutrient sensing, disrupted cellular functions, increased oxidative stress, loss
of cellular homeostasis, genomic instability, accumulation of misfolded protein, impaired cellular
defenses and telomere shortening. Perturbation of these vital cellular processes in neuronal cells
can lead to life threatening neurological disorders like Alzheimer’s Disease, Parkinson’s Disease,
Huntington’s Disease, Lewy body dementia, etc. Alzheimer’s Disease is the most frequent cause of
deaths in the elderly population. Various therapeutic molecules have been designed to overcome the
social, economic and health care burden caused by Alzheimer’s Disease. Almost all the chemical
compounds in clinical practice have been found to treat symptoms only limiting them to palliative care.
The reason behind such imperfect drugs may result from the inefficiencies of the current drugs to target
the cause of the disease. Here, we review the potential role of antioxidant polyphenolic compounds
that could possibly be the most effective preventative strategy against Alzheimer’s Disease.

Keywords: Alzheimer’s Disease; amyloid beta; antioxidant; longevity; mushroom; neuroprotection;
nutraceuticals; protein homeostasis; polyphenol

1. Introduction

Deaths due to Alzheimer’s Disease (AD) and other dementias are a major cause of mortality in
the elderly worldwide, and the rate is increasing rapidly with a doubling time of 20 years [1]. AD is
an age-related neurodegenerative disease that leads to cognitive impairment and death. Neuronal
synapsis disruption, accumulation of amyloid plaques in brain, formation of neurofibrillary tangles in
neuronal cells, loss of cellular homeostasis and accumulation of oxidative stress are major hallmarks of
the disease [2]. However, mitochondrial dysfunction, loss of protein and lipid homeostasis, alterations
in biometal distribution, cellular senescence, loss of nutrient sensing and accumulation of misfolded
proteins are also associated with the AD [3]. Despite the efforts of more than three decades of research,
the precise cause of AD has not been found. Many hypotheses have been made to address the major
molecular events in the neuronal cells with AD (refer to Figure 1) [2]. Polyphenolic compounds have
been reported to have multiple effects in cells including inducing antioxidant activity, induction of
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autophagy, restoration of lipid homeostasis, antiproliferative property, anti-proteinopathies, inhibition
of choline esterases, anti-inflammatory activity, metal chelation, clearance of lipofuscin and others
(refer to Table 1). This review details how polyphenols exert their neuroprotective role at the cellular
level helping to prevent and possibly cure AD.
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Table 1. Neuroprotective roles of some polyphenols for AD.

Polyphenol Analytical System EPCa/ROAb Effects of Polyphenols at Cellular Level Effects in Relation to AD Reference

Quercetin

In vitro NA mTORC inhibitor

Induces autophagy, anti-amyloidogenic, inhibits
proteasomal degradation, antioxidant, restores

biometal distribution, antiproliferative and
enhances neuronal synapsis

[4–8]

ARPE 19 cells 2 µM TFEB activation

APPswe cells 10 µM Inhibits Aβ fibril formation

Rat neonatal cardiomyocytes 5 µM Inhibits all the catalytic subunits of
proteasome

In vitro NA Chelates iron

In vitro NA Reduces ROS and RNS

In silico and in vitro NA Inhibits acetyl choline esterase

Resveratrol

Tg6799 mice 60 mg/kg/d for 60 d/oral
administration Reduces amyloid plaque formation

Induces autophagy, increases lysosomal
biogenesis, restores lipid homeostasis, increases

stress resistance, regulates cell cycle,
antiproliferative, anti-apoptotic, increases

longevity and anti-inflammatory

[9–14]

Primary neuronal culture 30 µM SIRT1 activation and NFκB inhibition

Obese healthy men clinical trial 150 mg/d for 30 d/oral
administration TFEB activation

Human aortic endothelial cells 50 µM AMPK mediated LC3II activation

Human aortic endothelial cells 10 µM Decreases ROS and RNS, increases SOD

LNCaP cells 20 µM

p53 regulation, PI3K/Akt/mTOR
inhibition, induces FOXO transcriptional

activity including cell cycle regulation
and stress resistance

Epigallocatechin
gallate (EGCG)

Human bladder cancer cell line T24 20 µg/ml Inhibits Beclin1 suppressors and
PI3K/Akt/mTOR

Induces autophagy, restores lipid homeostasis,
anti-amyloidogenic, increases antioxidant capacity,
restores impaired autophagosomes and biometal

distribution, increases cell survival

[15–19]

Bovine aortic endothelial cells 10 µM Increases LC3II formation and activates
AMPK/ULK1

HepG2 cells 40 µM
Degrades lipid droplets through

Ca2+/CAMKKB AMPK dependent
mechanism

In vitro NA Chelates zinc and copper

PC12 cells (rat pheochromocytoma 100 µg/mL
Interacts with Aβ40 and changes its

conformation, inhibits lipofuscin
formation
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Table 1. Cont.

Polyphenol Analytical System EPCa/ROAb Effects of Polyphenols at Cellular Level Effects in Relation to AD Reference

Anthocyanin

Sprague–Dawley rats 100 mg/kg/d for 28 d/oral
administration

Restores calcium homeostasis and
activates Nrf2 subsequently activating

phase II detoxifying genes
Activates autophagy, increases expression of

anti-oxidant genes, reduces ROS and increases cell
survival

[20–23]
HT22 cells and primary cultures of

hippocampal neurons 0.1 mg/mL Induces AMPK

In vitro 0.005 mg/mL ROS scavenging

HCC cell lines PLC/PRF/5 and
HepG2 cells 0.2 mg/mL Increase expression of Beclin1, LC3 II

Kaempferol

SK-HEP-1 human hepatic cancer
cell 75 µM

Increases the levels of p-AMPK, LC3-II,
Atg 5, Atg 7, Atg 12 and beclin 1, inhibits

PI3K/Akt/mTOR Reduces mitochondrial dysfunction,
anti-proliferative, increases autophagy, increases

unfolded protein response, reduces APOE4
fragmentation and associated toxicity

[24–27]BALB/c nude mice 150 mg/kg/d for 31
d/intraperitoneal injection

Activates DNMT methyltransferase
ubiquitination

SCC-4, human tongue squamous
cell carcinoma cell 50 µM

Activates IRE1-JNK-CHOP signaling,
downregulates ERK1/2 signaling which

reduces MMP2

Hydroxytyrosol

Male db/db (C57BL/6J) mice 10 mg/kg/d for 8 weeks/oral
administration

Activates Nrf2 and SIRT1/AMPK/PGC-1,
reduces protein oxidation, increases

NMDAR1 and NGF mRNA expression

Enhances autophagy, increases stress resistance
and longevity, antioxidant, anti-inflammatory,

restores lipid homeostasis and improves cognition
[28–33]

VECs cells 50 µM Activates AMPK/FOXO3a

VECs cells 10 µM Reduces ROS

VAFs from Sprague–Dawley rats 25 µM Increases LC3II/LC3I, Bcl1 and SIRT1
expression

HepG2 and Huh7 cells 100 µM Inhibits PI3K/Akt/mTOR, expression of
IL1β & IL6, and NFκB DNA binding

Rat hepatocytes 25 µM
Inhibits Acetyl CoA carboxylase, HMG

CoA reductase, diacylglycerol acyl
transferase

Oleuropein aglycone

Rat ventricular myocyte 100 µM
Increases Bcl1 and LC3II expression, TFEB

nuclear localization, LAMP1 and p62
expression

Induces autophagy, increases lysosomal
biogenesis and reduces oxidative damage [33–35]Human SH-SY5Y neuroblastoma

cells and rat RIN5F insulinoma cells 50 µM Inhibits MAOA, induces AMPK/ULK1,
inhibits mTOR

Rat hepatocytes 25 µM
Inhibits acetyl CoA carboxylase, HMG
CoA reductase and diacylglycerol acyl

transferase
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Table 1. Cont.

