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Regulatory T cell (Treg) adoptive cell therapy (ACT) represents an emerging strategy for
restoring immune tolerance in autoimmune diseases. Tregs are commonly purified using a
CD4+CD25+CD127lo/- gating strategy, which yields a mixed population: 1) cells
expressing the transcription factors, FOXP3 and Helios, that canonically define lineage
stable thymic Tregs and 2) unstable FOXP3+Helios- Tregs. Our prior work identified the
autoimmune disease risk-associated locus and costimulatory molecule, CD226, as being
highly expressed not only on effector T cells but also, interferon-g (IFN-g) producing
peripheral Tregs (pTreg). Thus, we sought to determine whether isolating Tregs with a
CD4+CD25+CD226- strategy yields a population with increased purity and suppressive
capacity relative to CD4+CD25+CD127lo/- cells. After 14d of culture, expanded
CD4+CD25+CD226- cells displayed a decreased proportion of pTregs relative to
CD4+CD25+CD127lo/- cells, as measured by FOXP3+Helios- expression and the
epigenetic signature at the FOXP3 Treg-specific demethylated region (TSDR).
Furthermore, CD226- Tregs exhibited decreased production of the effector cytokines,
IFN-g, TNF, and IL-17A, along with increased expression of the immunoregulatory
cytokine, TGF-b1. Lastly, CD226- Tregs demonstrated increased in vitro suppressive
capacity as compared to their CD127lo/- counterparts. These data suggest that the
exclusion of CD226-expressing cells during Treg sorting yields a population with
increased purity, lineage stability, and suppressive capabilities, which may benefit Treg
ACT for the treatment of autoimmune diseases.
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INTRODUCTION

Human regulatory T cells (Tregs) possess the unique capacity to
suppress innate and adaptive immune subsets throughout the
body using a variety of mechanisms, including consumption of
growth factors, degradation of inflammatory substrates,
expression of negative regulators of costimulation, secretion of
immunoregulatory cytokines, and trogocytosis (1–3). Impairment
of Treg suppression in vivo leads to the proliferation of
autoreactive T cells, which has been associated with the
development of autoimmune diseases, such as type 1 diabetes
(T1D) and systemic lupus erythematosus (SLE) (4, 5). Therefore,
Tregs represent a critical target or even deliverable component of
immunotherapies seeking to inhibit the pathogenesis of
autoimmune diseases (6, 7).

Early proof-of-principle studies in the non-obese diabetic
(NOD) mouse provide evidence that adoptive transfer of Tregs
can reverse autoimmune diabetes (8–10). Translating this
concept to patients with or at risk for T1D requires the
isolation and subsequent ex vivo expansion of Tregs for
adoptive cell therapy (ACT), due to the rarity of Tregs in both
peripheral and umbilical cord blood (6, 11–14). Polyclonal
autologous Treg-ACT was shown to be safe yet ineffective at
preserving insulin production in individuals with recent-onset
T1D (6), potentially due to limited Treg persistence in vivo. In a
recent phase I clinical trial, low dose IL-2 bolstered polyclonal
Treg engraftment in patients with T1D but also, imparted
undesirable off-target expansion of cytotoxic cell subsets, such
as activated natural killer (NK), mucosal associated invariant T
(MAIT), and CD8+ T cells (15). Hence, there is a clear need to
optimize Treg ACT, including through isolation of a Treg
population that maintains lineage stability and suppressive
functionality following ex vivo expansion.

Early Treg enrichment strategies relied on the observation
that Tregs constitutively express the IL-2 receptor alpha chain
(IL-2Ra/CD25), conferring a high affinity for the T cell growth
factor, IL-2 (16). However, observations of activation-induced
upregulation of CD25 on CD4+ conventional T cells (Tconv) (17,
18) supported the need for additional markers for effective Treg
isolation (19). Current Treg isolation methods involve
Fluorescence-Activated Cell Sorting (FACS) of CD4+CD25hi T
cells with low to no expression of the IL-7 receptor, CD127 (20).
However, CD127 can be downregulated by Tconv in response to
signaling by IL-7 and other common g-chain cytokines (20).
Moreover, in instances of lymphopenia, increased serum levels of
IL-7 are known to decrease CD127 expression on Tconv,
significantly complicating efforts to isolate tolerogenic Tregs
for ACT in patients with autoimmune diseases (21–23).

The CD127lo/- Treg isolation strategy yields a heterogeneous
population containing both lineage stable FOXP3+Helios+ Tregs
as well as FOXP3+Helios- Tregs, which are susceptible to
phenotypic instability upon activation (24, 25). While subject
to debate (26), the FOXP3+Helios+ transcription factor
combination is generally accepted as identifying the
thymically-derived Treg subset (tTregs) while FOXP3+Helios-

designates the peripherally-induced Treg fraction (pTregs) (25,
27). Compared to tTregs, pTregs exhibit increased production of
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inflammatory cytokines, including IFNg, as well as methylation
at the conserved non-coding sequence 2 (CNS-2), referred to as
the Treg-specific demethylation region (TSDR) (28). As a result,
the CD4+CD25hiCD127lo/- population is predisposed to an
outgrowth of less suppressive Tregs and increased expression
of inflammatory/effector molecules during expansion, all of
which may negatively impact ACT therapeutic efficacy (29).
Furthermore, an increased proportion of IFNg-secreting
FOXP3+Helios- Tregs in patients with T1D versus healthy
controls suggests that detrimental Treg plasticity may be
augmented in settings of inflammation or autoimmunity (28).

Previous work in our laboratory characterizing the phenotype
of IFNg-secreting FOXP3+Helios- Tregs revealed high expression
of the costimulatory molecule CD226 (30). CD226 is an
activating costimulatory receptor associated with the initiation
of Th1 and Th17 immune responses (31, 32). Following its
ligation with CD112 or CD155 on antigen-presenting cells
(APCs), CD226 becomes activated via phosphorylation of its
immunoreceptor tyrosine-based activation motif (ITAM) (33),
augmenting downstream Ras/MAPK signaling, which is known
to result in increased secretion of the pro-inflammatory
cytokines IFN-g and IL-17A (31). In our studies, CD226
expression correlated positively with CD127 and negatively
with FOXP3 expression; moreover, freshly isolated CD226lo

Tregs exhibited increased demethylation at the TSDR as
compared to CD226+ Tregs, suggesting high CD226 expression
might be associated with an effector phenotype (30).

