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A B S T R A C T   

Background: Malignant pericardial effusion (MPE) is a common complication of advanced breast 
cancer (BRCA) and plays an important role in BRCA. This study is aims to construct a prognostic 
model based on MPE-related genes for predicting the prognosis of breast cancer. 
Methods: The BRCA samples are analyzed based on the expression of MPE-related genes by using 
an unsupervised cluster analysis method. This study processes the data by least absolute 
shrinkage and selection operator and multivariate Cox analysis, and uses machine learning al-
gorithms to construct BRCA prognostic model and develop web tool. 
Results: BRCA patients are classified into three clusters and a BRCA prognostic model is con-
structed containing 9 MPE-related genes. There are significant differences in signature pathways, 
immune infiltration, immunotherapy response and drug sensitivity testing between the high and 
low-risk groups. Of note, a web-based tool (http://wys.helyly.top/cox.html) is developed to 
predict overall survival as well as drug-therapy response of BRCA patients quickly and conve-
niently, which can provide a basis for clinicians to formulate individualized treatment plans. 
Conclusion: The MPE-related prognostic model developed in this study can be used as an effective 
tool for predicting the prognosis of BRCA and provides new insights for the diagnosis and 
treatment of BRCA patients.   
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1. Introduction 

Breast cancer (BRCA) is a major threat to women’s health worldwide, with an estimated 2 million new cases diagnosed each year 
[1]. Despite advances in diagnosis and treatment, BRCA remains a major public health challenge [2]. The biology of BRCA is complex 
with multiple factors that contribute to its development and progression, including genetic mutations, hormonal factors, lifestyle, and 
environmental factors, among others [3,4]. One of the major challenges in managing BRCA is predicting the course of the disease and 
making an accurate prognostic assessment [5]. Accurate prognostic diagnosis of BRCA is expected to enable efficient and personalized 

Fig. 1. Workflow of the study.  
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treatment to improve the survival rate of patients [6,7]. Many different clinical and biological factors are currently used to assess 
prognosis, including tumor size, lymph node status, histological grading, and hormone receptor status, but uncertainty remains 
[8–11]. The heterogeneity of BRCA and individual differences in treatment response and disease progression highlight the need for 
more accurate and personalized prognostic tools. 

Malignant pericardial effusion (MPE) refers to excessive accumulation of fluid in the pericardial cavity caused by malignant tumors 
[12]. The accumulation of fluid can cause compression of the heart, leading to symptoms such as chest pain, shortness of breath, and 
cardiac tamponade [13–15]. MPE is usually a complication of advanced-stage cancer, with lung cancer, breast cancer, and lymphoma 
being the most common malignancies that metastasize to the pericardium [16,17]. The incidence of MPE in postmortem patients with 
malignant tumors is 10–15% and up to 21% [18]. The presence of MPE has been shown to be associated with poor prognosis, increased 
morbidity, and decreased survival in cancer patients [19]. The median survival time for BRCA patients with MPE ranges from a few 
weeks to six months, with most patients surviving less than one year [20,21]. Therefore, the identification of molecular markers and 
pathways associated with MPE may provide insights into BRCA biology and contribute to the diagnosis and treatment of BRCA. 
However, there is still no reliable MPE-related biomarkers to predict the prognosis of BRCA, which limits the application of MPE in the 
diagnosis and treatment of BRCA. 

In this study, we classified BRCA patients into three clustered subtypes based on the expression of MPE-related genes and developed 
a risk model for BRCA prognosis prediction. The DNA methylation and copy number variation of the core genes of the model were 
analyzed, and potential therapeutic targets of BRCA were explored. Based on the prognostic model, we next performed analyses of 
immune infiltration, immunotherapy response, and drug sensitivity in risk subgroups. Finally, we developed a web-based tool 
combining risk score and other clinical variables to predict OS and drug-therapy response in BRCA patients. Our study provides new 
insights into the diagnosis and treatment of BRCA patients. 

2. Methods 

The workflow of this research was shown in Fig. 1. 