Polyphenol Analytical System EPCa/ROAb Effects of Polyphenols at Cellular Level Effects in Relation to AD Reference

Curcumin

Male Sprague–Dawley rats 15 mg/kg/d for 4
weeks/subcutaneous injection

Activates AMPK and regulates lipid
metabolism

Induces autophagy, restores lipid homeostasis,
antioxidant, anti-amyloidogenic,
anti-inflammatory, anti-apoptotic

antiproliferative, increases lysosomal biogenesis
and longevity

[36–45]

Adult male Wistar rats 30 mg/kg for 30 d/oral
administration Activates Nrf2, inhibits NFκB and mTOR

Adult Swiss male albino mice 80 mg/kg/d for 7 d/intraperitoneal
injection Inhibits MaoB and reduces ROS

APPswe Tg2576 transgenic mice
(chronic 500 ppm curcumin diet)

Blood curcumin level ~2 µM for 1
h/injection in right carotid artery

Inhibits formation of Aβ, oligomers, fibrils
and plaques

Tsc2+/+, Tsc2−/− MEFs and HCT116
cells

10 µM Activates TFEB, increases levels of LC3
and inhibits pAkt

Sprague–Dawley rats’ primary
cortical neurons 10 µM Upregulates SIRT1 and inhibits Bax

APP/PS1 double transgenic mice 160 ppm for 6 months/oral
administration

Inhibits PI3K/Akt/mTOR signaling,
increases LC3I/II and Beclin1 expression

Myricetin

HepG2 Cells 50 µM Inhibits mTOR and increases LC3II
expression

Induces autophagy, antiproliferative, increases
stress resistance, longevity, antioxidant capacity

and mitochondrial regeneration
[46–48]

Adipocytes differentiated from
C3H10T1/2 cells 10 µM Activates SIRT1/SIRT3/SIRT5

Male ICR mice 50 mg/kg/d for 21 d/oral
administration

Increases mitochondrial mass and
increases PGC1α, SIRT1, TFAM, Nrf1 &

FOXO1

Urolithin A

C2C12 myoblasts 50 µM Induces mitophagy, increases LC3I/LC3II
and activates AMPK signaling Increases mitophagy, and autophagy, antioxidant,

increases lysosomal biogenesis, anti-inflammatory,
anti-amyloidogenic, improves cognition and

longevity

[49,50]
Female APP/PS1 transgenic mice

B6C3-Tg (APPswe, PS1dE9)
85Dbo/J and age-matched wild

type mice

300 mg/kg/d for 14 d/oral
administration

Activates AMPK, decreases
NFκB/MAPK/BACE1 activities and APP

levels

Ferulic Acid

HeLa cells and mouse primary
hepatocytes 1 mM Increases LC3 II and inhibits mTOR

Anti-apoptotic, anti-amyloidogenic, antioxidant,
anti-inflammatory and induces autophagy [51–54]In vitro NA Inhibits Aβ aggregation and reduces ROS

(APP)swe/presenilin 1(PS1)dE9
(APP/PS1) mouse model

5.3 mg/kg/d for 6 months/oral
administration

Reduces amyloid deposition and
interleukin-1 beta (IL-1β) levels
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Table 1. Cont.

Polyphenol Analytical System EPCa/ROAb Effects of Polyphenols at Cellular Level Effects in Relation to AD Reference

Acacetin

Drosophila melanogaster 100 µM Inhibits BACE1

Anti-amyloidogenic, antioxidant,
anti-inflammatory and induces autophagy [55–58]

C57BL/6J mice ∼10 mg/kg/d for 14 d/oral
administration (gavage) Inhibits MAPK and PI3K/Akt pathways

ICR mice 100 mg/kg for 7 h/intraperitoneal
injection

Increases LC3II, Atg5 and Atg7 expression,
modulates TNF-α/IL-6 expression and

suppresses TLR4 signaling

Baicalein

SH-SY5Y human neuroblastoma
cells 12.5 µM Increases ROS scavenging and activates

Nrf2

Anti-amyloidogenic, anti-apoptotic, antioxidant,
anti-inflammatory, inhibits excitotoxicity,

stimulates neurogenesis and neuronal
differentiation

[59–65]

In vitro NA Chelates iron

CHO/APPwt cells 5 µM Induces α-secretase and inhibits Aβ
formation

In vitro 30 µM Dissociates amyloid aggregates, Aβ
oligomerization and fibrillation

HeLa cells 100 µM Inhibits NFκB activation

C57BL/6J APP/PS1 mice 80 mg/kg/d for 60 d/oral
administration (drinking water)

Inhibits GSK3βmediated tau
phosphorylation

Sprague-Dawley male rats
20 mg/kg 30 min before and 2/4 h

after onset of
ischemia/intraperitoneal injection

Induces Bcl-2/Bcl-xL associated
phosphorylation

Icariin

Primary cortical neurons prepared
from E16-17 mouse embryos 1.2 µM Activates SIRT1

Antioxidant, anti-amyloidogenic, reduces ER
stress, increases synapsis and neuronal plasticity,
inhibits tau hyperphosphorylation, increases cell

viability, antiapoptotic and anti-inflammatory

[66–73]

Wistar rats 60 mg/kg/d for 3 months/oral
administration Increases SOD activity

Tg2576 mouse model 60 mg/kg/d for 3 months/oral
administration Reduces expression of BACE1 and APP

Sprague-Dawley rats 120 mg/kg/d for 28 d/oral
administration

Induces PSD95, BDNF, pTrkB, pAkt, and
pCREB expression

SH-SY5Y cells 1 µM Inhibits GSK3β activation

PC12 cells 10 µM Inhibits JNK/p38, MAPK and p53 activity

HT29 and HCT116 20 µM Inhibits NFκB signaling

Nobiletin

Male 3XTg-AD mice 30 mg/kg/d for 3
months/intraperitoneal injection

Reduces Aβ levels and plaque formation
in brain Anti-amyloidogenic, increases stress resistance,

neuronal synapsis and plasticity, antioxidant and
anti-inflammatory

[74–77]

Male Sprague-Dawley rats 25 mg/kg/d for 3d/intraperitoneal
injection

Increases activity of Akt, CREB, BDNF and
Bcl2, increases Nrf2, HO-1, SOD1 and GSH

expression, reduces NFκB, MMP-9 and
MDA expression
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Table 1. Cont.

Polyphenol Analytical System EPCa/ROAb Effects of Polyphenols at Cellular Level Effects in Relation to AD Reference

Genistein

In silico and in vitro NA Inhibits chymotrypsin-like activity of
proteasomes

Antioxidant, increases degradation of Aβ,
increases apoptosis, enhances autophagy and

inhibits proteasomal protein degradation
[78–81]

LNCaP cells 100 µM Increases Kip1 and reduces IκBα/Bax

Human dermal fibroblasts (HDFa) 30 µM Increases TFEB expression

Human mammary gland tumor
cells (MCF-7) 0.5 µM Enhances antioxidant gene expression

Luteolin

HT-29 cells 50 µM Reduces ROS, NFκB signaling, Cox2
expression, blocks JAK/STAT signaling

Anti-inflammatory, antioxidant, modulates
autophagy and apoptosis, increases survival [82–86]Male Sprague-Dawley rat myocytes 8 µM

Downregulates Bax expression,
upregulates PI3k/Akt signaling and Bcl-2

expression

Human HCC cell line SMMC-772 100 µM Increases expression of LC3B-II, Bcl1 and
caspase 8

Mangiferin

Swiss albino male rats 15 mg/kg/d for 14 d/intraperitoneal
injection

Increases ROS scavenging, activates Nrf2,
inhibits NFκB signaling, increases GSH

levels, decreases lipid peroxidation

Antioxidant, anti-apoptotic, chelates metals,
increases stress resistance, autophagy, longevity,

neuronal synapsis and plasticity
[87–91]

