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The immune system plays a major role in recognizing and eliminating malignant cells,

and this has been exploited in the development of immunotherapies aimed at either

activating or reactivating the anti-tumor activity of a patient’s immune system. A wide

range of therapeutic approaches involving T lymphocytes, such as programmed cell

death protein ligand-1 (PDL-1) inhibitors, cytotoxic T-lymphocyte-associated protein-4

(CTLA-4) blockers, and CD19-targeted T-cell therapy through chimeric antigen receptor

(CAR)-T cells or CD19/CD3 bi-specific T-cell engagers, have been introduced to the

field of oncology, leading to significant improvements in overall survival of adult cancer

patients. During the past few years, the availability and approval of T-cell based

immunotherapies have become a reality also for the treatment of childhood cancers.

However, the distribution, ratio of regulatory to effector cells and the quality of T-cell

responses early in life are distinct from those during adolescence and adulthood, raising

the possibility that these differences impact the efficacy of immunotherapy. Herein we

provide a brief overview of the properties of conventional T cell subsets during early

life. Focusing on the most common cancer type during childhood, acute lymphoblastic

leukemia (ALL), we describe how current conventional therapies used against ALL

influence the T-cell compartment of small children. We describe early life T-cell responses

in relation to immunotherapies engaging T-cell anticancer reactivity and present our

opinion that it is not only immaturity of the adaptive immune system, but also the impact

of an immunosuppressive environment that may prove disadvantageous in the setting of

immunotherapies targeting pediatric cancer cells.
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INTRODUCTION TO CANCER IMMUNOLOGY AND
IMMUNOTHERAPIES

Initially in the field of cancer immunology, Burnet proposed the immunosurveillance theory,
suggesting that lymphocytes continuously scan and eliminate transformed cells to maintain the
cells of the host in homeostasis (1). Evidence in favor of this theory came from observations in
mice, where immunodeficient strains displayed high rates of spontaneous tumor development as
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well as higher susceptibility to induced tumors. An increased
incidence of tumors has also been noted in immunosuppressed
patients (2). This theory was however challenged, since
many patients develop cancer in the absence of overt
immunosuppression or immunodeficiency. As tumor cells are
able to escape immunosurveillance, the theory was refined and
the concept of “cancer immunoediting” emerged. This describes
three key immunological features to combat immunogenic
malignant cells: the tumor elimination phase by natural killer
and T cells (incorporates immunosurveillance); the equilibrium
phase between immune andmalignant cells; and the escape phase
resulting in clinically overt cancer as the host’s immune system
fails to eradicate cancer cells (3). Furthermore, in 2011 Hanahan
and Weinberg (4) proposed that one additional hallmark of
cancer was the ability to avoid immune destruction through the
secretion of immunosuppressive factors from cancer cells and/or
the recruitment of inflammatory or regulatory T cells (Tregs) to
the tumor site.

During the last decades a wide range of immunotherapeutic
approaches have been introduced for cancer treatment, such
as programmed cell death protein ligand-1 (PDL-1) inhibitors,
cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) blockers,
CD22-targeting therapy with Inotuzumab ozogamicin and
targeted T-cell therapy through chimeric antigen receptor
(CAR)-T cells or bi-specific T-cell engagers leading to significant
improvements in overall survival for a number of cancer
patients. Similarly, in pediatric oncology, the last decade has seen
some promising results from immunotherapy in children with
relapsing disease. In this brief review, we will focus on acute
lymphoblastic leukemia (ALL), the most common childhood
cancer.We will describe the attributes of conventional T cells that
are present during the early life of humans, and place these in the
context of CD19-targeted T-cell immunotherapies against ALL.

THE HUMAN T CELL COMPARTMENT AT
DIFFERENT AGES

The human new born immune system faces several challenges
immediately after birth. During the very first years of life, the
immune system encounters a myriad of different antigens and
has to decide whether to react (against pathogens or transformed
cells) or develop tolerance (against innocuous antigens or self-
antigens). This balancing act has to continue throughout our
entire lifespan in an environment with constantly changing
antigens. In contrast to mice, human T cell development
starts early during gestation (5). During the second trimester
a developmental shift in lymphopoiesis occurs and the T-cell
receptor (TCR) repertoire becomes diversified (5). New born
children have a complete set of single CD4+ (helper) and CD8+

(cytotoxic) T cell subsets at birth, even when born pre-maturely
(5–7). As a result of a marked expansion of recent thymic
emigrants and naïve cells, absolute T cell numbers increase
rapidly after birth to peak during the first month of life, followed
by a gradual decrease during the first years of life to reach adult
levels (5, 6). During this formative stage, T cells play a key role
in combatting pathogens and establishing a memory T cell pool.