In addition to contributing to decreased regulatory function,
CD226 has been identified to contain a potential gain-of-function
risk variant contributing to a propensity for multiple
autoimmune diseases including T1D, SLE, rheumatoid arthritis
(RA), and multiple sclerosis (MS) (32, 34–36). We previously
reported that knockout (KO) of Cd226 in NOD mice resulted in
reduced severity of insulitis and diabetes incidence (37), and
Wang et al. similarly observed that Cd226 KO reduced disease
severity in an experimental autoimmune encephalomyelitis
(EAE) mouse model of MS, further highlighting the role of
CD226 in autoimmune disease pathogenesis (38).

To identify an improved surrogate surface marker for lineage
stable Tregs, we performed extensive ex vivo analyses to evaluate
the therapeutic potential of CD4+CD25+CD226- sorted T cells as
compared to the conventional CD4+CD25+CD127lo/- strategy.
Specifically, we hypothesized that this marker profile would
allow for isolation and expansion of increased proportions of
FOXP3+Helios+ Tregs, minimizing contamination of IFNg-
producing FOXP3+Helios- Tregs, to yield a more stable and
functionally suppressive population.
MATERIALS AND METHODS

Human Subjects
Fresh peripheral blood mononuclear cell (PBMC) samples were
isolated from human leukapheresis-enriched blood of healthy
donors (median age: 22 years, range 18-39 years, N=20, 45%
female) purchased from LifeSouth Community Blood Centers
(Gainesville, FL).
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CD4+ T Cell Enrichment From Human
PBMC Samples
Before Treg isolation, CD4+ T cells were enriched by negative
selection using a CD4+ T cell enrichment RosetteSep™ cocktail
(StemCell Technologies, Vancouver, BC, Canada) according to
the manufacturer’s instructions while autologous PBMCs
required for suppression assays were isolated from unenriched
peripheral blood. CD4+ T cell-enriched and unenriched
components were diluted 1:1 with PBS and overlayed onto
Ficoll-Paque Plus medium (Thermo Fisher, Waltham, MA,
USA) for density gradient centrifugation (1200 x g, 20 min).
PBMCs were suspended in Ammonium-Chloride-Potassium
(ACK) Lysis Buffer (Gibco, Waltham, MA, USA), washed, and
resuspended in PBS, according to the manufacturer’s
instructions. Quantification of cell viability was accomplished
by staining with Acridine Orange/Propidium Iodide (AO/PI)
before reading on an Auto2000 Cellometer (Nexcelom
Biosciences, Lawrence, MA, USA).
FACS Isolation of Treg Subsets
CD4+ T cell-enriched PBMCs were split and stained with: 1) CD4-
BV510, CD25-APC, and CD127-PE or 2) CD4-BV510, CD25-
APC, and CD226-PE-Cy7 (clone and manufacturer information
provided in Table 1). Matched sets of CD4+CD25+CD127lo/- and
CD4+CD25+CD226- Tregs were isolated (Figure 1) using a
FACSAria™ III Cell Sorter (Beckton Dickinson, Franklin Lakes,
NJ, USA; CD4+CD25+CD127lo/- median sort purity: 96.1%, range:
85.8-99.9%, N=6; CD4+CD25+CD226- median sort purity: 97.8%,
range: 88.7-99.9%, N=6).
Frontiers in Immunology | www.frontiersin.org 3
Treg Expansion
Following FACS isolation, cells were expanded for 14 days ex
vivo (13). In brief, Tregs were cultured in complete RPMI media
(cRPMI; RPMI 1640 media Phenol Red w/o L-Glutamine
(Lonza, Basel, CH-BS, Switzerland), 5mM HEPES (Gibco,
Waltham, MA, USA), 5 mM MEM Non-Essential Amino
Acids (NEAAs; Gibco), 2mM Glutamax (Gibco), 50 µg/mL
penicillin (Gibco), 50 µg/mL streptomycin (Gibco), 20 mM
sodium pyruvate (Gibco), 50 mM 2-mercaptoethanol (Sigma-
Aldrich, St. Louis, MO, USA), 20 mM sodium hydroxide (Sigma-
Aldrich) and 10% FBS (Genesee Scientific, El Cajon, CA, USA))
with Teceleukin recombinant human IL-2 (rhIL-2; Roche, Basel,
CH-BS, Switzerland) at 300 IU/mL, with media and rhIL-2 being
replaced every 3-4 days. Tregs were stimulated using MACS®

GMP ExpAct Treg Beads (Miltenyi Biotec, Bergisch Gladbach,
NW, Germany) at a 4:1 bead:cell ratio. Beads were replaced at
day seven, and cells were expanded through day 14.

Analysis of TSDR Epigenetic Signature
Demethylation of the FOXP3-TSDR, or conserved non-coding
sequence (CNS2), represents a robust epigenetic indicator of
tTreg purity (39). We quantified demethylation within the
FOXP3-TSDR by real-time polymerase chain reaction (RT-
PCR) as previously described (30), with the following
modifications. DNA extraction was conducted using the
DNeasy® Blood & Tissue Kit (QIAGEN, Hilden, NW,
Germany) as described by the manufacturer’s protocol.
Following extraction, DNA was quantified using the Qubit™

Double-Stranded DNA (dsDNA) High Sensitivity (HS) Assay
Kit (Invitrogen, Waltham, MA, USA) on the Qubit™
TABLE 1 | Antibodies used for flow cytometry.