2.1. Data collection and preprocessing 

In this study, gene expression data and clinical data from BRCA patients were downloaded from GDC TCGA BRCA cohorts in UCSC 
Xena browser (https://xenabrowser.net/) [22]. A total of 1069 breast cancer patients with complete survival information were ob-
tained after excluding normal samples and samples from the same patient. Subsequently, the transcriptome data with FPKM format 
were processed to normalize by normalizeBetweenArrays function of limma package [23]. Then, the 1069 BRCA patients were 
randomly divided into TCGA training cohort containing 749 patients and TCGA testing cohort including 320 patients with 7:3 ratio. 
Additionally, 327 breast cancer patients of GSE20685 which downloaded from the Gene Expression Omnibus (GEO) database (https:// 
www.ncbi.nlm.nih.gov/geo/) was utilized as an external validation cohort [24]. Detailed description of all cohorts can be found in 
Table 1. MPE-related genes were obtained from the GeneCards database (https://www.genecards.org/) and those with relevance score 

Table 1 
The clinical characteristics of BRCA in TCGA cohort and GSE20685.  

Variables 
Incomplete 

TCGA train cohort (N¼749) 
N = 124 

TCGA test cohort (N¼320) 
N = 52 

GSE cohort (N¼327) 
0 

Age 
>¼65 years 167 80 22 
<65 years 458 188 305 
Sex 
Female 617 265 327 
Male 8 3 0 
M classification 
M0 617 259 244 
M1 8 9 83 
N classification 
N0 314 124 122 
N1 205 94 102 
N2 67 36 63 
N3 39 14 40 
T classification 
T1 173 62 101 
T2 367 162 188 
T3 62 36 30 
T4 23 8 8 
Stage classification 
Stage I 121 38 NA 
Stage II 357 164 NA 
Stage III 139 57 NA 
Stage IV 8 9 NA  
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greater than 1 were screened for subsequent analysis. 

2.2. Construction of breast cancer subtypes of malignant pericardial effusion by unsupervised clustering analysis 

After screening prognostic genes associated with MPE using univariate Cox analysis, unsupervised cluster analysis was performed 
based on the expression of MPE -related genes using the non-negative matrix factorization (NMF) algorithm through “NMF” functionto 
classify patients into different clustered subtypes [25]. Then, to verify the results of the classification, we used principal component 
analysis (PCA) to analyze the distribution differences of the cluster subtypes. Kaplan-Meier (KM) analysis was used to compare the 
overall survival (OS) of different clusters by survival package. To explore the effect of MPE on the BRCA mutation profile, the R 
package “maftools” was used to depict a waterfall plot of the mutation landscape in different clusters [26,27]. 

2.3. Differential analysis of distinct clusters 

Since cluster 2 had the worst OS, we used the “limma” R package to screen cluster 2 against cluster 1 and cluster 3 for differentially 
expressed genes (DEGs) and plotted the differential gene heatmap [28]. The DEGs between Cluster 1 and Cluster 2, and the DEGs 
between Cluster 3 and Cluster 2 were merged as MPE -related differentially expressed genes. Through “ggplot2″, “clusterProfiler”, 
“DOSE” and “enrichplot” R package [29], Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway were performed for the differential genes to explore the biological functions and pathways of related genes. 

2.4. Construction and validation of prognostic model 

Prognostic features were initially constructed using the training set and subsequently validated in the validation set. To meticu-
lously identify genes associated with BRCA prognosis, a comprehensive methodology was employed. In the univariate Cox regression 
analysis, survival outcomes of BRCA patients were individually assessed against the expression levels of each gene. We explicitly 
calculated hazard ratios (HR) and corresponding p-values for each gene, with a stringent criterion for statistical significance (p < 0.05). 
After univariate Cox analysis, the least absolute shrinkage and selection operator (LASSO) Cox proportional risk regression was 
implemented to further screen for characteristic genes related to breast cancer prognosis using glmnet package [30]. This method 
applied a penalty term to the regression coefficients to prevent overfitting. Rigorous parameter settings, including optimization for the 
regularization parameter, were employed to identify a subset of genes with the most significant impact on BRCA prognosis. Subse-
quently, a multivariate Cox regression analysis was meticulously applied to identify the optimal set of genes for constructing robust 
risk models predicting the prognosis of BRCA patients. This involved assessing the combined effect of the selected genes from Lasso 
regression on survival outcomes. The coefficients derived from the multivariate Cox model were used to assign weights to each gene, 
capturing their respective contributions to the overall risk score. In this model, the prognostic risk score was calculated using the 
following formula: risk score =