Both the absolute numbers and frequency of Tregs are abundant
in infants, where they are critical for developing tolerance. These
cells decline from 5 to 8 years of age, reaching similar numbers
to those of adults over time (7, 8). Focusing on findings from
studies in humans, in the following section we will touch upon
key attributes that distinguish conventional T cell populations in
young children from those in adults.

Immune system competence is connected to the diversity
of the host’s T cell pool (9), which subsequently increases an
individual’s probability to recognize invading pathogens. This T
cell diversity relies on the presence of a naïve T cell pool which
is formed through thymopoiesis. Overall, it appears that naïve
T cells in young children are not necessarily less responsive, but
rather programmed to respond differently to activation signals
compared to adults. Recent evidence suggests that neonatal T
cells are biased toward non-specific defense mechanisms, which
are less dependent on TCR recognition, while having an elevated
capacity to react to inflammatory and danger signals, which are
in part facilitated through the expression of innate receptors
[reviewed in (10)]. Thymic output can be assessed on the basis
of cell markers for recent thymic emigrants, such as surface
CD31, or the presence of signal joint T-cell receptor excision
circles (sjTRECs), both of which are higher in children (11, 12).
By means of proliferation ability, naïve T cells in humans can
be maintained through homeostatic peripheral expansion by IL-
7 and IL-15 cytokines, which act pre-ferentially on CD4+ and
CD8+, respectively (13, 14). IL-7-induced cell division does not,
however, lead to helper T cell differentiation, as is the case with
CD8+ T cells following IL-15 exposure and activation (15, 16). A
high constitutive telomerase activity has been shown to protect
neonatal T cells from proliferative stress and exhaustion (13), a
phenomenon more commonly noted in adult T cells. Another
interesting observation is that the increased apoptotic potential
in human neonatal T cells (14, 15) can be reverted by cytokines
acting via the IL-2 receptor γ-chain (17–19).

The effector T cell functions in early life are characterized
by decreased IFN-γ but higher type 2 cytokine and CXCL8
production (20, 21), which in part have been explained by
the epigenetic conformation of IL-13 (22) and IFN-γ loci (23)
in neonatal CD4+ T cells. The transcriptome and epigenetic
profiles, along with functional readouts from cord blood and
adult naïve CD8+ T cells, corroborated that neonatal CD8+

T cells are more innate-like by displaying, among others, less
cytotoxic functions, while being more prone toward producing
antimicrobial peptides and reactive oxygen species (ROS) (24).
It is not clear if costimulatory capacity through CD40 ligand
on T cells is defective (25–27), or if a differential activity
of the transcription factor NFAT (28), which affects T-cell
costimulatory capacity and IFN-γ production, is present during
early childhood years.

The involution of the human thymus begins already during
the first year of life (29–31) and proceeds at a steady rate of
3% thymic volume loss until ∼50-years of age, after which the
involution rate decreases somewhat to a new stable level in
the elderly (32, 33). If the thymus already starts to involute
after birth (29) then the question is how a naïve T cell pool,
that can react to new antigen challenges, is maintained from
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birth onwards in humans? Farber and colleagues have made
significant contributions to advancing our understanding in this
field. In one of their recent studies, that characterized naïve T
cells in various secondary lymphoid tissues in humans (34), it was
demonstrated that a dramatic decline in thymic output occurs
rather from middle age onwards, whereby a four-fold decrease of
double positive thymocytes is noted. Furthermore, it was shown
that each lymphoid organ contains a unique set of naïve T cell
clones which can expand, especially in those past 40 years of age,
suggesting that naïve T cells can be sustained through in situ
homeostasis and retention in lymphoid tissues.