Target Clone Fluorochrome Vendor Concentration RRID

CD4 SK3 BV510 BD Biosciences 0.05 µg/mL AB_2744424
CD8 RPA-T8 PE-CF594 BD Biosciences 0.10 µg/mL AB_11154052
CD25 BC96 APC BioLegend 0.50 µg/mL AB_314280
CD25 BC96 BV605 BioLegend 0.50 µg/mL AB_11218989
CD39 eBioA1 APC eBioscience 0.50 µg/mL AB_1963578
CD40L 24-31 APC-Cy7 BioLegend 0.50 µg/mL AB_2076096
CD45RA HI100 BV605 BioLegend 0.10 µg/mL AB_2563814
CD73 AD2 PE BD Pharmingen 0.50 µg/mL AB_393561
CD127 A019D5 PE BioLegend 0.20 µg/mL AB_1937251
CD197 (CCR7) 2-L1-A APC-R700 BD Biosciences 0.10 µg/mL AB_2869856
CD226 11A8 PE-Cy7 BioLegend 0.40 µg/mL AB_2616645
CLTA-4 L3D10 PE-Cy7 BioLegend 0.50 µg/mL AB_2563098
FOXP3 206D Alexa Fluor 488 BioLegend 0.50 µg/mL AB_430883
FOXP3 259D Alexa Fluor 488 BioLegend 0.50 µg/mL AB_430887
GITR 621 PE-Cy5 BioLegend 0.50 µg/mL AB_2240646
Helios 22F6 Pacific Blue BioLegend 0.25µg/mL AB_10690535
IL-10 JES3-9D7 BV421 BioLegend 0.08 µg/mL AB_2632952
IL-17A BL168 BV605 BioLegend 0.12 µg/mL AB_2563887
IFN-g 4S.B3 BV570 BioLegend 0.10 µg/mL AB_2563880
PD-1 EH12.2H7 Alexa Fluor 647 BioLegend 0.50 µg/mL AB_940471
TGF-b1 TW4-2F8 Alexa Fluor 647 BioLegend 0.40 µg/mL AB_2721298
TGF-b1 FNLAP PerCP-eFluor 710 eBioscience 0.50 µg/mL AB_2573900
TNF Mab11 BV650 BioLegend 0.20 µg/mL AB_2561355
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Fluorometer system (Invitrogen). Bisulfite conversion of DNA
was conducted using the EZ DNA Methylation™ Kit (Zymo
Research, Irvine, CA, USA). RT-PCR was performed using a
StepOne™ system (Applied Biosystems, Waltham, MA, USA).

Flow Cytometric Analysis of
Treg Phenotype
To assess the phenotype and purity of Tregs before and following 14
days of expansion, 1 x 105 CD4+CD25+CD226- and
CD4+CD25+CD127lo/- Tregs were stained with Live/Dead™ Near-IR
viability dye (Thermo Fisher) for 10 minutes at 4°C before washing
Frontiers in Immunology | www.frontiersin.org 4
with stain buffer (PBS + 2% FBS + 0.05% NaN3 w/v). Cells were then
stained with an extracellular antibody cocktail, consisting of CD4-
BV510, CD25-APC, CD45RA-BV605, CD127-PE, CD197-APC-R700,
and CD226-PE-Cy7 for 30 minutes at 4°C (antibody clone and
concentration are provided in Table 1). Cells were fixed and
permeabilized using the eBioScience™ FOXP3 Transcription Factor
Staining Buffer Set (Invitrogen) according to the manufacturer’s
instructions, then stained with an intracellular transcription factor
antibody cocktail, consisting of FOXP3-Alexa Fluor 488 and Helios-
Pacific Blue (Table 1). Data were collected on an Aurora 3L (16V-14B-
8R) spectral flow cytometer (Cytek, Fremont, CA, USA), and analysis
A B

C

E

D

FIGURE 1 | Gating Strategy for FACS Isolation of Paired CD4+CD25+CD127lo/- and CD4+CD25+CD226- Tregs. Representative flow plots demonstrate the method
by which CD127lo/- or CD226- Tregs were isolated from CD4+ T-cell enriched PBMC using a BD FACSAriaIII Cell Sorter. (A) Singlet gating was performed using
forward scatter area (FSC-A) versus forward scatter height (FSC-H). (B) Lymphocytes were gated on FSC-A and side scatter area (SSC-A). (C) From the CD4+ T cell
fraction, (D) CD25+CD127lo/- Tregs and (E) CD25+CD226- Tregs were isolated.
May 2022 | Volume 13 | Article 873560
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was conducted using FlowJo™ version 10.6.1 Software (BD Life
Sciences, Ashland, OR, USA). Tregs were classified as
CD4+CD25+FOXP3+, CD4+CD25+FOXP3+Helios+, and
CD4+CD25+FOXP3+Helios- with phenotype established based on
CD45RA and CD197 (CCR7) expression as follows:
CD45RA+CCR7+ naïve, CD45RA-CCR7+ central memory (TCM),
CD45RA-CCR7- effector memory (TEM), and CD45RA+CCR7-

effector memory re-expressing CD45RA (TEMRA) cells. The detailed
gating strategy is shown in Figure S1. Protein expression levels were
reported as stain indices [SI = geometric mean fluorescence intensity
(gMFI) of the stained sample/gMFI of the applicable fluorescence
minus one (FMO) control].

Flow Cytometric Analysis of Intracellular
Cytokine Production
Following 14 days of ex vivo expansion as described above,
MACS® GMP ExpAct Treg Beads were removed, then
CD4+CD25+CD127lo/- and CD4+CD25+CD226- sorted Tregs
were immediately assessed for intracellular cytokine
expression. Cells were either stimulated with PMA (10 µg/mL;
Thermo Fisher) and ionomycin (500 nM; Thermo Fisher) or
unstimulated for four hours in the presence of GolgiStop (0.66
µL/mL; BioLegend, San Diego, CA, USA). Stimulated cells
underwent staining for viability and extracellular markers,
including CD4-BV510, CD25-APC, CD127-PE, CD226-PE-
Cy7, and TGF-b1-PerCP-eFluor 710 (Table 1), and were
subsequently permeabilized as described above. Following
permeabilization, cells were stained with the FOXP3-AF488
and Helios-Pacific Blue cocktail, as well as an intracellular
cytokine cocktail consisting of IL-10-BV421, IL-17A-BV605,
IFN-g-BV570, TGF-b1-Alexa Fluor 647, and TNF-BV650
(Table 1). Fold change of cytokine expression levels were
assessed by dividing the gMFI of the stained, stimulated
sample by the gMFI of the applicable stained, unstimulated
control. Differences between fold change of cytokine
expression are reported as Z-scores, [Z = (Mean fold change
for Treg subset – Mean fold change for all Tregs assessed)/
standard deviation of the sample].
Flow Cytometric Analysis of
Treg Activation Markers
Following 14 days of ex vivo expansion, CD4+CD25+CD127lo/-