∑i=1
n ( expression*coef). The Expression represents the expression level of each selected gene, and Coef 

represents its corresponding coefficient from the multivariate Cox model. The summation across all selected genes yields an indi-
vidualized risk score for each patient, indicating their relative risk of adverse outcomes associated with BRCA. To assess the predictive 
performance of the model, BRCA patients were divided into high-risk and low-risk groups based on the median risk score. The K-M 
survival curves were plotted using the R packages “Survival” and “Survminer” to compare the survival of the low and high-risk groups, 
and a p-value of <0.05 was considered statistically significant [31]. In addition, receiver operating characteristic (ROC) curves over 
time were constructed using The R package “survival ROC” [32]. The performance of the risk model was evaluated according to the 
area under the area under curve (AUC) of the ROC curve. 

2.5. Comparison of prediction accuracy with existing breast cancer prognostic models 

We validated our proposed breast cancer prognostic model through a comparative analysis with three established models from the 
literature. The first model which focused on hypoxia- and lactate metabolism-related signatures by Li et al., featuring ESRP1, MAFF, 
SLC2A1, DARS2, and TH [33]. Wang et al. presented the second model associated with ferroptosis, including ALOX15, CISD1, CS, 
GCLC, GPX4, SLC7A11, EMC2, G6PD, and ACSF2 [34]. The third model was an immune-related prognostic model conducted by Yao 
et al., encompassing SOCS3, TCF7L2, TSLP, NPR3, ANO6, and HMGB3 [35]. To ensure consistency with the literature and reduce data 
dimensionality, we extracted gene expression levels for each model. Subsequently, multivariate Cox regression analysis yielded 
regression coefficients for each gene. After calculating risk scores for individual samples in TCGA cohort, we evaluated the predictive 
power and clinical utility using metrics such as the receiver operating characteristic (ROC) curves, concordance index (C-index) and 
decision curve analysis (DCA) using the timeROC and ggDCA packages. 

2.6. Analysis of DNA promoter methylation and copy number variation 

The analysis of DNA promoter methylation was conducted by the University of Alabama at Birmingham CANcer data analysis 
Portal (http://ualcan.path.uab.edu/) (UALCAN) [36]. UALCAN was an interactive portal for in-depth analysis of TCGA gene 
expression data, which contained a large number of cancer-related data including promoter methylation data of patients in TCGA. 
These data could be used directly to analyze differences in methylation status of selected genes in tumor samples and normal samples. 
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After selecting TCGA breast cancer patients as study subjects in the database, gene names could be entered to obtain visualization 
results of methylation degree, and p-values of statistical analysis between the two groups. Copy number variation (CNV) is a significant 
type of genetic variation in humans, and it is closely associated with tumor initiation and progression [37]. The analysis of Copy 
number variation (CNV) for breast cancer patients in the Cancer Genome Atlas (TCGA) was conducted by cBioPortal (https://www. 
cbioportal.org). Patient data were obtained from TCGA through cBioPortal, and specific genes of interest were selected for CNV 
analysis. The cBioPortal interface facilitated the visualization of copy number alterations (CNAs) with tools such as oncoprints and 
segmented plots. Amplifications and deletions were identified based on segmented copy number data, with thresholds for defining 
alterations. By utilizing this tool, we examined the relationship between CNV status of the model core genes and their corresponding 
gene expression levels [38]. 

2.7. Gene set variation analysis and gene set enrichment analysis 

In order to identify potential marker pathways, we used the “limma”, “GSEABase” and “GSVA” package to conduct gene set 
variation analysis (GSVA) for high-risk and low-risk patients in the TCGA all dataset [39]. The R package “limma”, “DOSE”, “clus-
terprofiler” and “enrichplot” was used to perform gene set enrichment analysis (GSEA) of marker gene sets and visualized them using 
the R package “enrichplot” [40,41]. 