The distribution and activity of T cells across tissues appear
to be influenced by age. Upon comparing immunophenotypes
of CD4+ and CD8+ T cells in tissues from pediatric and
young adult organ donors (12), a higher frequency of naïve
T cells was found across all pediatric tissues, including the
lung and intestine, compared to adult tissue. Memory T cells
in children, on the other hand, were found at local mucosal
sites, such as lungs and intestine, but less frequent in blood
and secondary lymphoid organs, while in adults both lymphoid
and mucosal tissues contained high proportions of CD4+

and CD8+ memory T cells. In general, lymphoid pediatric T
cells produce fewer effector cytokines (IL-1, IL-4, and IFN-
γ) than adult tissue T cells, with the exception of pediatric
memory T-cells derived from the intestinal mucosa (which
secrete proinflammatory cytokines at similar levels to those in
adults). Tissue resident memory T cells are key to providing local
protective immunity. When examining tissue memory T cells
for markers associated with tissue retention, pediatric mucosal
samples contain a lower frequency of T cells expressing both the
activation marker CD69 and the integrin CD103 compared to
adults, which suggests that memory T cells in early life have not
yet fully acquired a tissue resident phenotype (12). In response
to respiratory tract infection, memory T-cell formation appears
more limited during infancy, as evidenced by the accumulation
of more terminally differentiated (TEMRA) CD8+ T cells in the
lungs of younger patients, whereas the less-differentiated tissue-
resident memory CD8+ T cells were more often seen in older
children (35). Corresponding data in pediatric populations on the
characteristics of tissuememory helper T cells following infection
are lacking.

The microbiome is an important factor for T-cell
compartment maturation, including Tregs (36, 37). There
are various ways for commensals to shape the immune system,
both directly with the adjacent immune system in the gut as
well as on distance via metabolites (38), microbial compounds
(39), and potentially also extracellular microvesicles (40). Tregs
are a subset of CD4+ T cells identified through the master
transcription factor, forkhead box protein P3 (FoxP3), with
essential roles in maintaining self-tolerance and dampening
immune responses (41). Peripheral Tregs represent around
5–10% of CD4+ T cells in cord blood (42, 43). They comprise
30–40% of the CD4+ T cells in pediatric tissues and 1–10%
in adult tissues (12). Tregs display an entirely different TCR
repertoire to other T cell populations and also exhibit a higher
cell turnover compared to naïve T cells (44). Functionally,
the depletion of Tregs in pediatric lymphoid and mucosal

tissue results in potentiated T cell proliferation and cytokine
release (12). By contrast, depletion of Treg cells in adult tissue
does not alter T cell activation. Based on differential CD45RA
expression, two distinct Treg subsets termed activated and
resting have been identified among the neonatal FoxP3+

CD4+ T cells. These subsets are functionally distinct, such that
activated Tregs are terminally differentiated and rapidly die after
exerting suppression while resting Treg cells proliferate, become
CTLA-4+ FoxP3hi and replenish the activated Treg pool (45).
Both activated and resting Tregs increase over the first 6 months
post-natally, but subsequently it is mainly the proportion of
activated Tregs that increase (46).

To summarize, the significant observations of increased
Treg/effector memory T cell ratios across various tissues in
infants compared to adults, together with the elevated T cell
response following Treg depletion in children, indicate that-
rather than being intrinsically defective-infant T cells may simply
be more inhibited than their adult counterparts in allowing for
immune maturation and tolerance. We speculate that this may
have important implications for T-cell based immunotherapies
designated for use in younger children.

CHILDHOOD ALL AND CURRENT
TREATMENT REGIMENS

The global incidence of childhood cancer is estimated at ∼152.8
per million person-years in 0 to 19-year-olds, with a slightly
higher incidence in the age groups 0 to 4-year-old and 15 to
19-year-old (47). Childhood cancers span diverse clinical and
biological tumor entities, including leukemia and lymphoma,
bone and soft tissue sarcoma, central nervous system tumors,
retinoblastoma, neuroblastoma, liver and kidney tumors, germ
cell tumors, and additional rare cancers. Childhood leukemia
represents ∼30% of all childhood cancer cases, with ALL
accounting for 80% and acute myeloid leukemia (AML) for 15–
20% of cases (48). There are only rare cases of chronic myeloid
leukemia (CML) in children. Dramatic improvements in the
overall ALL survival rates have been accomplished over the
last decades, with outcomes approaching 90% (49). However,
progress has been slower for certain patient subgroups, such as
infant-ALL, Down’s syndrome and children with AML. For the
purpose of this review, we will from now on focus our discussion
on ALL.