and CD4+CD25+CD226- sorted Tregs were labeled with
CellTrace™ Violet (CTV; Thermo Fisher) as recommended by
the manufacturer, then cultured with no PBMCs or stimulation
(0 hour condition) or with autologous PBMCs at a 1:1 ratio in the
presence of soluble anti-CD3 (8 µg/mL, Clone OKT3, BioLegend,
RRID: AB_11150592) and soluble anti-CD28 (4 µg/mL, Clone
CD28.2, Thermo Fisher, RRID: AB_468926) for 24 or 48 hours.
Cells were stained for viability with Live/Dead™ Blue viability
dye (Thermo Fisher) and underwent surface staining for CD4-
BV510, CD25-BV605, PD-1-AF647, CD39-APC, CD73-PE,
CTLA-4-PE-Cy7, GITR-PE-Cy5, and CD40L-APC-Cy7
(Table 1). The cells were subsequently permeabilized as
described above and stained with FOXP3-AF488 and Helios-
Frontiers in Immunology | www.frontiersin.org 5
Pacific Blue before flow cytometric assessment on a Cytek
Aurora 5L (16UV-16V-14B-10YG-8R) spectral flow cytometer
and analyzed in FlowJo version 10.6.1 Software.

Treg Suppression Assays
Post-expansion CD4+CD25+CD226- Tregs and CD4+CD25+CD127lo/-

Tregs were collected on day 14 and immediately labeled with cell
proliferation dye (CPD-eFluor 670; Biolegend), while autologous
PBMCs were labeled with CTV as recommended by the
manufacturers’ protocol. Tregs were co-cultured with PBMCs
(Treg : PBMC ratios of 1:1, 1:2, 1:4, 1:8, 1:16, 1:32) in the presence
of soluble anti-CD3 (8 µg/mL, Clone OKT3) and soluble anti-
CD28 (4 µg/mL, Clone CD28.2) in triplicate for 96 hours.
Replicates were pooled, subjected to surface staining for CD4-
BV510 and CD8-PE-CF594 (Table 1), assessed using a Cytek
Aurora 5L (16UV-16V-14B-10YG-8R) spectral flow cytometer,
and analyzed in FlowJo version 10.6.1 Software. Percent
suppression of responder cells was established by the division
index (DI) method using proliferation modeling (40).

Statistical Analysis
Generation of figures and statistical analysis were conducted
using GraphPad Prism version 9.2.0 (GraphPad Software, San
Diego, CA, USA). Data were analyzed by two-way ANOVA with
Bonferroni’s post hoc test for multiple testing correction unless
otherwise stated. Area under the curve (AUC) values were
compared using paired t-tests (41). The p-value ≤ 0.05 was
considered significant.
RESULTS

CD25 Expression is Elevated on
CD4+CD25+CD226- Tregs
To characterize the efficacy of the sorting strategies in isolating
CD4+CD25+CD226- versus CD4+CD25+CD127lo/- Tregs
(Figure 1), we examined surface expression levels of CD226,
CD127, and CD25 on CD4+CD25+FOXP3+ total Tregs,
FOXP3+Helios+ Tregs, as well as FOXP3+Helios- Tregs by flow
cytometry (Figure S1), both prior to and following ex vivo
expansion (42). As expected, CD226 expression was significantly
lower on CD4+CD25+CD226- sorted cells, including total FOXP3+

Tregs (0.49-fold, p<0.0001) as well as FOXP3+Helios+ (0.55-fold,
p<0.0001) and FOXP3+Helios- subsets (0.60-fold, p<0.0001;
Figures 2A, B). Prior to expansion, CD4+CD25+CD226- and
CD4+CD25+CD127lo/- sorted Tregs displayed comparably low
CD127 expression (Figures 2C, D). Yet, the CD4+CD25+CD226-

isolation strategy yielded a significantly higher CD25 gMFI on Tregs
(1.13-fold, p<0.0001), including both the FOXP3+Helios+ (1.08-fold,
p=0.0011) and FOXP3+Helios- subsets (1.22-fold, p<0.0001;
Figures 2E, F). As a result of expansion, CD4+CD25+CD226-

sorted Tregs re-expressed CD226 at similar levels to
CD4+CD25+CD127lo/- Tregs following ex vivo expansion, with the
most dramatic upregulation of CD226 occurring in the
FOXP3+Helios- fraction (Figures 2G, H). However, CD127 levels
remained comparably low across all Treg subsets (Figures 2I, J),
May 2022 | Volume 13 | Article 873560
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and CD25 levels remained augmented on CD4+CD25+CD226-

versus CD4+CD25+CD127lo/- sorted cells, including total Tregs
(1.08-fold, p=0.0024), FOXP3+Helios+ Tregs (1.08-fold, p=0.0024)
and FOXP3+Helios- Tregs (1.10-fold, p=0.0021; Figures 2K, L).

CD4+CD25+CD226- Tregs Maintain Higher
Purity and Lineage Stability

We previously identified CD4+CD25+CD127lo/-CD226+ Tregs as
a subset with a higher proportion of IFNg-producing pTregs, as
compared to CD4+CD25+CD127lo/-CD226- Tregs (30). To
Frontiers in Immunology | www.frontiersin.org 6
evaluate the potential of using a CD4+CD25+CD226- sort for
isolation of more lineage stable Tregs, as compared to the typical
CD4+CD25+CD127lo/- strategy, we examined the expression of
the canonical Treg lineage-defining transcription factors, FOXP3
and Helios, using flow cytometry (Figure S1). We identified
significantly increased percentages of FOXP3+ Tregs prior to
expansion (+3.60%, p=0.0026), including an increased
proportion of FOXP3+Helios+ Tregs (+4.70%, p=0.0001)
within the CD4+CD25+CD226- sorted population, compared to
CD4+CD25+CD127lo/- (Figures 3A, B). Importantly, these
differences were not related to variations in donor sex (Figure
A B