In vitro NA Rescues mitochondrial respiration,
chelates iron

Male Swiss albino mice 40 mg/kg/d for 21 d/oral
administration

Reduces lipid peroxides and ROS/RNS
induced by aluminum and restores

regulation of BDNF and NGF

Human astroglioma U87MG,
U373MG and CRT-MG cells 100 µM Inhibits PI3K/Akt signaling, MAPK

pathway, MMP9 gene expression

Footnotes: NA, not applicable; a EPC, minimum concentration of the polyphenols that have significant neuroprotective effect; b ROA, route of administration of polyphenols in
in vivo models.
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2. Current Therapeutic Approaches Only Target Symptoms of AD

Consideration for drug design against AD has come from the symptoms. Traditional approaches
based on cholinergic dysfunction have been highly utilised for treatment of AD [2]. Current FDA
approved drugs include donepezil, rivastigmine, galantamine and memantine of which the first three
drugs are acetylcholine esterase inhibitors, while memantine targets the N-methyl-D-aspartic receptor
(NMDAR) [92,93]. Damage of cholinergic neuronal cells leading to the reduced levels of acetylcholine,
a neurotransmitter involved in cognition and synapsis, has been found to be associated with AD [94].
Restoring the levels of acetylcholine in an AD brain has been considered to be the most viable palliative
measure. The inhibition of acetylcholine esterase has shown benefits in restoring cognition making it a
primary care strategy [95]. Likewise, memantine is a NMDAR antagonist as it selectively inhibits the
interaction of glutamate with NMDAR, balancing the excitation by the neurotransmitter. The drug
effect comes through the reduction of ionotropic channels in the membrane restoring the balanced influx
of calcium and sodium ions which is highly expressed in an AD brain causing excitotoxicity [92,96].
However, the strategy targeting only these extracellular events may not provide substantial protection,
as many intracellular processes are also altered during progression of AD.

3. Therapeutic Strategies Based on Targeting Amyloid β and Tau Proteins

Several studies involving novel strategies to multiple molecular processes, have been considered.
The most popular one among the various newer approaches is targeting amyloid β, also referred to
as anti-amyloid strategy. Amyloid β comprise short polypeptides, 36–43 amino acid long, produced
after pre-processing of amyloid precursor protein (APP) by two different enzymes, namely β-secretase
(BACE) and γ-secretase [97,98]. BACE cleaves the APP at a specific site followed by the action of
γ-secretase resulting in the formation of peptides of length 36-43 amino acids. The most important
polypeptide found in the amyloid plaques of the patient’s brain is Aβ42, which is well-known for its
adverse effects in different disease models [99]. Conversely, α-secretase can cleave APP at a site within
Aβ, creating shorter fragments also called Aα, which is non-amyloidogenic and protective [100,101].
BACE exists in two isoforms, namely BACE1 and BACE2 [102,103]. BACE1 has been considered an
important drug target as it is intimately involved in the formation of Aβ [104]. The BACE1 enzyme
has the aspartic catalytic residues located at the interface of the N-terminus and C-terminus forming
a dyad, one of which acts as an acid and the other one as a base during the proteolysis [105,106].
The recent developments enlightening BACE1 structure and function provided opportunities for in
silico molecular docking studies supporting drug design and discovery [107]. Various molecules
have been studied and evaluated for their inhibitory action against BACE1 including macrocyclic
lactones, hydroethylenes, aminoethylenes, aminoimidazoles, aminobenzthiazines, spiropiperidines,
etc. [108–114].

Inhibition of γ-secretase activity is also an important approach in the anti-amyloid strategy.
Inhibiting activity of γ-secretase will affect the Aβ formation and is expected to halt the amyloidogenic
progress and associated toxicity. However, the interference with the γ-secretase activity also affects
the notch signaling [115]. Development and cellular growth are associated with notch signaling
mechanism, which will also be altered by inhibiting the γ-secretase [116]. Considering these side effects
of the γ-secretase inhibitors, different sulfones and sulfonamides that do not affect notch signaling
have been evaluated for their activity against γ-secretase [117]. An anti Aβ-aggregation approach
has also been studied in the effort to find a chemo preventative for AD. Aβ aggregation occurs by
the interaction of molecules of monomeric Aβ which further interact with other monomeric forms
to produce aggregates [118]. Oligomeric forms of Aβ42 have been reported to be the most toxic
species. Very few compounds have been evaluated for their anti-aggregation properties [119–122]. Aβ
clearance, inducing misfolded protein degradation through induction of autophagy and unfolded
protein response, is another strategy that could provide protection [123]. Furthermore, vaccines and
antibodies against Aβwere also evaluated for their efficacy against AD [120,124,125]. Early vaccines
targeting Aβ caused serious side effects of meningoencephalitis in the trial and antibodies are limited
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by the blood brain barrier as only 0.1% of the antibodies were found to cross it [1]. While Aβ remains
an important target, its clearance may have limited benefits as a cure after the disease onset. Despite
the limitations of approaches targeting Aβ, early prevention of Aβ formation and its clearance remains
a top priority.

Tau neurofibrillary tangles (NFTs) are another important pathophysiological hallmark in addition
to the accumulation of the amyloid plaques in the AD brain [126]. In a normal brain, tau protein
plays a critical role in cellular integrity by maintaining the microtubules [127]. Tau normally
stays in the membrane of axons in phosphorylated form, as it contains 84 amino acid residues
where phosphorylation can occur [128]. Hyperphosphorylation of these tau proteins leads to
self-interaction and reduces its tendency to bind with the microtubules causing the formation of the
NFTs [120,129]. Formation of NFTs is associated with alteration in neuronal plasticity and synapsis [116].
Hyperphosphorylation of tau has been reported to be the major contributor for activation of the
microglial cells and astrocytes [130]. Activation of these immunomodulators downstream leads to
the release of nuclear factor kappa B (NFκB) and cytokines [131], which cause the brain inflammation
associated with AD. Meanwhile, release of the inflammatory mediators like NFκB and interleukins
result in the activation of protein kinases in cell, which reinforces the hyperphosphorlation of the
tau [132,133]. Some of the important protein kinases reported to cause hyperphosphorylation of tau
include mitogen-activated protein kinase (MAPK), cyclin dependent kinase-5, tau protein kinase-I and
glycogen synthase kinase-3β (GSK-3β) [120]. Inhibition of these protein kinases, specifically cyclin
dependent kinase 5 (CDK5) and GSK-3β, has been evaluated in previous studies as important molecular
targets in treating AD. Non-selective CDK5 inhibitors like (R)-roscovitine and (R)-CR8 are still under
investigation to provide better understanding of their neuroprotective effect [134,135]. Likewise,
different classes of inhibitors of GSK3β such as lithium ions, thiazoles, indirubins, thiadiazolidinones,
hymenialdisine and others have been reported for their potential protective effect against AD [136–140].
Additionally, immunological approaches (active and passive immunization) against various forms of
tau are areas of increasing research interest. Unlike anti-amyloid antibodies and vaccines, anti-tau
vaccine and antibodies are reported to have promising effects against AD [141,142]. These strategies
are expected to reduce the formation of tau tangles and help in synapsis and neuronal plasticity.

4. Prospect of APOE4 as a Drug Target for AD

Another independent risk factor in AD is apolipoprotein E4 (APOE4) protein, which normally
helps in the transportation of the cholesterol through the APOE receptors [143]. Higher expression of
APOE4 has been reported to be associated with the late onset of the disease [144]. There is evidence that
APOE4 proteins induce Aβ aggregation and reduce Aβ clearance [145]. Furthermore, APOE4 proteins
not only target Aβ interaction, but are also linked to tau hyperphosphorylation, energy metabolism and
inflammation in neurons [146–148]. The inflammatory response in the brain leads to the proteolysis
of APOE4 that may lead to the formation of highly bioactive toxic molecules [149]. Formation of
these bioactive fragments of the APOE4 disturb the energy metabolism by altering mitochondria.
Furthermore, early evidence shows that APOE4 effects are more pronounced in females, implying
possible participation of sex hormones such as estrogen in determination of AD progression. Studies to
unravel the actual cause of the gender effect could be a guide for novel approaches to prevent AD [150].