2.8. Immune landscape of high- and low-risk group 

The ESTIMATE Score, Immune Score, Stromal Score and Tumor purity of BRCA samples were calculated according to the ESTI-
MATE algorithm of the ESTIMATE package [42]. The ESTIMATE Score and Tumor Purity provides an estimation of the overall tumor 
purity, while the immune score and stromal score represent the infiltration levels of immune cells and stromal cells, respectively. We 
employed the CIBERSORT algorithm for transcriptome data analysis, enabling the extraction of expression levels for 22 distinct im-
mune cell types within each sample. In addition to the differences in immune score and immune infiltration among various risk groups, 
the correlation between immune cells and risk score was also analyzed using the R package “limma”, “reshape2″, “ggpubr” and 
“ggExtra” [43]. 

2.9. Prediction of immunotherapy response 

To assess the responsiveness of patients in the high- and low-risk group to immunotherapy, we investigated the differential 
expression of immune checkpoints between the two groups. These genes play a crucial role in regulating immune responses. 
Furthermore, an immunophenoscore (IPS) was obtained from the Cancer Immunome Atlas (TCIA) (https://tcia.at/) [44], with higher 
scores indicating higher response to immune checkpoint blockade (ICB). Based on the expression status of CTLA-4 and PD-1, we 
analyzed the IPS in different risk groups and visualized the Differential distribution with violin plots. 

2.10. Drug sensitivity 

The therapeutic value of the prognostic model was further determined by predicting the chemotherapy response of patients with 
“pRRophetic” package [45]. We calculated the half maximal inhibitory concentration (IC50) which often used to assess sensitivity to 
drug therapy of six chemotherapeutic drugs including methotrexate, doxorubicin, gemcitabine, gefitinib, paclitaxel, and vinorelbine 
commonly used in the clinical treatment of BRCA. The box plot was used to visualize the differential IC50 between the high-risk and 
low-risk groups. 

2.11. The establishment of a prediction nomogram 

The independent prognostic effects of clinical variables (age, gender and TNM stage) and risk score were explored using univariate 
and multivariate Cox regression analyses and visualized by drawing forest plots. Subsequently, a nomogram was constructed to predict 
the probability of 1-year, 3-year and 5-year OS of BRCA by combining clinical variables and risk score through the R package “rms”, 
and a calibration curve was drawn to assess the predictive capability of the nomogram [46]. Next, predictive nomogram performance 
and clinical utility were evaluated using the 1-year, 3-year and 5-year area under the ROC curve (AUC) and decision curve analysis 
(DCA) plots, implemented by the R packages “timeROC” and “ggDCA”, respectively [47]. 

2.12. Statistical analysis 

Analysis in this study employed R software (versions 4.0.3 and 4.1.3) along with pertinent R packages obtained from Bioconductor 
and CRAN. Distinctions between two groups were evaluated using the Wilcoxon test, while comparisons involving more than two 
groups were conducted using the Kruskal–Wallis test. Pearson’s test was employed for correlation analyses. Median values served as 
the basis for all truncation values associated with grouping, and statistical significance was established at a P value < 0.05. 
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Fig. 2. Subtypes of BRCA and their characteristics. (A) Based on the expression of MPE, the BRCA subtypes was constructed by NMF algorithm. (B) 
Data were visualized using PCA. (C) K-M survival analysis of OS for the three subtypes. (D–F) The mutation waterfall plots of three subtypes. (G) 
Differential expression profiling between cluster1 and cluster2. (H) Differential expression profiling between cluster3 and cluster2. (I) GO 
enrichment analysis of DEGs. (J) KEGG pathway analysis of DEGs. 
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3. Results 

3.1. BRCA cluster subtypes based on MPE 

Based on the expression of MPE, we used the TCGA-BRCA dataset to perform unsupervised cluster analysis to classify BRCA patients 
into three different cluster subtypes (Fig. 2A). The PCA showed that the three clusters differed significantly (Fig. 2B) and that BRCA 
patients in cluster 2 had worse survival than those in cluster 1 and 3 (Fig. 2C). We then investigated the gene mutation distribution of 
the three different subtypes to explore the effect of MPE on the mutation profile of BRCA. The mutation waterfall plots showed that 
PIK3CA, TP53, TTN and MUC16 were the most common mutant genes in the three clusters (>10% mutation rate), and the mutation 
rates of TP53 and USH2A were more significant in cluster 3 (Fig. 2D- F). The results of subtype difference analysis showed that there 
were 55 DEGs in cluster 1 and cluster 2, 34 DEGs in cluster 3 and cluster 2, and 74 total DEGs (Fig. 2G and H). To further investigate the 