C D

G H

I J

E F K L

FIGURE 2 | CD4+CD25+CD226- Tregs Exhibit Increased CD25 Expression. Representative histograms show expression of cell surface markers on CD127lo/- (lighter
blue) and CD226- CD4+CD25+FOXP3+ Tregs (darker blue), CD127lo/- (lighter red) and CD226- CD4+CD25+FOXP3+Helios+ Tregs (darker red), and CD127lo/- (lighter
green) and CD226- CD4+CD25+FOXP3+Helios- Tregs (darker green) with violin plots showing stain index (SI) fold change from FMO controls, (A–F) prior to
expansion (n =12 biological with n = 2 technical replicates) and (G–L) following 14 days of ex vivo expansion (n = 5 biological with n = 2 technical replicates). (A, B,
G, H) CD226, (C, D, I, J) CD127, (E, F, K, L) CD25. Significant P-values are reported on the figure for two-way ANOVA with Bonferroni correction for multiple
comparisons of Treg isolation conditions from matched subjects.
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S2A) or age (Figure S2B); though, we did identify a significantly
non-zero slope (p=0.023) suggesting that the isolation of
CD127lo/- FOXP3+Helios+ Tregs increased with age for our
data set (Figure S2B). Following a 14-day expansion period,
significant increases in the FOXP3+Helios+ Treg (+3.57%,
p=0.043) and decreases in the FOXP3+Helios- Treg (-4.43%,
p=0.021) subpopulations were observed from CD4+CD25+CD226-

versus CD4+CD25+CD127lo/- sorted cells, despite comparable
frequencies of total Tregs (Figures 3C, D). These data suggest
that isolation of CD4+CD25+CD226- Tregs may yield a more stable
Treg population after ex vivo expansion, without compromising
post-expansion yield (Figure S3).

tTregs display a distinct epigenetic profile, including the
selective demethylation of the FOXP3-TSDR region (39). We
therefore evaluated levels of TSDR methylation by RT-PCR. This
analysis showed increased levels of TSDR demethylation in the
CD4+CD25+CD226- Treg population both before (+10.69%,
p=0.012) and following expansion (+8.46%, p=0.025)
compared to Tregs isolated by the CD4+CD25+CD127lo/-

marker profile (Figures 3E, F). These data corroborate our
Frontiers in Immunology | www.frontiersin.org 7
flow cytometry results identifying a higher purity of
lineage stable Tregs in CD4+CD25+CD226-sorted cells
(Figures 3A–D). Together, these results demonstrate high
purity and lineage stability of CD4+CD25+CD226- Tregs
throughout ex vivo expansion.

CD4+CD25+CD226- Tregs Display a More
Naïve Phenotype
We next sought to assess the extent of differentiation in
CD4+CD25+CD226- and CD4+CD25+CD127lo/- Tregs, pre-
and post-expansion. Before expansion, CD4+CD25+CD226-

Tregs were found to contain significantly more naïve total
Tregs (+8.92%, p<0.0001), FOXP3+Helios+ Tregs (+8.58%,
p<0.0001), and FOXP3+Helios- Tregs (+2.95%, p=0.029), as
well as fewer TCM total Tregs (-1.78%, p=0.042), yet TCM

FOXP3+Helios- Treg frequencies were increased versus
CD4+CD25+CD127 l o / - T r e g s (+2 . 5 4% , p=0 . 0063 ,
Figures 4A–C). Pre-expansion CD4+CD25+CD226- Tregs also
comprised fewer TEM total Tregs (-6.97%, p=0.0002),
FOXP3+Helios+ Tregs (-6.75%, p=0.0002), FOXP3+Helios-
A B

C D

E

F

FIGURE 3 | CD226- Tregs maintain higher purity than conventionally sorted CD127lo/- Tregs. Tregs from each FACS method were examined for FOXP3 and Helios
expression (A, B) at day 0 following isolation (n = 12 biological with n = 2 technical replicates) and (C, D) at day 14 following ex vivo expansion (n = 5 biological with
n = 2 technical replicates). (A, C) Representative flow plots pre-gated on live CD4+CD25+ cells show percentages of Treg subsets for CD127lo/- sorted Tregs and
CD226- sorted Tregs. (B, D) Percentages of CD4+CD25+FOXP3+ Tregs (blue), CD4+CD25+FOXP3+Helios+ Tregs (red), and CD4+CD25+FOXP3+Helios- Tregs (green)
per FACS isolation method. P-values are reported on the figure for two-way ANOVA with Bonferroni post-hoc correction for multiple comparisons of Treg isolation
conditions from matched subjects. (E, F) Percent demethylation at the TSDR of CD127lo/- and CD226- sorted Treg cultures, (E) pre-expansion and (F) post-
expansion. Significant P-values are reported on the figure for paired T-tests, n = 7 biological with n = 2 technical replicates.
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Tregs (-5.21%, p=0.0014), with no significant differences in
TEMRA compared to CD4+CD25+CD127lo/- Tregs (Figures 4D,
E). Additionally, CD4+CD25+CD226- cells represented a
significantly greater proportion (1.89-fold, p=0.019) and
absolute cell count (p=0.037) within the CD4+CD25+CD127lo/-

sorted Treg population, as compared to CD4+CD25+CD127lo/-

CD45RA+ cells (Figure S4), suggesting that CD226- enrichment
for naïve and TCM cells does not compromise post-sort yield as
drastically as a four-marker CD4+CD25+CD127lo/-CD45RA+

naïve Treg isolation strategy (43, 44).
Post-expansion, higher percentages of remaining naïve Tregs

in the total Treg (+1.47%, p<0.0001), FOXP3+Helios+ (+1.79%,
p<0.0001), and FOXP3+Helios- (+1.58%, p<0.0001)
subpopulations, as well as higher percentages of TCM-
differentiated FOXP3+Helios+ Tregs (+4.96%, p=0.033) were
observed in the CD4+CD25+CD226- sorted Tregs as compared
to CD4+CD25+CD127lo/- sorted cells (Figures 4F–H).
Additionally, CD4+CD25+CD226- Treg expansion yielded
significantly lower percentages of TEM-differentiated total Tregs
(-5.63%, p=0.020) and FOXP3+Helios+ Tregs (-8.05%,
p=0.0025), with no differences in TEMRA-differentiated Tregs
observed post-expansion (Figures 4I, J). Collectively, these
data support the use of CD4+CD25+CD226- for the isolation of
naïve Tregs which differentiate more readily into a TCM as
opposed to TEM phenotype after expansion. This finding has
potential implications for Treg ACT in settings of autoimmunity
and transplantation: specifically, the preferential outgrowth of
TCM from CD226- Tregs may lead to better engraftment
efficiency and localization to secondary lymphoid organs where
Frontiers in Immunology | www.frontiersin.org 8
autoimmune priming and graft versus host disease (GvHD) are
initiated (45).