5. Reactive Oxygen and Reactive Nitrogen Species in AD

Oxidative stress accumulation is an important event during AD that worsens as the disease
progresses [151]. Oxidative stress is triggered by the accumulation of free radicals such as reactive
oxygen species (ROS) and reactive nitrogen species (RNS) and the inability of the cells to clear these
reactive molecules. Formation of these free radicals occurs in the electron transport chain due to
the loss of the electrons during transfer in the mitochondrial membrane [152]. Formation of free
radicals can occur in neurons by multiple factors including mitochondrial dysfunction, impaired
autophagy, disruption of lipid homeostasis, formation of lipofuscin, Aβ-induced oxidative damage
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and accumulation of transition elements (such as iron, copper, zinc, aluminium and mercury) [152–154].
These free radicals can oxidize proteins, lipids and DNA affecting various important metabolic
processes in the neuronal cells [153,155]. They can also activate the expression of pro-inflammatory
markers, such as NFκB and cytokines, which contributes to the recognition of damaged cells [156].
Clearance of these toxic species (ROS and RNS) and balancing the redox state is a requirement for
cells to function normally. Several antioxidant genes are expressed to protect the cells from oxidative
damage. Young cells function efficiently to clear these free radicals, whereas older cells are thought to
be less efficient in doing so [157]. Accumulation of ROS and RNS for a longer duration puts the cells
under chronic oxidative stress and initiates abnormal changes. It is still not clear whether oxidative
stress accumulation that occurs during ageing is the cause of AD or the aftermath of the disease
progression. No matter what comes first, it is evident that oxidative damage is the detrimental event
in AD that kills the neuronal cells [158]. Studies on Aβ42 expressed in yeast show that Aβ42 can
cause the mitochondrial dysfunction, enhance stress response and upregulate expression of protective
antioxidant genes signifying oxidative stress accumulation [154,159]. Biometals involved in oxidative
stress management in the cells include iron, aluminium, mercury, zinc and copper [160]. Altered levels
of iron, zinc, copper and aluminium have been reported in AD brains [3,161]. With excessive oxidative
stress accumulation, protein degradation by cathepsins in lysosomes may also get impaired due to
the formation of oxidizing complex molecules like lipofuscin. This can lead to the impairment of
the autophagic clearance. In the meantime, lipofuscin further increases oxidative damage to cells by
catalysing the Fenton reaction accelerating formation of free radicals [162].

In early stages of AD, Aβ’s entry in mitochondria disrupts the mitochondrial function and
generates free radicals [163]. Additionally, APP and Aβ are also reported to be localized in the
membrane of mitochondria thereby disrupting the normal electron transport chain. The disruption
causes the loss of electrons from the mitochondrial membrane [164]. In summary, redox dyshomeostasis
in cells negatively impacts the cellular processes and metabolism that includes impairments to: protein
clearance, mitochondrial function, biometal homeostasis, calcium homeostasis, inflammatory responses
and antioxidant capacity [165]. Considering these facts, the search for drugs targeting the early relief
from oxidative stress in the neuronal cells could be beneficial for preventing neurodegenerative diseases
including AD. Antioxidants extracted from various plants can be a natural source of nutraceuticals
and prospective therapeutics. Approaches of antioxidant therapy using natural compounds, such
as stilbenes, flavonoids, epicatechin, Gingko biloba extracts, ascorbic acid, melatonin and curcumin,
have been found to have beneficial effects against AD [166–172]. Studies have also shown that the
reduction of Aβ in neuronal cells can be achieved using antioxidant therapy. In addition, therapies
that restore the normal mitochondrial function or mitochondrial regeneration are also found to restore
redox balance in cells [158]. Similarly, ongoing studies of metal chelators in combination with other
strategies are also considered as a more effective approach [173–175].

6. Single Target Strategies in Management of AD

New approaches to treat AD have also considered other targets that are associated with progression
of AD. Regulating γ-amino butyric acid (GABA) receptors is one such approach, as GABA is
produced by decarboxylation of the neurotransmitter glutamate which ultimately affects the excitotoxic
pathway [176]. There are two different isoforms of GABA receptors: GABA 1 and GABA 2 [177].
Many compounds targeting both receptors have been studied to assess their effectiveness to treat AD,
but none have shown promising results [178,179]. Despite the initial unsuccessful clinical trials, there is
room for hope and studies are continuing.

Phosphodiesterase is another drug target used in previous studies. It normally cleaves
phosphodiester bonds in the secondary signaling molecules such as cGMP and cAMP, thus affecting
the signal transduction [180]. Various phosphodiesterase inhibitors have been studied to assess their
neuroprotective effect [181–183]. Cyclooxygenases, COX-2 in particular, have also been used as a target
for treatment of AD. COX-2 has been reported to induce Aβ42 formation by increasing γ-secretase
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activity through prostaglandin formation [184]. Furthermore, COX-2 has been found to activate NMDA
receptors, thereby causing excitotoxicity in neuronal cells [185]. Recent studies have shown limited
involvement of COX-2 in Aβ deposition, however COX inhibitors are still beneficial in treatment of
AD [186].

Histaminic receptors (H3) have a role in releasing neurotransmitters such as acetylcholine,
dopamine, nor-epinephrine, histamine and serotonin [187]. Interference in functions of these receptors
by antagonists has revealed that they have a protective role in tau-associated memory deficits [188].
Serotonergic receptors have also been studied for their role in cognitive dysfunction, amyloid formation
and neuroinflammation during progression of AD [189]. Inhibition of these receptors activated
neurotransmitters, glutamate and acetylcholine in particular, improving cognition in AD patients and
suggesting that these receptors can be important targets for drug development [190].

The peroxisome proliferator-activated receptor γ (PPARγ) is another target in drug development
against AD. PPARγ, a nuclear receptor found in restricted brain areas, has important role in glucose
and lipid metabolism [191,192]. Furthermore, PPARγ has been demonstrated to enhance neuronal
inflammation and damage [193]. Inhibition of these receptors reduced Aβ aggregates and expression of
neuroinflammatory mediators [194,195]. Agonists of PPARγwere found to have other functions in AD
brains including clearance of Aβ, disaggregation of Aβ plaques, and reduction of APOE4 expression,
however severe side effects of these compounds led to the cessation of the clinical trials [196–200].

The endocannabinoid system is another pathway that is targeted for drug development for
AD. Targeting different processes in the system has been reported to increase cognition and the
anti-inflammatory response. Targeting the endocannabinoid system reduced Aβ-induced toxicity and
tau hyperphosphorylation [201]. The system comprises two lipid molecules derived from endogenous
arachidonic acid which bind with two different receptors, CB1 and CB2. The binding of these lipids
depends on two different hydrolytic enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol
lipase (MAGL) [202]. Drug designers have considered these molecules, including the receptors and
enzymes involved, as potential therapeutic target [203–205].

Cholesterol has been considered as one of the risk factors for AD and it has been demonstrated
that it also contributes to the formation and accumulation of Aβ [206]. Cholesterol lowering drugs
are thus important drugs that show benefits against AD [207]. While some studies of statins and AD
are inconclusive, other studies support their neuroprotective role [208,209]. Studies in yeast show
that statins reduced the levels of intracellular recombinant Aβ implying the possible induction of
autophagy [210].

Neurotrophic factors or neurotrophins (NTs) including nerve growth factor (NGF), brain-derived
neurotrophic factor (BDNF), neurotrophin 3 (NT3), and neurotrophin 4 (NT4) are crucial for
development, maintenance, repair and survival of neuronal populations [211–213]. These
polypeptides exert their actions through binding and specifically activating tropomyosin receptor
kinases (Trk) of either TrkA, TrkB and TrkC [214]. The activation of the receptors induces
phosphorylation of the cytoplasmic domain kinases and stimulates signaling pathways including
phosphatidyloinositol-3-kinase (PI3K)/protein kinase B (Akt), mitogen-activated protein kinase (MAPK)
and phospholipase C-γ1 [215] which are responsible for survival, growth, neuronal differentiation,
neurogenesis and neuroplasticity [214,216].