Fig. 3. Construction and validation of prognostic models. (A, B) Lasso regression further screened the genes of the prognostic model. (C) Genes 
screened by multivariate COX regression analysis that included in the prognostic model. (D) The risk score distribution diagram of four cohorts. (E) 
The survival status diagram of four cohorts. (F) K-M survival analysis. (G) Time-related ROC curve analysis. 
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biological function of 74 DEGs, GO enrichment analysis and KEGG pathway analysis were performed (Fig. 2I and J). In terms of 
biological processes, DEGs are mainly involved in leukocyte cell-cell adhesion and cell chemotaxis. In terms of cellular composition, 
DEGs are mainly enriched in the external side of plasma membrane. In terms of molecular functions, DEGs are mainly enriched in 
immune receptor activity and cytokine binding. In terms of action pathways, these genes are mainly involved in the Cytokine-cytokine 
receptor interaction pathway. 

3.2. Construction and validation of prognostic models 

Univariate Cox regression analysis was used to identify 50 MPE -related genes associated with the prognosis of BRCA. Based on 
these genes, further screening was performed using Lasso regression and multivariate Cox regression analysis (Fig. 3A–C). An MPE- 
related prognostic model containing these 9 related genes (BCL2, FLT3, PLAT, CHI3L1, RPS24, SFTPD, KCNK3, CXCR6, SLC20A2) 
was finally constructed (Fig. 3C). The calculation formula was as follows: Risk Score = BCL2*(− 0.142438368) + FLT3* 
(− 0.214186716) + PLAT*(− 0.226695372) + CHI3L1*(− 0.129528376) + RPS24*(− 0.269126914) + SFTPD*(− 0.280900134) +
KCNK3*(0.211854921) + CXCR6*(− 0.39308609) + SLC20A2*(0.286056043). Based on the formula, we calculated the risk score for 
each patient and consequently divided them into low-risk groups and high-risk groups. As shown in the risk score distribution diagram 
(Fig. 3D) and the survival status diagram (Fig. 3E), in all four cohorts, patients with high-risk index had less time to survival and higher 
mortality than those with low-risk index. The K-M analysis was performed to determine the value of risk scores in predicting patient 
prognosis, which resulted in significantly reduction in OS time in the high-risk group compared to the low-risk group (Fig. 3F). Time- 
related ROC curve analysis (Fig. 3G) showed AUCs of 0.714, 0.733, and 0.669 at 1, 3, and 5 years in the TCGA test cohort, 0.906, 0.750, 
and 0.799 in the TCGA train cohort, and 0.741, 0.731, and 0.711 in the TCGA all cohort, respectively. The AUCs in the GSE20685 
cohort were 0.684, 0.676, and 0.693. It indicates that the prediction performance of this model is good. To underscore the merits of the 
MPE-related prognostic model developed in this study, we conducted a comparative analysis with three other breast cancer signatures. 
Fitting parameters for genes in the various models were obtained in the TCGA cohort, enabling the calculation of corresponding risk 

Fig. 4. Promoter methylation of core genes. Boxplots visualized the methylation levels of BCL2 (A), FLT3 (B), PLAT (C), CHI3L1 (D), RPS24 (E), 
SFTPD (F), KCNK3 (G), CXCR6 (H) and SLC20A2 (I) in normal and BRCA tissues. 
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Fig. 5. Immunological features of different risk groups. (A) Immune function analysis. (B)Based on the ESTIMATE algorithm, the Immune, Stromal, 
ESTIMATE scores and tumor purity of low-risk group and high-risk group were compared. (C) Immune infiltration in different risk groups. (D) 
Correlation analysis between risk score and immune cell infiltration levels. 
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Fig. 6. Drug-therapy Prediction. (A) Immune checkpoint gene expression. (B) Immunophenotyping scores assess the potential clinical efficacy of 
immune checkpoint inhibitors in different risk groups. (C) Test of susceptibility to antineoplastic drugs of Methotrexate, Doxorubicin, Gemcitabine, 
Gefitinib, Vinorelbine and Paclitaxel. 
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scores for each patient. The patients were then stratified into high and low-risk groups using the established grouping method. Survival 
curves consistently revealed higher survival rates in the low-risk groups across all models (Supplementary Figs. 1A–D). Additionally, 
we assessed the prediction accuracy of these models. With the exception of the Yao et al. signature (AUC = 0.548, 0.609, 0.626), the 