CD4+CD25+CD226- Tregs Display a More
Immunoregulatory Cytokine Profile
The production of pro-inflammatory cytokines is a hallmark of
Treg instability, which may contribute to a loss of immune
tolerance in autoimmune disorders (30, 46). Therefore, we
sought to determine whether CD4+CD25+CD226- Tregs
possess a more immunoregulatory cytokine profile than
CD4+CD25+CD127lo/- Tregs. Flow cytometric assessment of
cytokine production in unstimulated cells revealed no
differences in cytokine production at rest (Figure S5), but
following PMA/Ionomycin stimulation, we observed decreased
pro-inflammatory IL-17A expression by CD4+CD25+CD226-

sorted Tregs within the total Treg (0.92-fold, p<0.0001),
FOXP3+Helios+ (0.92-fold, p<0.0001), and FOXP3+Helios-

(0.94-fold, p=0.0010) populations (Figures 5A, B) .
Additionally, significant decreases were observed in IFN-g
expression by CD4+CD25+CD226- sorted total Tregs (0.86-
fold, p<0.0001), FOXP3+Helios+ (0.85-fold, p<0.0001), and
FOXP3+Helios- (0.87-fold, p<0.0001) as well as TNF
expression by CD4+CD25+CD226- sorted total Tregs (0.80-
fold, p<0.0001), both of which are pro-inflammatory cytokines
associated with a Th1 effector profile (Figures 5A, C, D) (47, 48).
We found significantly increased expression of both extracellular
and intracellular TGF-b1 by CD4+CD25+CD226- sorted total
Tregs (1.87-fold, p<0.0001; 1.15-fold, p=0.0004, respectively),
FOXP3+Helios+ Tregs (1.55-fold, p<0.0001; 1.16-fold, p<0.0001),
A B D EC

F G I JH

FIGURE 4 | CD226- Tregs display a more immunoregulatory phenotype than CD127lo/- Tregs. Memory differentiation of Tregs from each FACS method was
assessed by CD45RA and CD197 (CCR7) expression (A–E) at day 0 following isolation and (F–J) at day 14 following ex vivo expansion (n = 5 biological with n = 2
technical replicates). (A, F) Representative flow plots pre-gated on live CD4+CD25+ cells show percentages for each T cell memory subset for CD127lo/- sorted
Tregs and CD226- sorted Tregs. Relative proportions of (B, G) CD45RA+CCR7+ naïve, (C, H) CD45RA-CCR7+ TCM, (D, I) CD45RA

-CCR7- TEM, and (E, J)
CD45RA+CCR7- TEMRA subsets from CD127lo/- sorted Treg and CD226- sorted Treg cultures after gating on CD4+CD25+ FOXP3+ Tregs (blue),
CD4+CD25+FOXP3+Helios+ Tregs (red), and CD4+CD25+FOXP3+Helios- Tregs (green). P-values are reported on the figure for two-way ANOVA with Bonferroni post-
hoc correction for multiple comparisons of Treg isolation conditions from matched subjects.
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and FOXP3+Helios- Tregs (1.56-fold, p<0.0001; 1.10-fold,
p=0.012) (Figures 5A, E, F). Given that TGF-b1 is critical for
inhibiting Th1 differentiation (49, 50), these findings corroborate
the observations of decreased pro-inflammatory cytokine
expression by CD4+CD25+CD226- Tregs. Interestingly,
expression of the anti-inflammatory cytokine IL-10 was
significantly decreased in CD4+CD25+CD226- sorted total
Tregs (0.83-fold, p<0.0001), FOXP3+Helios+ Tregs (0.83-fold,
p<0.0001), and FOXP3+Helios- Tregs (0.85-fold, p<0.0001)
(Figures 5A, G). IL-10, however, is commonly produced by
Tr1-like T cells, which differentiate from conventional CD4+ T
cells and may only transiently express FOXP3 (2), providing a
potential mechanism for its decreased production. This
observation is consistent with CD4+CD25+CD226- T cell
sorting resulting in a decreased frequency of effector subsets.
Overall, these data suggest that CD4+CD25+CD226- Tregs
maintain a more immunoregulatory cytokine profile than the
CD4+CD25+CD127lo/- counterpart.

CD4+CD25+CD226- Tregs Present
Increased Surface Expression of PD-1 and
CD39 Following Activation
To identify whether CD4+CD25+CD226- sorted Tregs
demonstrate differential expression of proteins associated with
Treg-mediated suppression, we evaluated PD-1, CD39, CD73,
CD40L, GITR, and CTLA-4 by flow cytometry on Tregs
expanded from CD226- and CD127lo/- preparations, prior to
and following activation by autologous PBMCs. After 24 hours of
stimulation, CD226- sorted Tregs displayed increased expression
of PD-1 on both total FOXP3+ Tregs (1.89-fold, p=0.0067) as
Frontiers in Immunology | www.frontiersin.org 9
well as within the FOXP3+Helios+ Treg (1.82-fold, p=0.016) and
FOXP3+Helios- Treg subsets (2.24-fold, p=0.0020) as compared
to CD127lo/- sorted counterparts; however, there were no
significant differences observed at baseline or after 48 hours of
stimulation (Figures 6A–C). Furthermore, CD226- Tregs
exhibited significantly increased expression of CD39 at 24 and
48 hours in both total Tregs (1.75-fold, p=0.037; 1.56-fold,
p=0.027, respectively) and the FOXP3+Helios+ subset (1.73-
fold, p=0.030; 1.47-fold, p=0.022, respectively) compared to
CD127lo/- Tregs (Figures 6D–F). Compared to CD127lo/-

sorted Tregs, CD226- sorted Tregs did not exhibit any
significant differences in surface expression of CD73, CD40L,
GITR, or CTLA-4, including after stimulation (Figure S6).
Taken together, these data suggest that CD226- Tregs may
exhibit enhanced suppression of responder T cells via the PD-
1/PD-L1 and CD39/CD73 ectonucleotidase pathways (51, 52).