First discovered by Levi-Montalcini in 1951 [217], NGF was shown to be important in the neuronal
plasticity and survival of cholinergic neurons in the cerebral cortex, hippocampus, basal forebrain and
hypothalamus [218]. The reduction in NGF amount and activity are substantial in the AD [219–221].
Therefore, administration of NGF to targets survival and synaptic functions of cholinergic neurons
could be useful in the therapeutic prevention and treatment of the disease [222,223].

Exogenous administration of NGF in animals was found to improve the cholinergic system in the
CNS, particularly in the forebrain and hippocampus, leading to enhanced cognitive function [224–228].
However, exogenous administration of NGF to combat AD is a difficulty as this protein does not
normally pass through the blood brain barrier (BBB) [229–231]. In addition, direct delivery of
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neurotrophic factors may exert serious peripheral side effects [232]. These limitations have brought
about innovations to enhance the bio-delivery of NGF for AD therapy by using stem cells, viral
vectors, small molecule modulators and most recently, encapsulated cell biodelivery (ECB) [233]. While
these methods are known to be costly, hard to administer and precarious, consumption of bioactive
compounds from natural products are increasingly preferred in an attempt to slow down and prevent
disease progression.

7. Drug Combinations as a Strategy for AD Therapy

Requirements of multifactorial drug design resulted in the development of drug combination
strategies. Drugs that target at least two molecular targets of AD were tested for efficacy against AD. A
series of hybrid compounds produced by combining two drugs that inhibit AChE and BACE1 has
been reported [234–239]. Other combinations were found to be effective in metal chelating activity
and antioxidant properties with less toxicity [237,239]. Similarly, combinations of AChE with GSK3β
inhibitors, MAO inhibitors, metal chelators, NMDAR inhibitors, 5-HT receptor inhibitors, histaminic
receptors inhibitors and phosphodiesterase inhibitors have been studied [240]. Some drugs designed
in this way have been reported to alleviate AD. However, a number of drug combinations were
discontinued due to their adverse effects or low activity [240]. Furthermore, combinations of BACE1
with a GSK3β inhibitor, metal chelators with MAO-B and phosphodiesterase inhibitors were also
studied for their efficacy as multitarget therapy [241–244]. The different combinations of drugs,
targeting multiple events of AD pathology hallmarks, may provide substantial protection and possibly
cure AD (reviewed in [240]).

8. Restoring Protein Homeostasis as a Novel Multifactorial Approach

Disruption of protein homeostasis is one of the major hallmarks of the age-related neurological
disorders [245]. There are different mechanisms by which proteostasis is regulated within the cell.
The unfolded protein response (UPR), ubiquitin proteasome system and autophagy are responsible
for maintaining the protein balance within cells [246]. Impairment in these processes leads to the
accumulation of unwanted cytosolic garbage. Ageing normally comes with less efficient cellular
processes including proteostasis [247].

The UPR occurs as misfolded proteins start accumulating, causing ER stress. The inositol response
element 1 (IRE1), activating transcription factor 6 (ATF6) and PRK-like ER kinase (PERK) proteins play
crucial roles in sensing the presence of aberrant proteins and triggering the upregulated expression of
chaperones and foldases to rectify protein folding errors. This ultimately takes the aberrant proteins
through ER-associated proteasomal degradation. During ageing, the proteins involved in the UPR are
expressed in low levels signifying that upregulating the expression of the proteins will be a potential
strategy for preventing or slowing down protein misfolding diseases during ageing [248].

During post translational modification of proteins, ubiquitination of lysine residues is normal.
This allows the selective degradation of inappropriately folded proteins mitigating their negative
effects. Three different enzymes, namely E1 activating/carrier ubiquitin enzyme, E2 and E3 ligase,
interact to transfer ubiquitin to the target proteins’ lysine residues. The ubiquitin tags are removed by
deubiquitinating enzymes in normal conditions. But in the case of misfolded proteins, the process of
ubiquitination continues several times leading to the formation of polyubiquitin tags in the protein,
which is recognized by proteasomal receptors for further processing. Proteasomes are found as
complexes called 26S complex that contain two subunits (20S catalytic unit and 19S regulatory unit).
The catalytic 20S unit is composed of three proteolytic subunit classes β1 (caspase like activity),
β2 (trypsin like activity) and β5 (chymotrypsin like activity) [249]. These proteases not only target
polyubiquitinated proteins but also degrade the oxidized proteins [246]. This process of tagging the
unwanted proteins with polyubiquitin tags and degrading them through the proteasomes is also
referred to as the ubiquitin proteasome system.
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Clearance of misfolded proteins, damaged organelles and global turnover of the components of
the cell takes place through autophagy [250]. Autophagy can be of three different types including
microautophagy, chaperone mediated autophagy and macroautophagy [250]. Microautophagy is
the normal process of engulfment of unwanted material of the cytosol in the lysosomal vesicle [251].
In the lysosomal vesicle, different enzymatic action degrades the engulfed unwanted material.
Chaperone-mediated autophagy is another system which acts through chaperone proteins (heat shock
proteins like Hsp70), which initially bind with the misfolded protein and refold it. When the refolding
fails, the chaperones drive these bound materials to the lysosomal vesicles through the lysosomal
receptor (LAMP2A) for lysosomal degradation [252]. In addition to these local events of protein
clearance, a huge turnover of the cellular molecules/organelles occurs through macroautophagy for
supply of required components during different stages in the cell cycle [253]. Macroautophagy, also
termed as autophagy hereafter, was initially identified as the effect of starvation [254]. Increase in
AMP/ATP ratio during starvation activates AMPK and inhibits protein kinase B (Akt)/mechanistic
target of rapamycin (mTOR) pathway, activating the initiation of the autophagosome formation.
ROS (dihydronicotinamide-adenine dinucleotide phosphate/NADPH oxidase-induced) accumulation,
PI3K/Akt/mTOR inhibition, AMPK, Beclin1, transcription factor EB (TFEB) and sirtuin 1 (SIRT1)/fork
head box like protein (FOXO) activation are known pathways for inducing autophagy [250,255–258].

In AD, accumulation of aberrant Aβ is an example of the disruption of protein homeostasis.
Disruption of proteostatis is considered to be the major cause of Aβ accumulation. Mitochondrial
dysfunction, ROS accumulation, lipid peroxidation and expression of stress response genes are the
consequence of Aβ toxicity in cells. Alterations in the redox state, impairment in protein degradation
system, altered distribution of biometals, cellular senescence and cell death are the consequences of
the impact in neuronal cells [2,3]. Furthermore, generation of lipofuscin due to increased oxidative
stress is another part of the story as these highly lipophilic reactive species catalyse the Fenton reaction
causing generation of more free hydroxyl radicals. This leads to the irreversible damage of the cells
by oxidizing lipids, proteins and DNA [153]. Impairment in lysosomal and proteasomal degradation
is also associated with accumulated lipofuscin in these cellular compartments [259]. Lipofuscin is
a complex of molecules formed by the combination of lipid peroxides, oxidized proteins, transition
metals and some carbohydrates [153]. Disrupted autophagy may also result in the impairment in
lipolysis causing the lipid dyshomeostasis in the cells [260,261]. In intracellular environments of
dividing cells, lipofuscin is neither digested nor exocytosed, however it is diluted through cell division.
Conversely in neuronal cells, lipofuscin aggregates cannot be diluted through cell division as neuronal
cells remain in the G0 part of the cell cycle. Attempted division of these cells induces cell death [153,262].
The drug that clears lipofuscin from the cell could restore protein homeostasis and possibly cure AD.
Overall, protein homeostasis maintenance and redox state balance in cells could provide efficient early
intervention and limit the disease progression. Targeting the restoration of protein homeostasis has
also been hypothesized to provide protection against various other neurodegenerative diseases.