Fig. 7. Nomogram for predicting OS. (A) Univariate Cox regression analysis was used to analyze the predictive ability of age, TNM stage and risks 
core. (B) Multivariate Cox regression analysis was used to analyze the predictive ability of age, TNM stage and risks core. (C) The predictive 
nomogram combining clinicopathological features and risk score. When the total point was 259, the 1-year, 3-year and 5-year survival rates were 
0.988, 0,932 and 0.868, respectively. (D) Calibration curve of the predictive nomogram. (E–G) ROC curves for 1, 3 and 5 years of the nomogram. 
(H–J) DCA evaluated the performance of the nomogram. 
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remaining three signatures demonstrated notable potential in predicting breast cancer survival over 1-, 3-, and 5-year intervals, as 
evidenced by the area under the receiver operating characteristics curve. Notably, the MPE-related prognostic model developed in this 
study exhibited superior accuracy, boasting AUCs of 0.741, 0.731, and 0.711 at 1-year, 3-year, and 5-year intervals (Supplementary 
Figs. 1E–H). Further validation through C-index, RMS, and DCA analyses consistently affirmed the heightened accuracy of MPE-related 
prognostic model in predicting breast cancer survival (Supplementary Figs. 1I–K). 

3.3. Potential therapeutic target for BRCA 

Promoter DNA methylation affects transcriptional inhibition and tumorigenesis [48], so we explored the methylation values of core 
genes in the model in normal tissues and BRCA tissues. The results showed that the promoter methylation levels of BCL2, RPS24, 
SFTPD, CXCR6 and SLC20A2 were significantly decreased in tumor tissues, while the promoter methylation levels of FLT3, PLAT, 
CHI3L1 and KCNK3 were significantly increased in tumor tissues (Fig. 4). DNA copy number is also a major determinant of gene 
expression, so we performed the correlation analysis between CNV and mRNA expression of core genes in the model. PLAT, CHI3L1, 
and SLC20A2 had a large proportion of CNV and were concentrated in the occurrence of amplification (Supplementary Fig. 2A). The 
mRNA expression of BCL2, PLAT, CHI3L1, RPS24 and SLC20A2 were significantly affected by the CNV, and the deletion or amplifi-
cation might be responsible for affecting the expression of these genes, while the expression of FLT3, SFTPD, KCNK3 and CXCR6 had 
little correlation with the CNV, which might be due to other factors (Supplementary Fig. 2B). These can provide a reference for the 
search of potential therapeutic targets for BRCA. 

3.4. Immune characteristics in high- and low-risk groups 

To explore biological behavioral differences between different risk groups in the model, we performed GSVA and GSEA using the 
TCGA all data set. GSVA results showed that 11 signature pathways, including pentose phosphate pathway, terpenoid backbone 
biosynthesis and DNA replication, were significantly enriched in high-risk group compared with low-risk group (Supplementary 
Fig. 3A). GSEA confirmed that citrate cycle TCA cycle, DNA replication, homologous recombination, mismatch repair, and oocyte 
meiosis pathways were up-regulated in high-risk groups, while chemokine signaling pathway, cytokine-cytokine receptor interaction, 
hematopoietic cell lineage, primary immunodeficiency and T cell receptor signaling pathway were down-regulated in the low-risk 
group (Supplementary Fig. 3B). The results of the ESTIMATE algorithm indicated that BRCA patients in the low-risk group had 
considerably higher Immune, Stromal and ESTIMATE scores and significantly lower Tumor purity compared to the high-risk group 
(Fig. 5A and B). Furthermore, we also investigated the relationship between risk groups and immune infiltration. The infiltration of 
immune cells including naive B cells, Plasma cells, CD8 T cells, CD4 memory activated T cells, gamma delta T cells, resting NK cells, 
resting Dendritic cells was significantly higher in the low-risk group. However, the infiltrating level of M0 Macrophages and M2 
Macrophages is completely opposite (Fig. 5C). In addition to the significant difference between high and low risk groups, the levels of 
immune cell infiltration were also correlated with risk scores (Fig. 5D). 