CD4+CD25+CD226- Tregs Demonstrate
Increased Ex Vivo Suppressive
Capabilities
During expansion, Treg cultures can be prone to lineage
instability as well as outgrowth of Tconv contaminants,
ultimately impacting therapeutic potential by reducing
suppressive capabilities (53). Given that CD4+CD25+CD226-

sorted Tregs exhibited a greater frequency of lineage stable
FOXP3+Helios+ Tregs than CD4+CD25+CD127lo/- Tregs,
corroborated by epigenetic, differentiation and cytokine profile
data, we sought to understand how sorting method might impact
suppressive capacity. To accomplish this, we conducted dual-
color ex vivo suppression assays using serial dilutions of
A B C D

E F G

FIGURE 5 | CD226- Tregs exhibit a less inflammatory cytokine profile than CD127lo/- Tregs. Cytokine production by 14-day ex vivo expanded CD127lo/- sorted Treg
and CD226- sorted Treg cultures was examined by flow cytometry following a four-hour PMA/Ionomycin stimulation in the presence of a protein transport inhibitor.
(A) Heat map shows the mean fold change of protein expression (z-score) of cytokines (rows) by CD226- FOXP3+, FOXP3+Helios+, and FOXP3+Helios- Treg
populations (columns) compared to CD127lo/- Treg populations. n = 9 biological with n = 2 technical replicates. Significant P-values are reported on the figure for
two-way ANOVA with Bonferroni’s multiple comparisons between Treg isolation conditions of matched subjects. Representative histograms show expression of (B)
IL-17A, (C) IFN-g, (D) TNF, (E) Extracellular TGF-b1, (F) Intracellular TGF-b1, and (G) IL-10 for CD127lo/- (lighter blue) and CD226- CD4+CD25+FOXP3+ Tregs (darker
blue), CD127lo/- (lighter red) and CD226- CD4+CD25+FOXP3+Helios+ Tregs (darker red), and CD127lo/- (lighter green) and CD226- CD4+CD25+FOXP3+Helios- Tregs
(darker green).
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A B C

D E F
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J K L

FIGURE 6 | CD226- Tregs demonstrate an increased suppressive phenotype and ex vivo suppressive capabilities as compared to CD127lo/- Tregs. (A–C) PD-1 and (D–F)
CD39 expression was assessed by flow cytometry on total FOXP3+ Tregs (A, D), FOXP3+Helios+ Tregs (B, E), and FOXP3+Helios- Tregs (C, F) from 14-day ex vivo
expanded CD127lo/- sorted Tregs versus CD226- Tregs following co-culture with autologous PBMCs in the presence of soluble a-CD3 and a-CD28 for 0, 24, or 48 hours.
n = 5 biological replicates. Significant P-values reported on the figure for two-way ANOVA with Bonferroni’s multiple comparison between Treg isolation conditions of matched
subjects. CD127lo/- sorted Treg (blue) and CD226- sorted Treg cultures (red) were by expanded for 14-days ex vivo, then labeled with Cell Proliferation Dye eFluor670 and co-
cultured in decreasing two-fold dilutions with CellTrace Violet-labeled autologous responder PBMCs in the presence of soluble a-CD3 and a-CD28 antibodies for four days
before flow cytometric assessment of (G–I) CD4+ and (J–L) CD8+ T cell proliferation. (G, J) Representative dye dilution plots demonstrating suppression of responders.
Percent suppression of (H) CD4+ and (K) CD8+ responders was quantified by the division index method, and comparisons between FACS conditions were made using (I, L)
area under the curve (AUC) values for each percent suppression curve (40, 41). Data reflects n = 5 biological with n = 3 technical replicates. Significant P-values are reported
on the figure for paired T-tests comparing Treg isolation conditions from matched subjects.
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expanded Tregs (sorted via CD4+CD25+CD127lo/- or
CD4+CD25+CD226-) with autologous whole PBMC responder
cells. CD226- sorted Tregs exhibited significantly increased
suppression of both CD4+ and CD8+ effector T cell subsets, as
demonstrated by decreased division indices for CTV labeled
responder cells, as compared to those observed in CD127lo/-

sorted Treg cocultures (Figures 6G–L). Importantly, we did not
observe dilution of CPD in either Treg population, suggesting
that differences in suppression were not due to further expansion
of CD226- sorted Tregs. These data suggest that isolation of
CD4+CD25+CD226- Tregs yields a more suppressive Treg
population that may improve ACT efficacy compared to
conventional CD4+CD25+CD127lo/- Tregs.
DISCUSSION

The requirement for long-term stability following engraftment in
Treg-ACT necessitates the use of a combination of surface
markers that function as a surrogate for the tTreg lineage-
defining transcription factors. In this study, we compared the
commonly employed Treg FACS isolation method using the
CD4+CD25+CD127lo/- marker profile to an alternative
CD4+CD25+CD226- approach. Importantly, sorted cells were
assessed both pre- and post-expansion with the latter rested for
7 days prior to phenotypic, epigenetic, and functional
characterization in order to mitigate transient upregulation of
Helios in pTreg and contaminating Tconv (54) as a potential
confounding factor. The resulting data demonstrate that isolation
of CD4+CD25+CD226- Tregs yields a greater frequency of lineage
stable FOXP3+Helios+ Tregs, a reduced percentage of
FOXP3+Helios- Tregs, and increased demethylation at the
FOXP3 TSDR compared to CD4+CD25+CD127lo/- Tregs.
Among total Treg, FOXP3+Helios+ Treg and FOXP3+Helios-

Treg subsets, increased expression of CD25 was observed on
CD4+CD25+CD226- sorted cells without compromising the low
CD127 exp r e s s i on t yp i c a l l y a ch i e v ed u s i ng th e
CD4+CD25+CD127lo/- strategy. Together, this suggests that
CD4+CD25+CD226- Tregs may have a higher avidity for IL-2,
which is putatively reported to result in downstream pSTAT5-
signaling to reinforce lineage stability, fitness, and function (55–
57). While the increase in purity we observed is modest relative to
CD4+CD25+CD127lo/- Tregs, we expect that these small
improvements in initial purity may have a significant biological
impact on the long-term survival and stability of a transferred
population in ACT applications (58).