Restoring the protein balance is believed to protect neuronal cells to overcome age-related
changes. Protein dyshomeostasis is considered to be a prime factor of oxidative damage, mitochondrial
dysfunction, epigenetic alterations, altered biometal distribution, accumulation of aberrant proteins,
aggregation of proteins, lipid dyshomeostasis, altered energy metabolism and cell death during
progression of AD. Furthermore, inducing processes like autophagy may even increases synapsis,
cognition and longevity of the neuronal cells [263,264]. These multiple effects of restoring protein
balance in ageing cells will reduce the burden of the neurodegenerative disease.

9. Multiple Targets of Polyphenols against AD

Polyphenols are a class of compounds that are commonly found in many plants. Four major
classes of polyphenols including flavonoids, stilbenes, phenolics and lignans are highly regarded as
potential therapeutics for neurodegeneration, cardiovascular diseases, cancer and obesity. Many more
polyphenolic compounds are yet to be studied for their potency in AD and other neurodegenerative
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diseases. Polyphenols are classified according to their structure (reviewed in [265]). Structures of some
important polyphenols that are described in the text are depicted in Figure 2.
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Polyphenolic compounds abound in mushrooms and are one of their main antioxidants.
They are mainly phenolic acids which can be divided into groups of either hydroxybenzoic acids
and hydroxycinnamic acids derived from the non-phenolic molecules benzoic and cinnamic acid,
respectively [266]. The most common benzoic acid derivatives present in mushrooms were reported
as p-hydroxybenzoic, protocatechuic, gallic, gentisic, homogentisic, vanillic, 5-sulfosalicylic, syringic,
ellagic and veratric acids as well as vanillin. Meanwhile, cinnamic acid derivatives mainly found in
mushrooms were p-coumaric, o-coumaric, caffeic, ferulic, sinapic, 3-o-caffeoylquinic, 4-o-caffeoylquinic,
5-o-caffeoylquinic and tannic acids [266].

It is known that only plants synthesize flavonoids, while animals and fungi are not capable of it.
However, accumulating studies indicate the presence of flavonoids in different edible mushrooms [267].
The presence of flavonoids in mushrooms could arise from absorption from the substrates where
they grow or from neighboring plants by establishing symbiotic interactions via formation of
mycorrhizae [268].

9.1. Polyphenols as Antioxidants

Naturally occurring polyphenols provide protection against neurodegeneration through their
role as antioxidants [269]. Dietary polyphenols have direct ROS scavenging activity [270]. Several
polyphenolic antioxidants identified in common edible mushrooms include protocatechuic acid,
p-coumaric, and ellagic acid as well as gallic acid, pyrogallol, homogentisic acid, 5-sulfosalicylic acid,
chlorogenic acid, caffeic acid, ferulic acid and quercetin [271,272]. Most of these polyphenols donate
electrons to the free radicals thus neutralizing them, which ultimately reduces the levels of ROS
within the cells. Polyphenols activate Nuclear factor erythroid 2-related factor 2 (Nrf2), a basic leucine
zipper transcription factor. Nrf2 normally is complexed with Kelch-like ECH-associated protein 1
(Keap1) in the cellular environment inhibiting Nrf2′s nuclear translocation. Furthermore, Keap1 also
facilitates ubiquitination and proteasomal degradation of Nrf2 [273]. The separation of Nrf2 from Keap1
leads to activation and nuclear translocation of Nrf2, where it complexes with musculoaponeurotic
fibrosarcoma (Maf) proteins. This heteromeric Nrf2-Maf complex then binds with antioxidant response
element (ARE) sequences located upstream to the phase II detoxifying genes upregulating their
expression. Phase II antioxidant genes encode proteins, such as heme oxygenase 1, γ-glutamyl
cysteine synthetase, peroxiredoxins, glutathione reductases, thioredoxin reductase, drug metabolizing
and detoxification enzymes NAD(P)H quinone dehydrogenase 1, glutathione-S-transferase, uridine
diphosphate-glucuronosyltransferase and regulators, transketolase, PPARγ-coactivator 1 β (PGC1-β),
etc [274]. These proteins act in the cell as antioxidant proteins, having a major role in restoration of
the redox imbalance and cellular signaling [275,276]. Additionally, polyphenols also elucidate their
antioxidant property through inhibition of NADPH oxidase (NOX) activities [277]. NOX proteins are
transmembrane proteins that signal the immune modulators through ROS generation [278]. Lower
levels of ROS may be important for cellular signaling, however, at higher levels they can cause damage
to the neuronal cells. These proteins, found to be involved in increasing Aβ-induced oxidative stress,
could be potential therapeutic targets for AD [279].

Oxidative damage is more prominent when the damage is coupled with mitochondrial dysfunction.
Enzymes such as monoamine oxidases (e.g., MaoB) increase the cellular stress by producing
hydrogen peroxide [280]. In brains, monoamine oxidase activity of substrate neurotransmitters
causes mitochondrial damage, while dietary polyphenols have been found to inhibit MaoB, thus
decreasing the ROS generation and mitochondrial dysfunction [36]. Additionally, polyphenols also aid
in regeneration of mitochondria in the cells through activation of the master regulator SIRT1 [281].
SIRT1 is a NAD+-dependent histone deacetylase enzyme that has multiple targets for deacetylation.
SIRT1′s involvement in reducing oxidative stress comes from deacetylation of its substrate PGC-1α,
which activates nuclear respiratory factors (Nrf1 and Nrf2) and peroxisome proliferator-activated
receptor (PPARα) [282]. Further downstream, these molecules enhance the expression of transcription
factor A, mitochondrial (TFAM) that initiates the transcription and replication of mitochondrial DNA
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ultimately causing the regeneration of mitochondria [282]. The activation AMPK, either directly or
indirectly (through SIRT1 activation) activates PGC-1α, thus helping in mitochondrial biogenesis.

Biometals such as iron and copper are the major contributors of ROS formation in defunct
mitochondria [283]. Quercetin, baicalein, curcumin, etc., are found to provide a protective antioxidant
property also through biometal chelation [4,284,285]. Furthermore, alterations in biometal distribution
in the neuronal cells is also an important hallmark of AD. The mechanism through which polyphenols
act as antioxidants in the cellular environment is schematically presented in Figure 3. Antioxidants can
also act as pro-oxidants in certain sub-optimal concentrations and cause oxidative damage to the cells.
Thus, their optimum concentration needs to be considered prior to their application.
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9.2. Modulation of Protein Homeostasis and Longevity with Polyphenols

Dietary polyphenols modulate the protein quality control mechanisms increasing the cellular
efficiency to clear misfolded proteins. Apart from induction of autophagic clearance, the UPR and
ubiquitin proteasome system are also modulated by dietary polyphenols [286–288]. The ability
of polyphenols to activate lysosomal biogenesis and increase longevity make them an important
class of neuroprotective compounds [5,34,37]. In addition, some of the polyphenols like EGCG and
curcuminoids reduced the lipofuscin granules in cells, which normally are impossible to degrade or
exocytose from the cell [15,289]. Reduction of lipofuscin in the cell can contribute to the restoration of
the protein homeostasis by reducing the damage to autophagosomes and proteasomes.