3.5. The model may be a potential predictor of drug-therapy sensitivity in BRCA patients 

Immune checkpoint gene expression levels are strongly correlated with therapeutic response to immune checkpoint inhibitors. To 
assess the potential of prognostic models to predict immunotherapy response in BRCA patients, we analyzed the differential expression 
of immune checkpoint genes between the high-risk and low-risk groups. As shown in Fig. 6A, the expression of the immune checkpoint 
gene was significantly higher in BRCA patients in the low-risk group than in those in the high-risk group. We then evaluated the 
potential clinical efficacy of the immune checkpoint inhibitor in different risk groups using IPS, which estimate immunogenicity to 
predict a patient’s response to an immune checkpoint inhibitor. The violin plot showed that the IPS score was higher in the low-risk 
group than in the high-risk (Fig. 6B). These results suggest to us that patient in the low-risk group responded better to immunotherapy 
than those in the high-risk group. We also examined the relationship between the prediction model and general chemotherapy 
response. The IC50 of these conventional chemotherapy drugs in the low-risk group was significantly lower than that in the high-risk 
group, suggesting that patients in the low-risk group may be more responsive to receiving these chemotherapy drugs (Fig. 6C). 

3.6. Establishment and validation of predictive nomogram for individualized evaluation 

To explore the independent predictive ability of clinicopathological variables and risk score, univariate and multivariate Cox 
regression analyses were performed for age, gender, TNM stage, and risk score. The results showed that age, TNM stage and risks core 
all had good independent prediction ability, while gender showed poor performance due to the prevalence of BRCA in female (Fig. 7A 
and B). Next, we developed a nomogram combining clinicopathological features and risk score to predict survival in patients with 
BRCA. As shown in Fig. 7C, when the total point was 259, the 1-year, 3-year and 5-year survival rates were 0.988, 0,932 and 0.868, 
respectively. The calibration curves for 1-year, 3-year, and 5-year OS prediction showed that the predictive nomogram performed well 
(Fig. 7D). ROC curve analysis showed that the 1-year, 3-year, and 5-year AUC of the nomogram were 0.828, 0.796 and 0.789, 
respectively, which were significantly higher than the other parameters (Fig. 7E–G). In addition, DCA was added to evaluate the 
predictive nomogram, which had the highest net benefit and a wider range of threshold probabilities compared with other parameters 
such as risks core or TNM stage alone (Fig. 7H–J). These results suggested that the nomogram exhibited good predictive performance 
and is more suitable for predicting the prognosis of patients with BRCA in clinical practice. 
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3.7. Webpage deployment tool 

Finally, we implemented the prognostic model into a Web application with custom algorithms to help predict OS and drug-therapy 
response in BRCA patients with personalized characteristics (wys.helyly.top/cox.html) (Fig. 8). First, the expression of MPE-related 
genes were entered into the application to provide a risk prediction for BRCA patient, which was then combined with the clinical 
variables of the patient’s age, gender and TNM stage to predict the patient’s drug-therapy response and OS of 1, 3 and 5 years, that 
presented on the web page. An example is a low-risk 62-year-old female with stage T2, N1, M0. This patient is expected to be sensitive 
to chemotherapy drugs of Docetaxel, Doxorubicin, Gemcitabine, Methotrexate, Paclitaxel, Vinorelbine and immunotherapy with PD-1, 
PD-L1, and CTLA-4. And the OS of 1 -, 3 - and 5-year of this patient are 99%, 93% and 87%, respectively. The tool is user-friendly and 
convenient to operate, which is promises to provide help for individualized prediction of prognosis in BRCA patients. 

4. Discussion 

The morbidity and mortality of BRCA continues to show an upward trend, posing a serious threat to the health of women worldwide 
[49]. An accurate prognosis is essential to make informed treatment decisions and to determine the appropriate management strategy 
for each patient [50]. At present, the prognostic indicators used in clinical practice, such as lymph node status and tumor factors, are 
subject to uncertainty [51–53]. MPE is a life-threatening complication of BRCA, and the presence of MPE indicates that cancer cells 
have spread to the pericardium (the sac surrounding the heart) and may interfere with its function [54–56]. Thus, we constructed a 
prognostic model based on MPE-related genes that may have better predictive value for BRCA patients. 