It is important to note that the data herein were derived from
PBMC samples from healthy subjects (i.e., the general
population). We speculate that the differences observed
between CD4+CD25+CD127- and CD4+CD25+CD226- Tregs
may be more prominent in autoimmune subjects, particularly
during periods of acute inflammation where IL-2R signaling
defects have been observed (59–61). This concept is critical when
considering the transfer of islet antigen-specific Tregs created
using genetically-modified T cell receptors (TCR) or chimeric
antigen receptors (CAR) that could potentially become directly
Frontiers in Immunology | www.frontiersin.org 11
pathogenic toward islets and/or b-cells in situations of Treg
instability (62–64).

To further characterize CD4+CD25+CD226- Tregs, we assessed
T cell memory differentiation markers and found increased
proportions of naïve Tregs both before and after expansion,
along with reduced proportions of effector memory Tregs post-
expansion as compared to the traditional CD4+CD25+CD127lo/-

strategy. These results suggest that CD4+CD25+CD226- may not
only serve as a better set of markers to identify lineage stable Tregs
but also, to avoid effector contaminants. This notion is supported
by prior work by Hoffmann and colleagues who initially
demonstrated that CD45RA+ naïve Tregs displayed increased
stability upon expansion as compared to CD45RA- memory
Tregs (65), a finding that we have consistently replicated from
both umbilical cord and adult peripheral blood samples (13, 28,
66). Previous studies have identified the marker profile
CD4+CD25+CD127lo/-CD45RA+ as selecting for predominately
naïve tTregs; however, this isolation method yields a much smaller
population than required for many ACT applications (43, 44).
While our three-marker sorting strategy enriches for naïve Tregs,
it also captures CD4+CD25+CD226- memory Tregs, resulting in a
greater FACS yield compared to a CD4+CD25+CD127lo/-

CD45RA+ strategy. Hence, the CD4+CD25+CD226- sorting
strategy strikes a practical balance between the desire to enrich
for naïve Tregs versus CD4+CD25+CD127lo/- isolation but also,
maximize cell yield as compared to CD4+CD25+CD127lo/-

CD45RA+ isolation. Similarly, while TIGIT has been identified
as a marker of lineage stable tTregs, we previously reported that
TIGIT+ cells had a limited expansion capacity and therefore,
would not produce enough Tregs for ACT (30, 31). Importantly,
we observed a significantly lower proportion of TEM-differentiated
Tregs and a higher proportion of TCM-differentiated Tregs
expanded ex vivo from the CD226- Treg population. This
observation suggests that CD4+CD25+CD226- Tregs may not
only be longer-lived, but potentially, localize more readily in
secondary lymphoid organs (17). This remains a critical issue
for Treg-ACT applications in the context of T1D, as Tregs must be
able to migrate to sites of inflammation and priming, specifically
to the pancreatic draining lymph nodes where recent studies have
revealed the presence of a stem-cell like CD8+ T cell progenitor
population that significantly contributes to pancreatic b-cell
destruction in the NOD model of T1D (67).

During our assessment of the therapeutic potential of this
CD4+CD25+CD226- Treg subset, we found decreased expression
of the pro-inflammatory cytokines IL-17A, TNF, and IFN-g,
associated with Th17 and Th1 responses, in comparison to
CD4+CD25+CD127lo/- Tregs following PMA/Ionomycin
stimulation. This finding is especially important in the context
of autoimmunity, as Th1 and Th17 effectors have been associated
with several autoimmune diseases, including T1D and MS,
suggesting that CD4+CD25+CD226- Treg isolation may
potentially deplete these pathogenic Tregs and present reduced
risk of pro-inflammatory ex-Treg outgrowth compared to
CD4+CD25+CD127lo/- Treg isolation (68–70). Beyond this,
PMA/Ionomycin stimulated CD226- sorted Tregs had
increased intracellular and surface expression of the
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immunoregulatory molecule, TGF-b1 (71). Following TCR
activation, CD226- Tregs had increased expression of the
immunoregulatory checkpoint molecules, PD-1 and CD39,
which are associated with programmed cell death and ATP
hydrolysis, respectively (52, 72). Inhibition or dysregulation of
these checkpoint regulators has been associated with the
development of autoreactivity (73, 74). Finally, given our
observation that CD226- sorted Tregs had higher CD25
expression post-expansion, it is possible that the augmented
suppressive capacity observed could, at least in part, be related
to increased competition for IL-2. Altogether, our data support
the notion that differences in IL-2 consumption, cytokine
production, and contact-dependent mechanisms may all
contribute toward the increased level of suppression observed
with CD226- versus CD127lo/- sorted Tregs.

Tregs are emerging as a powerful therapeutic modality in a
broad array of autoimmune settings (75, 76). While our study
supports CD226- Tregs as a robust population to yield stable
FOXP3+Helios+ Tregs, we note the limitation that our studies
were conducted using general population control samples.
Further research is needed to determine if CD226- Tregs will
provide increased purity and stability in patients with active
autoimmune disease. Indeed, there are a number of outstanding
questions regarding the TCR repertoire, homing receptors, and
in vivo trafficking of CD226- Tregs relative to CD127lo/-

Tregs (77).
These findings also raise a number of considerations

regarding ACT with CD226- Tregs and therapeutic targeting of
the CD226 pathway in situations of autoimmunity. On one hand,
our data related to CD226 being highly expressed on effector T
cells supports additional studies targeting this pathway in vivo to
block destructive autoimmunity. However, this approach should
be taken with some caution, as we note that CD226 is also highly
expressed by IL-10-secreting Tr1-like T cells (78). Thus, any
immunotherapy seeking to inhibit CD226 on Tregs would likely
need to be carefully dosed to increase Treg stability without
compromising CD226-mediated Tr-1 like T cell function.
Furthermore, these results support the continued investigation
of the precise mechanisms by which reduced CD226 expression
allows for increased Treg lineage stability and suppressive
capacity. We note that additional studies are currently
underway in our laboratory to assess the impact of CD226 on
Tregs using both targeted biologics, along with global and
conditional knockout approaches in animal models (37), as
well as through gene targeting approaches in human Tregs. In
summary, our findings present a novel method to generate a
Frontiers in Immunology | www.frontiersin.org 12
highly stable and suppressive Treg subset for use in ACT by
initially eliminating Tregs expressing the costimulatory
molecule, CD226.
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