Childhood ALL includes a number of subtypes defined by cell
lineage (B- or T-cell), differentiation status and genetic alterations
(50). These biological characteristics differ by age distribution
and clinical outcome and are, therefore, used for tailoring therapy
to the predicted risk of relapse. The majority of children with
ALL are classified as non-high risk (HR) patients and stratified
to standard (S) or intermediate (I) risk protocols at diagnosis.
HR characteristics at diagnosis include age >10 years, disease
onset with a WBC >50,000/µl, and the presence of known poor
genetic alterations (51). Treatment of childhood ALL consists
of various chemotherapy components (induction, consolidation,
intensification, and maintenance with CNS prophylaxis), with
treatment intensity increasing slightly between children in the

Frontiers in Immunology | www.frontiersin.org 3 March 2021 | Volume 12 | Article 582539

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Saghafian-Hedengren et al. T Cells in Childhood B-ALL

standard (SR) and those in the intermediate (IR) risk groups,
applied according to the respective treatment protocols. In
children presenting with HR-features, treatment entails a more
aggressive multimodal chemotherapy andmay include allogeneic
stem cell transplantation (HSCT) to achieve cure. The overall
treatment period varies between 2 and 2.5 years for the majority
of international protocols. Despite the risk-adapted tailoring of
therapy, the most important prognostic factor is how quickly
and to what extent the tumor burden decreases once therapy is
initiated. Response to treatment is measured by flow cytometry
(and/or PCR) after ∼4 weeks of induction therapy and, at the
same time, the presence of minimal residual disease (MRD, i.e.,
leukemic cells) in the bone marrow compartment is evaluated.
Absence or persistence of MRD at defined treatment points will
stratify the patient to the final risk group and treatment intensity.
However, in 10–15% of those children who achieve remission,
the disease will return and relapse. The precise mechanisms
behind treatment failure are not fully elucidated. To date, it is
believed that ALL relapses emerge from subclonal populations
that share some of the mutations identified in the dominant
population at diagnosis, but also some additional new mutations
associated with chemoresistance (52–54). Whether childhood
ALL relapses are in any way related to the emergence of immune
regulatory cells suppressing anti-cancer immunity (55) remains
to be clarified.

T CELL IMMUNITY AT CANCER
DIAGNOSIS AND POST-THERAPY IN
CHILDREN WITH ALL

Overall, little is known about the normal T-lymphocyte
population in the pediatric ALL setting. Several studies have
reported increased T- cell proportions (both single CD4+ and
CD8+) including Tregs at the diagnosis of childhood B-cell
ALL (56, 57). Studies have shown that children at the time of
their ALL diagnosis have both higher proportions and absolute
cell numbers of bulk CD4+ and CD8+ T cells in peripheral
blood as well as increased proportions of Tregs compared
to age-matched controls (58, 59). The proportion of Tregs
remained higher throughout the first 4–5 weeks of induction
therapy. In addition, a study investigated the phenotype of
(non-malignant) T cells present in the bone marrow at the
time of diagnosis in 39 children with ALL. Data showed that
a higher CD4:CD8 ratio correlated with a better treatment
response at day 15, and that this association was caused by
non-Tregs (60). However, the significance of Tregs in the anti-
cancer response or the pathogenesis of childhood ALL is far
from clear.

The use of more intense chemotherapy protocols has
led to a dramatic improvement in prognosis, unfortunately
accompanied by both acute- and long-term toxicity that
cause significant treatment-related morbidity. Several long-term
defects in humoral immunity in children treated for ALL have
been noted [reviewed in (61)], but how chemotherapy affects
conventional T cell subsets and their functions is less well-
studied (summarized in Table 1). The general understanding

is that T cells remain more resistant toward chemotherapy
than B cells (61, 67). Studies have shown that the T cell
recovery at bulk level is delayed post-chemotherapy and that
this delay is less pronounced in toddlers and young children
(62, 70). It has also been suggested that helper T-cells have
a longer recovery time than cytotoxic T-cells (65, 66, 71), an
effect that has shown to be more prominent in more intense
chemotherapy settings (63, 68). There is also evidence of a lower
proportion of T cells in peripheral blood during chemotherapy,
with a pronounced effect on naïve compared to memory T-
cells, the latter remaining overrepresented during a 3-year period
of chemotherapy (64, 69). One may speculate that thymic
output of naïve T cells is severely affected by conventional
chemotherapy including steroids, but data in favor of this is
as yet incomplete in the literature as opposed to that for
post-haematopoietic stem cell transplantation (HSCT) [reviewed
in (72)].