Most of the polyphenolic compounds act through upregulation of the expression of the master
regulator SIRT1 [290]. The SIRT1 protein has been found to have multiple targets that play a vital role
in regulating major cellular processes (refer to Figure 4) [290]. The activation of AMPK/Unc-51 like
autophagy activating kinase 1 (ULK1), transcription factor EB (TFEB), Fork head box O transcription
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factors (FOXO), deacetylation of p53 and inhibition of PI3K/Akt/mTOR, NFkB, MAPK and the c-Jun
N-terminal kinases (c-JNK) pathway are important cellular processes that will induce autophagy
through SIRT1 [291–293]. Most of these molecular targets are deacetylation substrates of SIRT1.
Activation of transcription factors like TFEB reinforces the cellular autophagy by activating lysosomal
biogenesis. TFEB itself is another master regulator for the coordinated lysosomal expression
and regulation (CLEAR) network. The CLEAR network has important roles in various cellular
processes. Energy metabolism, DNA metabolism, steroid biosynthesis, protein clearance, haemoglobin
degradation, antigen presentation, phagocytosis and signal transduction are important events regulated
by TFEB [294,295].
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Similarly, SIRT1 has a significant role in determining cellular fate via Fork head transcription factors
(FOXO1 and FOXO3). The deacetylated form of these transcription factors are major contributors of
autophagy activation, cell cycle arrest, stress resistance (expression of manganese superoxide dismutase)
and immune modulation. Reduction in the levels of FOXO by ubiquitination and proteasomal
degradation with the help of SIRT1 reduces the levels of acetylated forms. Reduction in acetylated
FOXO’s suppresses cell death caused by apoptosis driving cells towards survival and increasing
longevity (refer to Figure 5) [292,296]. This is of particular interest for neurodegenerative diseases,
where survival of neuronal cell after damage is crucial. It has been illustrated that polyphenols
activate these master regulators of longevity (Nrf2, SIRT1 and AMPK) providing unprecedented
protection against various disease [276,297,298]. However, limited bioavailability of these dietary
polyphenols in human has limited their application. Polyphenols such as hydroxytyrosol, oleuropein
aglycone, curcumin, resveratrol, rotenone, rutin, myricetin, urolithin A, epigallocatechin 3-gallate
(EGCG), ferulic acid, genipin, etc. have been reported to induce autophagy. The olive oil polyphenol,
hydroxytyrosol activates AMPK pathway and is reported to reduce Aβ levels in mouse models of
AD [28,299]. Similarly, oleuropein aglycone has been reported to activate SIRT1/AMPK/mTOR and
TFEB mediated autophagy [300,301].
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Curcumin, one of the most studied polyphenols, has multifactorial benefits in balancing the
protein homeostasis by activation of AMPK/ULK1 and inhibition of PI3K/Akt/mTOR through activation
of SIRT1 [38]. EGCG, a catechin family polyphenol, inhibits the suppressors (Bcl2 and Bcl-XL) of
Beclin1. However, the activity of this polyphenol is also dependent on the concentration of the
compound. A higher concentration of EGCG inhibits autophagy and induces apoptosis, whereas, lower
concentrations induce autophagy that also degrade lipid droplets through a Ca2+/CAMKKB/AMPK
dependent mechanism. Thus, the concentration of polyphenols is a crucial factor before considering
it as a therapeutic option. EGCG has also been reported to reduce the catalytic activity of 19S and
20S proteasomal proteins, deactivate NFkB pathway and enhance p53 tumour suppressor protein
expression [302]. An important feature of EGCG also includes its ability to inhibit lipofuscin formation,
which otherwise impairs autophagy and the proteasome during ageing [15].

Resveratrol is another important polyphenol frequently studied for its beneficial effect in increasing
longevity and balances cellular protein homeostasis. The activation of SIRT1/AMPK and extracellular
signal-regulated kinases (ERK1/2) is the molecular mechanism by which this polyphenol was found to be
neuroprotective [9,303,304]. The metabolite of ellagitannin, urolithin A, extracted from pomegranate has
been reported to activate autophagy through SIRT1 activation [305]. Furthermore, the natural compound
was also found to increase mitophagy and longevity in a Caenorhabditis elegans (C. elegans) model that
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has provided insight on human neurodegeneration [49]. Quercetin has shown multiple benefits in
human health by enhancing autophagy through SIRT1activation, inhibiting proteasomal degradation
(inhibition of all the catalytic subunits), reducing proliferation and activating apoptosis [306]. Apart
from autophagy inducers, hesperitin and hesperidin have also been reported to have negative effects
on Aβ-induced autophagy and glucose metabolism impairment [307,308].

9.3. Polyphenols and Cellular Lipid Balance

Polyphenols are also considered as potential therapeutic agents against obesity and other
life-threatening conditions [309–311]. This property of polyphenols is associated with the activation of
AMPK, which targets lipid metabolism as well [312]. Activation of AMPK decreases the activity of
acetyl CoA carboxylase, HMG-CoA reductase and diacylglycerol acyl transferase, and thus avoids
hepatic accumulation of lipids [313,314]. These actions of AMPK reduce the levels of free fatty acids
as well as the complex lipids. Polyphenols are also found to inhibit the adipogenesis by inhibiting
proteins like PPARγ [315,316]. Additionally, as explained in previous sections, polyphenols increase
autophagic clearance. Induction of autophagy is not only limited to restoring the protein balance
but is also associated with the degradation of lipids to meet the energy demands of the cells. Thus,
polyphenols can also reduce lipid accumulation in the intracellular environment [260]. AD is also
termed as Type III diabetes due to its similarity with diabetes. High levels of cholesterol have been
found to be associated with AD brains [317]. Lowering the levels of cholesterol has been an important
approach for the treatment of AD, despite limited success. Furthermore, studies support increased
activity of γ-secretase and β-secretase with higher levels of lipids in the membrane environment that
could contribute to increased Aβ levels in the brain [210]. Considering these facts, polyphenols are
hypothesized to have their neuroprotective action in part through the restoration of lipid homeostasis.

9.4. Anti-inflammatory Activity of Polyphenols

ROS act as signaling molecules for induction and release of pro-inflammatory mediators including
NFκB and cytokines. NFκB exists in an inactivated form bound to an inhibitor referred to as p65/p50
dimer in normal conditions [318]. When this complex gets activated by increased ROS, the p65/p50 dimer
translocates to the nucleus upregulating expression of the inflammatory markers [319]. The expression
of these inflammatory mediators inside the cells triggers the downstream process of inflammation.
Deacetylation of NFκB through the action of SIRT1 at specific amino acid residues renders it inactivated
and reduces the inflammatory response by reducing the expression of downstream genes [318]. Since
polyphenols are antioxidants capable of lowering the ROS in the cells, they can downregulate the
expression of proinflammatory mediators [320]. However, the highest anti-inflammatory activity of
polyphenols is attributed to their ability to activate the master regulator SIRT1 [321]. Many polyphenols
have been reported to have an anti-inflammatory effect which could provide the basis for protection
against diseases with chronic neuroinflammation/inflammation.

9.5. Polyphenols as Anti-amyloid Agents

Oleuropein, an olive polyphenol, is found to increase α-secretase activity. Thus, it prevents cells
from producing Aβ: instead such activity results in the formation of the Aα peptide [322]. Formation of
Aα instead of Aβ is anti-amyloidogenic, which may be helpful in reducing the Aβ-associated toxicity.
Some polyphenols (such as rutin) reduce the β-secretase activity [6]. Similarly, other polyphenols
disaggregate the amyloid aggregates in vitro [6,323]. Furthermore, the ability of polyphenols to lower
the cholesterol levels in cells also favors the reduced activity ofβ-secretase andγ-secretase [6,317]. Apart
from the anti-amyloid functions, polyphenols also possess the ability to inhibit tau aggregation [324].

Through characterization of the cell-free extracts of different bacteria, fungi and yeast, Lee et
al. (2007) identified the BACE1 inhibitory effects of different mushrooms [325]. Mushroom species
having anti-BACE1 effects were Flammulina velutipes, Pleurotus ostreatus, Grifola frondosa, Dictyophora
echinovolvata, Fomitella fraxinea and Inonotus obliquus. Hispidin, a polyphenolic compound found in



Int. J. Mol. Sci. 2019, 20, 5090 20 of 40

abundance in the mushroom Phellinus linteus inhibits BACE1 non-competitively and scavenges free
radicals [326]. BACE1’s inhibitory effect of Auricularia polytricha has also been indicated to be hispidine
mediated [327].