In this study, the high-throughput expression profile data of TCGA was used to construct the prognosis model of BRCA, and the data 
of TCGA and GEO were used to verify the model. We revealed three BRCA subtypes associated with patient survival based on MPE 
expression. PIK3CA, TP53, TTN and MUC16 were the most frequently mutated genes in these three cluster subtypes. While the mu-
tation rates of TP53 and USH2A were more significant in cluster 3. Somatic mutations in the PIK3CA gene occur in up to 40% of 
primary BRCA [57–59]. TP53 is a tumor suppressor gene that is responsible for regulating the proliferation of tumor cells, and tumors 
with mutations in TP53 tend to be more aggressive and have a poorer prognosis [60]. Patients with tumor treatment-induced car-
diomyopathy have an excess of rare mutations in the dilated cardiomyopathy gene, with TTN being the most common [61]. MUC16 
mutations are the third most common cancer mutated gene, especially in ovarian cancer [58,62]. Previous studies have found that 
missense mutations in USH2A are associated with better therapeutic efficacy and survival outcomes in cancer [63]. Based on the three 

Fig. 8. Webpage interface of the prediction tool. Users can input the patient’s MPE-related gene expression and clinical variables of the patient’s 
age, gender and TNM stage on the left panel, and the response to chemotherapy drugs and immunotherapy and OS of 1 -, 3 -, 5-year of this patient 
will be output on the right panel. 
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subtypes, 74 differentially expressed MPE -related genes were identified. GO and KEGG analysis showed that these genes were mainly 
enriched in leukocyte-cell adhesion regulation, cytokine-mediated signaling pathway and cell chemotaxis, mainly through metabolic 
pathway, tumor transcriptional disorder pathway and Cytokine-cytokine receptor interaction pathway affect the prognosis of BRCA. 
These results are consistent with previous findings. Patients with pericardial effusion usually have elevated serum leukocyte counts 
and cytokine-induced killer cells can treat MPE [64,65], suggesting that it is associated with leukocyte cell-cell adhesion, 
cytokine-mediated signaling pathway, and Cytokine-cytokine receptor interaction pathway. 

Univariate Cox regression analysis identified 50 MPE -related genes that were closely associated with survival of BRCA patients, 
and nine core genes (BCL2, FLT3, PLAT, CHI3L1, RPS24, SFTPD, KCNK3, CXCR6, SLC20A2) were finally selected for model con-
struction after LASSO regression and multivariate Cox regression analysis. Among these, FLT3 (FMS-Like Tyrosine kinase-3) is a type 3 
receptor tyrosine kinase with important roles in the proliferation, differentiation, and survival of hematopoietic stem cells, precursor B 
cells, etc. [66,67]. It is one of the most commonly mutated genes in acute myeloid leukemia (AML) [68]. In recent years, more and 
more studies have found that FLT3, as an important receptor tyrosine kinase in cell signaling, can lead to abnormal cell proliferation 
and induce tumorigenesis [69,70]. We calculated the risk score for each BRCA patient and classified them into high-risk group or 
low-risk group by median risk score. Risk scores, survival status analysis and survival curves showed that the high-risk group had less 
time to survive, higher mortality and significantly lower survival than the low-risk group. ROC curves also showed that the model 
performed well in predicting survival in BRCA patients. 

We constructed a predictive nomogram combining age, gender, TNM stage and risk score to predict survival of BRCA patients. 
Calibration curves, ROC curves and DCA analysis showed that this nomogram had good predictive performance. For the convenience 
of clinical application, we have developed a web-based tool to quickly predict the OS as well as drug-therapy response of BRCA pa-
tients, which can provide a basis for clinicians to formulate individualized treatment plans and provide more effective treatment 
strategies. Inevitably, there are still some limitations in this study. Although our results have been validated in clinical samples, the 
sample size needs to be expanded. In addition, the potential molecular mechanisms of the genes we used to model lack further in vivo 
or in vitro functional experiments. 

5. Conclusion 

In summary, we developed an MPE-related model and constructed a web-based tool to predict the prognosis and therapy response 
of BRCA patients, which has been well validated from multiple aspects. This model has excellent reliability and accuracy. Our study 
contributes to the individualized treatment and prognosis assessment of BRCA patients and provides a new perspective for the dis-
covery of immunotherapy drugs, which has certain clinical significance. 
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