HSCT has been a curative option for a number of years for
pediatric patients with relapsed ALL. Children considered for
CD19-targeted immunotherapy are to a large extent in post-
HSCT and possibly in their immune-reconstitution phase. There
are several parameters that will impact on the kinetics of T-
cell recovery after HSCT, such as the conditioning regimens,
donor type and age, graft manipulation, type of graft-vs-host
disease (GvHD), as well as treatment and prophylaxis [reviewed
in (73)]. In children followed for T cell recovery after HSCT
for hematological malignancies, studies suggest that recent
thymic emigrants and TRECs recover within 6–12 months
post-HSCT (11, 74, 75). Also, interventions aimed at treating
GvHD itself appear to impact on thymic recovery and the
naïve T cell pool, where an association between systemic steroid
treatment and delayed CD4+ T-cell recovery has been noted
(74). However, the current picture of post-HSCT dynamics
is that Tregs are normalized within weeks followed by the
recovery of memory CD4+ and CD8+ T cell within months.
In contrast, the recovery of naïve T cell pool can take years,
likely as this population relies on thymic output and not
on peripheral homeostasis and expansion (76). Finally, while
chemotherapy and HSCT have been shown to clearly impact
the proportions of circulating T cells, there are almost no
studies that systematically assess the functional responses of
T cells (in particular the memory population) following ALL
treatment. Although the proliferative potential of T cells to
varicella zoster virus has been concluded as intact (64), these
findings have not been corroborated by other cellular functions,
such as cytotoxicity.

INTRODUCTION OF CD19-TARGETED
IMMUNOTHERAPIES FOR CHILDHOOD
ALL

The introduction of new therapies for pediatric patients has been
slow compared to adults, but in recent years an acceleration
in both the availability and approval of novel agents for the
treatment of childhood B-ALL has occurred. At least two of
the most promising approaches–the CD19/CD3 bi-specific T-cell
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TABLE 1 | Peripheral T cell populations in children during and after ALL therapy.

References Patients

(n)

Diagnosis, age

(years)

Sampling time T cell subsets Results

Alanko et al. (62) 14 ALL

Age 3–18

After cessation of

therapy; 0, 1, 3, 6, 9,

and 12 months

CD4+ Subnormal at t = 0 but normalized at 6 months

in children 7–18 years old

In children 3–6 years CD4+T cells normalized

within 1 month

CD8+ Subnormal at t = 0 but normalized at 3 months

in children 7–18 years old. In children 3–6 years

CD8+ were within normal range at cessation of

therapy

Ek et al. (63) 31

40

ALL (SR, IR, HR)

Age 3–19

HC

Age 2–16

After cessation of

therapy; at 1 or 6

months

Bulk

CD4+
59% (median) at 1 month and 65% (median) at

6 months post-therapy in HC

54% (median) at 1 month and 57% (median) at

6 months post-therapy in HC. Naïve CD4+

cells were 42 and 60% (median values) at 1

and 6 months

CD8+ 73% (median) at 1 month and 77% (median) at

6 months post-therapy in HC. No differences in

naïve or memory CD8+ T cells compared to

controls

Haining et al. (64) 73 ALL

Age 1–17

At diagnosis and

during the 24 months

of therapy

CD4+ and CD8+ 55% of patients showed <10th percentile of

CD4+ T cells for age and 77% showed <10th

percentile of CD8+ T cells. No significant

recovery occurred during the 24 months of

therapy

Naïve CD4+ and CD8+ 55% median of reference value for age

44% median of reference value for age

TRECs were significantly lower in ALL

compared to healthy controls at diagnosis and

during therapy

Memory CD4+ and CD8+ CD4+ memory cells remained elevated during

the study period compared to the reference

value for age. CD8+ memory cells were

elevated at diagnosis but normalized compared

to the reference value for age

Mazur et al. (65) 38

30

ALL

Age 5–18

HC

Age 5–18

After cessation of

therapy; 1, 4, 7, 10,

and 13 months

CD4+ 50% median of reference value for age at 1

month and 76% of age reference at 12 months

CD8+ 86% median of reference value for age at 1

month and 100% of age reference at 13

months

Naïve CD4+ and CD8+ At 13 months, 55 and 80% of reference value

for age, respectively

Memory CD4+ and CD8+ At 13 months, 61 and 100% of reference value

for age, respectively

van Tilburg et al. (66) 31 ALL (n = 21) (non-HR and

HR), AML (n = 4),

lymphoma (n = 6)