9.6. Polyphenols in Cognition and Synapsis

Polyphenolic compounds like α-isocubebenol, tacrine and their derivatives,
2′,4′-dihydroxy-6′methoxy-3′,5′-dimethyl-dihydrochalcone, tetrahydropyranodiquinolin-8-amines,
quercetin and tiliroside have been shown to have neuroprotective properties attributed to their
inhibiting activity against acetylcholine esterase [328–331]. In addition, some other polyphenols,
including genistein, luteolin-7-O-rutinoside and silibinin, are reported to have a moderate effect
on the butyrylcholine esterase [330]. Among the polyphenols, flavonoids are an important class
of polyphenols that have anti-choline esterase activity [167]. Flavonoids extracted from Ginkgo
biloba have been reported to have inhibitory effects against acetyl choline esterase [168]. Molecular
docking experiments revealed the mechanism of action of quercetin was through strong hydrogen
bond formation with certain amino acids of AChE, thus leading to competitive inhibition of AChE.
Similarly, macluraxanthone exhibited non-competitive type interference with the activity of acetyl
choline esterase [167]. The combination of numerous hydrogen bonds with several amino acids and
hydrophobic interaction may be responsible for how these polyphenols inhibit acetylcholine esterase
activity [332].

Polyphenols exert neuroprotective effects in experimental systems but there is a need to translate
this in guidelines for neuroprotection of aging populations. For translation of animal studies to human
trials, dose accuracy plays a critical role. For example, consider resveratrol levels in Table 1: an effective
dose in mice is 60 mg/kg/d by oral administration. In humans this translates to ~290 mg for a 60 kg
person per day [333]. Such levels are rarely reached. In the case of resveratrol, the suggested daily
intake is 200 mg/day and this is unlikely to be a protective level. In addition, alterations in polyphenol
administration routes may reduce the amount of polyphenol to be used on daily basis, signifying the
benefits of alternative administration strategy. However, long term uptake of the polyphenol could still
have beneficial effects in lower doses. On the other hand, some nutraceutical products may contain the
polyphenol at more than the optimal amount, which could have negative effects in brain health [334].
This bimodal activity of polyphenols should be highly considered before translating the beneficial
effects of the polyphenols for human use.

10. Future Directions

In order to reap the full benefits of polyphenols as therapies in AD, some limitations should
be considered—especially in regard to safety, pharmacokinetics, bioavailability, delivery system,
administration route, dose efficiency and clinical status (reviewed in [334]). In terms of safety,
polyphenols were generally regarded as safe and well-tolerated in animals as well as humans with
no notable side effects even for high and repeated dosages [335]. If any, side effects are usually mild,
tolerated, and transient: for instance, minor headaches, dizziness, gastrointestinal problems, and skin
rashes. Another important point to contemplate is the possible interaction of clinically-prescribed drugs
with polyphenols, as polyphenols are currently viewed as nothing more than a supplement, and far
from being a substitute for prescription drugs. For example, flavonoids in grapefruit juice demonstrated
potent inhibition of the cytochrome P450 (CYP) protein family, critical for drug metabolism. The abrupt
inhibition of CYP may potentially lead to excessive buildup of drugs increasing toxicity [336–338].
Regardless, polyphenols taken exclusively were harmless either in short, medium, or long-term
supplementation in humans [339–345], which certainly encourages their application. Despite countless
attempts proving the AD-ameliorating efficacy of polyphenols in a wide range of in vitro, in vivo, and
epidemiological studies, the translation into human trials is indeed difficult, and failure was common in
the early stages of most clinical trials [346]. However, their efficacy has improved over time with further
modification of multiple factors, including effective dosage and period of administration. As a result,
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resveratrol [347,348] and Ginkgo biloba (flavone glycosides and terpene lactones) [343,345,349] showed
promising results in the initial phases, while EGCG stands out by reaching phase III of clinical trials [350].
There is no doubt about the benefits and potential of polyphenols in the management of AD, but a poor
understanding of pharmacokinetics and pharmacodynamics has restricted their applicability. In many
instances, their bioavailability in the CNS was limited due to low absorption in the gastrointestinal
tract, rapid metabolism, systemic elimination, and impermeability across the BBB [351–353]. Processing
and first-pass metabolism of these dietary polyphenols, which occurs at different levels, including the
stomach, small intestine, large intestine, circulatory system and liver, may cause significant changes in
polyphenol structure, quantity and biological activity [354,355]. Furthermore, the gut microbiome also
takes part in metabolizing these bioactive compounds [355,356]. Studies suggest only 5-10% of the
dietary polyphenols are absorbed, leaving much room for improvements to increase the bioavailability
of these potential therapeutics. Even more critical in neurodegenerative disorders is the requirement
for these polyphenols to cross the BBB from the bloodstream to the brain tissue to reach their target,
which depends on their lipophilicity [357,358]. Hence, future research should be focused on optimizing
the bioavailability of these compounds in the human body, particularly in brain tissues, to have
enhanced effects. Recent studies involving the encapsulation of these bioactive compounds into
stable nanoparticles and microparticles could be significant [359]. The possibilities of administering
these compounds through a different route into the human body should be considered: for instance,
intranasal or intravenous administration to avoid inactivation during the first-pass metabolism and
gut microflora intervention. Improvement in targeted delivery through engineering particles in such a
way that their bioavailability is increased would be the basis for further research. Considering these
facts improvements made to enhance the bioavailability of curcumin [360,361] and resveratrol [362]
were successful to some extent, which provides a roadmap for future studies.
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AD Alzheimer’s Disease
Aβ42 β-amyloid of 42 amino acids
Aα Amyloid α
NGF Nerve Growth Factor
FDA Food and Drug Administration
NMDAR N-Methyl-D-Aspartic Receptor
APP Amyloid Precursor Protein
BACE β-Secretase
NFT Neurofibrillary Tangle
NFκB Nuclear factor kappa B
MAPK Mitogen-Activated Protein Kinase
GSK3β Glycogen Synthase Kinase - 3β
CDK Cyclin dependent kinase
APOE Apolipoprotein E
ROS Reactive Oxygen Species
RNS Reactive Nitrogen Species
GABA γ-amino butyric acid
cGMP Cyclic guanosine monophosphate
cAMP Cyclic adenosine monophosphate
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COX Cyclooxygenase
PPARγ Peroxisome proliferator-activated receptor γ
FAAH Fatty acid amide hydrolase
MAGL Mono acyl glycerol lipase
BDNF Brain-derived neurotrophic factor
NT Neurotrophin
Trk Tropomyosin receptor kinase
PI3K Phosphatidylinositol-3-kinase
Akt Protein kinase B
BBB Blood Brain Barrier
ECB Encapsulated Cell Bio-delivery
AChE Acetylcholine esterase
MAO Monoamine oxidase
UPR Unfolded protein response
IRE Inositol response element
ATF Activating transcription factor
PERK Protein kinase RNA-like endoplasmic reticulum kinase
LAMP Lysosome associated molecular pattern
ATP Adenosine triphosphate
AMPK Adenosine monophosphate kinase
mTOR Mechanistic Target of Rapamycin
NADPH Dihydronicotinamide-adenine dinucleotide phosphate
NOX NADPH oxidase
TFEB Transcription factor EB
SIRT1 Sirtuin 1
FOXO Fork head box like protein O
Nrf Nuclear factor erythroid-2 related factor
Keap Kelch-like ECH-associated protein 1
Maf Masculoaponeurotic fibrosarcoma
ARE Antioxidant response element
UDP Uridine diphosphate
PGC1 PPARγ coactivator-1
TFAM Transcription factor A, mitochondrial
EGCG Epigallocatechin-3-gallate
ULK Unc-51 like autophagy activating kinase
c-JNK c-Jun N-terminal kinase
CLEAR Coordinated lysosomal expression and regulation
HDAC Histone deacetylase
Atg Autophagy related
CAMKK Calcium/Calmodulin-dependent protein kinase kinase
Bcl Beclin
ERK Extracellular signal-regulated kinases
HMGCoA 3-hydroxy-3-methyl-glutaryl-Coenzyme A
DNMT DNA (cytosine-5)-methyltransferase
HO Heme oxygenase
HSP Heat shock protein
TNF Tumor necrosis factor
IL Interleukin
SOD Superoxide dismutase
CREB cAMP response element-binding protein
Bax Beclin-2- associated X
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