Age 4–16

1–8 samplings over a

variable period after

end of chemotherapy

Naïve CD4+ 36% (median) of reference value for age at end

of chemotherapy Normalized 3–6 months. Total

CD4+ TREC increased concomitant with CD4+

cells

Memory CD4+ 35% (median) of reference value for age at end

of chemotherapy. Increased in the first 3

months but remained reduced over the study

period

Naïve CD8+ 57% (median) of reference value for age at end

of chemotherapy Normalized after 6 months

Memory CD8+ 41% (median) of reference value for age at end

of chemotherapy. Remained low during

reconstitution.

Effector CD8+ 11% (median) of reference value for age at end

of chemotherapy. Regained normal values >2

years after cessation

(Continued)
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TABLE 1 | Continued

References Patients

(n)

Diagnosis, age

(years)

Sampling time T cell subsets Results

van Tilburg et al. (67) 140 ALL (SR, MR, HC)

Age 1.5–18

Samples taken on days

11, 20, 39, 57, and at

end of treatment and

1-year post-therapy

CD4+ 27% (median, SR patients) and 31% (median,

MR patients) of reference value for age at end

of chemotherapy; 98% (median, SR patients)

and 98% (median, MR patients) 52 weeks after

end of chemotherapy

CD8+ 34% (median, SR patients) and 41% (median,

MR patients) of reference value for age at end

of chemotherapy; 113% (median, SR patients)

and 97% (median, MR patients) 52 weeks after

end of chemotherapy

Koskenvuo et al. (68) 28 ALL (SR and IR)

Age 4–19

Samples taken at 0, 3,

6, 9, 12, 18, and 24

months after cessation

CD4+, CD8+ and Treg Lower CD4+ and CD8+ T cells in IR children at

cessation of therapy. After that, no significant

differences in any sub-population was noted

between SR and IR children

Das et al. (69) ALL (SR+HR)

Age 1–10

Samples taken at

0 and after each

protocol cycle

Naïve CD3+

CD4+/CD8+ ratio

Lower percentage of naïve T cells at diagnosis,

which declined further over time

Lower ratio at t = 0 and declining compared to

normal donors

ALL, acute lymphoblastic leukemia; HC, healthy controls; SR, MR, IR, HR, standard, medium, intermediate, high risk; AML, acute myeloid leukemia; Treg, regulatory T cell.

engager, blinatumomab, and the CD19-chimeric antigen receptor
T (CAR-T) cell therapy–engage the patient’s own T cells to bind
and lyse the CD19+ B-ALL cells. During therapy, T cells are
activated to unleash an aggressive immune response toward the
leukemia, but also an inflammatory response that may result in
severe cytokine-release syndrome and neurological toxicity. Both
blinatumomab and CAR-T cell therapy have shown promising
results in the treatment of relapsed/refractory pediatric B-ALL
(77). von Stackelberg et al. (78) were among the first to show
the efficacy of blinatumomab in heavily pre-treated pediatric ALL
patients. Last year, a randomized phase 3 trial of blinatumomab
vs. standard post-induction chemotherapy in high risk (early)
first relapse of pediatric B-ALL showed a clear treatment benefit
in the group of children who received blinatumomab: less
toxicity, higher remission rates at day 29, and more children
becoming eligible for HSCT (79). This study will probably shift
the clinical therapeutic decisions in high risk ALL relapses in
favor of immunotherapy over standard chemotherapy.

The first reported patient treated with second-generation anti-
CD19 CAR T cells was an adult with refractory CLL who,
after one infusion of CAR T cells, achieved remission that was
sustained for 10 months (80). This was soon followed by several
pediatric phase 1 trials with different CAR T cell products
[reviewed in (77)]. In 2017, an important study was published
in which the CAR T cell product was refined by introducing
a consistent 1:1 CD4 to CD8 ratio, uniform CAR expression
and limited T cell differentiation in the culture system (81).
In total, 43 children and young adults with relapsed ALL were
then infused and the intent-to-treat analysis showed a promising
89% response rate. In the pivotal global registration trial for
tisagenlecleucel (82) the final analysis showed an outcome for
75 infused pediatric and young adult patients (total study cohort
107 screened and 92 enrolled patients). Intent-to-treat analysis
showed a 66% response rate in this heavily pre-treated group

of patients. In August 2017, the FDA approved tisagenlecleucel
as the first commercial product for relapsed/refractory B cell
malignancies in patients up to 25 years of age (83). However, even
though both CAR-T cell therapy and bi-specific T-cell engagers
show promising results, a significant proportion of patients
do not respond or suffer severe toxicity. Even in responders,
ALL immunotherapy, unless based on long-term persistent CAR
T cell products, is mostly seen as a bridge to HSCT and
potential cure. Whether CAR T cell therapy can replace HSCT
in subsets of pediatric ALL patients is one of the most relevant
questions in ALL HR therapy and will need to be addressed in
prospective trials.

FUTURE PATIENT SELECTION FOR
IMMUNOTHERAPY IN ALL

While immunotherapy is also a realistic option for children,
one question that remains to be answered is how to improve
the selection of patients for immunotherapy. Currently, T-
cell expansion once immunotherapy is initiated can, to some
extent, predict treatment response (84). Also, persistent B cell
aplasia is a marker for long term response after anti-CD19
CAR-T cell and CD19/CD3 bi-specific T-cell engager therapy
as long as CD19 expression is preserved on leukemic cells. But
can we improve the selection of patients for immunotherapy
upfront? In one recent study lymphocyte subsets in peripheral
blood of adult patients receiving blinatumomab was investigated
and responders were compared to non-responders (85). The
most significant marker discriminating responders from non-
responders was the percentage of Tregs, while there was no
correlation in the absolute number of lymphocytes, CD4+ or
CD8+ T cells, for either the naïve or effector populations. As
Tregs are more abundant during childhood, similar studies in
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FIGURE 1 | Infant T cells are qualitatively distinct from adult cells.

Conventional T cells develop in the thymus, the size as well as output of which

is largest at birth. Mature single CD4+ and CD8+ cells are proportionally less

than Tregs across various tissues. Although infants have substantial

populations of fully developed single CD4+ and CD8+ cells T cells from birth,

these are predominantly naïve and more prone to type 2 cytokine and

innate-like responses following activation. Naïve CD4+ T cells have higher

propensity to develop into FoxP3+ Tregs to actively promote self-tolerance. An

increased susceptibility to infection in neonates is likely not a result of only

immaturity of adaptive immunity, but also that of qualitatively different

functional capacity and higher level of immunosuppression, which together

may negatively impact the eradication of malignant cells.

pediatric ALL patients are warranted. Recent data suggest that the
T cell responses to blinatumomab may also be modulated by the
expression of inhibitory molecules on the B-ALL leukemic cells
(86). First, a number of co-stimulatory and inhibitory molecules
regulating T cell responses were assessed by flow cytometry
on patient-derived bone marrow blasts. PDL-1 was the most
prominent inhibitory marker on these primary blasts while CD80
was the most highly expressed stimulatory marker. Interestingly,
PDL-1 expression was significantly higher on patient leukemic
cells in blinatumomab non-responders compared to responders
and healthy controls. In the same report, a case regarding a
12-year-old girl with refractory ALL was presented. The patient
had previous non-response to monotherapy with blinatumomab,
but when combined with a PD-1 blocking antibody a partial
anti-leukemic T cell effect was noted. This is in keeping
with findings in adults, where blinatumomab was shown to
activate Tregs to suppress effector responses by cytotoxic T cells,
with the conclusion that therapeutic removal of Tregs could
provide a means for converting blinatumomab non-responders
to responders (85). Altogether, these studies show the potential
of a detailed phenotypic characterization of T cell populations in
patients that proceed to immunotherapy, which could possibly
predict response and enable further tailoring of immunotherapy.

FIGURE 2 | Conceivable strategies to enhance CAR T-cell efficacy and

persistence in pediatric ALL. (A) Depletion of regulatory T cells (Tregs) prior to

chimeric antigen receptor engineering. (B) Provision of proliferation and

survival factors for T cells. (C) CAR T cells can be co-administered with

immunomodulatory agents such as check-point inhibitors that target PD-1 or

CTLA-4 pathways. (D) Armored CAR T cells are genetically modified to, along

with the CAR, secrete cytokines, such as Il-7, IL-12, and IL-15, or to express

immunomodulatory ligands such as CD40L or to secrete PD-1 blocking

antibodies. These 4th generation cells can in the future replace the

earlier-generation CAR T cells (depicted by dashed arrow).

CONCLUSIONS AND FUTURE
DIRECTIONS

The generation, function, and regulation of immune responses by
T cells during early life in humans are only partially understood.
The fetal environment requires that the immune system tolerates
maternal alloantigens. Following birth, a sudden shift in exposure
to environmental antigens, including gut commensal bacteria,
necessitates adaptation of immune responses to suit early life.
Even though neonates and infants have substantial populations
of T cells from birth (87), they are predominantly naïve,
expressing distinct patterns of homing receptors compared to
adults, and as a rule more prone to producing regulatory (14, 88)
and innate-like (24) responses following activation (Figure 1). As
a consequence of maintaining self-tolerance (including toward
gut commensals) and to avoid immunopathology, the new born
will be relatively susceptible to infections. This would be in
keeping with the “disease tolerance” posit (89), which suggests
that an increased susceptibility to infection in neonates is not a
result of immaturity but rather one of an immunosuppressive
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environment, which is in part an active defense strategy
likely to be disadvantageous for the young host with
malignant cells.

Today, it is not yet clear why certain pediatric patients
respond to specific types of immunotherapies, while others do
not. As we have highlighted, there are major differences in T
cell populations in blood and tissue, particularly the markedly
higher Treg to effector T cell ratios across the tissues of younger
children compared to adults (12) that may influence response
to therapy. These findings have been corroborated with recent
murine studies on solid tumors showing that Tregs utilize IL-
10 and IL-35 to exhaust CD8+ T cells (90, 91). In keeping with
that CXCL8 and ROS impact cancer progression and T cell
survival, respectively (92, 93), and that T cell expansion capability
is a predictor of successful clinical expansion (94), selection
of T cell subsets ahead of CAR T cell engineering could be a
strategy to move the field forward (Figure 2). We envisage that
the CD25+ T cell subset, containing the CD4+ effector Tregs,
could be depleted prior to CAR T cell engineering without any
significant risk for harmful autoimmunity as previously shown
in humans (95, 96) and that the addition of IL-7 and IL-15
thereafter could optimize the ex vivo expansion of pediatric
CAR T cells (69). Furthermore, there are interesting ongoing
studies combining immune check-point inhibitors targeting
PD-1 or CTLA-4 pathways, with CD19-CAR T cells or bi-
specific T cells engagers [reviewed in (97)], which should
also be considered in pediatric clinical trials. Lastly, treatment
efficacy can be further enhanced through additional genetic
modifications of next-generation, CAR T cells. These armored
CAR T cells are genetically equipped to express cytokines, such
as IL-7, IL-12, and IL-15, surface ligands, such as CD40L,
or to secrete single-chain variable antibody fragments that
block the PD-1/PD-1L pathway (97–99), which improve cell
persistence and modulate the activity of other endogenous cells
to favor T-cell mediated killing rather than suppression. All
these approaches are likely to be applicable for optimization of

CAR T cell efficacy and persistence in the pediatric ALL setting
(Figure 2).

In light of above it is necessary for future trials, to plan
for follow-up of children who have received immunotherapy
and become long term survivors. Firstly, it is unknown how
the naïve and memory T cell pool is affected by conventional
chemotherapy at various tissue sites over time. There are
findings from non-human primate studies that show differential
damage to the memory B-cell compartment by anti-cancer drugs
according to the type of secondary lymphoid tissue (100) but
equivalent data on the adaptive immune cells of humans remain
to be elucidated. Lastly, there is, as yet little data on T cell recall
responses in childhood cancer survivors. From our experiences in
the clinic, we know that these children suffer from re-activation
of herpesviruses and invasive fungal infections during ongoing
therapy. Longitudinal data in this regard (especially following T
cell-based immunotherapies) to assess the consequence of intense
T cell activation on immunosenescence, is warranted in survivors
of childhood cancer.
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