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Abstract
Region-based association analysis is a more powerful tool for gene mapping than testing of

individual genetic variants, particularly for rare genetic variants. The most powerful methods

for regional mapping are based on the functional data analysis approach, which assumes

that the regional genome of an individual may be considered as a continuous stochastic

function that contains information about both linkage and linkage disequilibrium. Here, we

extend this powerful approach, earlier applied only to independent samples, to the samples

of related individuals. To this end, we additionally include a random polygene effects in func-

tional linear model used for testing association between quantitative traits and multiple

genetic variants in the region. We compare the statistical power of different methods using

Genetic Analysis Workshop 17 mini-exome family data and a wide range of simulation sce-

narios. Our method increases the power of regional association analysis of quantitative

traits compared with burden-based and kernel-based methods for the majority of the sce-

narios. In addition, we estimate the statistical power of our method using regions with small

number of genetic variants, and show that our method retains its advantage over burden-

based and kernel-based methods in this case as well. The new method is implemented as

the R-function ‘famFLM’ using two types of basis functions: the B-spline and Fourier bases.

We compare the properties of the new method using models that differ from each other in

the type of their function basis. The models based on the Fourier basis functions have an

advantage in terms of speed and power over the models that use the B-spline basis func-

tions and those that combine B-spline and Fourier basis functions. The ‘famFLM’ function is

distributed under GPLv3 license and is freely available at http://mga.bionet.nsc.ru/soft/

famFLM/.

Introduction
Despite the massive success of genome-wide association studies (GWAS), a significant part of
the heritability of quantitative traits remains unexplained. Studying the role of rare genetic var-
iants in the etiology of complex traits may solve the problem of missing heritability [1]. Rapid
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progress in whole-exome and whole-genome sequencing technologies provides new opportu-
nities for detecting rare variants that control complex traits. However, the statistical methods
based on single genetic variant association tests commonly used in GWAS are underpowered
for rare variants due to their uncommon occurrence. The statistical power of association analy-
sis is therefore expected to increase when genetic variants in a region of interest are tested
simultaneously, instead of separately [2, 3].

Several approaches have been suggested for region-based association analysis of rare vari-
ants. The first, simplest of them, employs burden tests based on collapsing rare variants within
a region of interest [2, 4–7]. For this approach, a set of rare variants in the region is reduced to
a single genetic variable that is then tested for association through conventional GWAS meth-
ods [2, 4–6]. The computational complexity of that regional association analysis is similar to
the complexity of GWAS. The fast algorithms have been developed for GWAS even for struc-
tured samples (e.g., [8–11]). However, the collapsing approach assumes that the majority of
rare variants are causal and that their effects are unidirectional. The power of association analy-
sis decreases if these assumptions do not hold [12].

The second approach employs kernel machine regression for regional association analysis
[13–17]. This method compares the average similarity of genetic variants’ set in the analyzed
region for each pair of individuals with pairwise phenotypic similarity. The pairwise genetic
similarity is measured using a kernel function, that reduces information on multiple genetic
variants for a pair of individuals into a single scalar factor. Regional association analysis typi-
cally uses linear kernel functions to describe the genetic similarity.

In contrast to collapsing-based methods, kernel-based methods are more resilient to the
opposite direction of causal variant effects and the limited proportion of causal variants [17–
19]. Several software programs have been developed to carry out kernel-based association tests
using both independent [17, 19, 20] and family-based samples [21–25].

Both burden-based and kernel-based approaches have been combined in optimal unified
test implemented in SKAT-O [19] and MONSTER [26] programs, which are adapted for inde-
pendent and structured samples, respectively. This optimized test has a higher power than the
kernel-based test in case when causal variants are unidirectional [19].

However, burden-based and linear kernel-based approaches, as well as their optimal combi-
nation, only partly utilize information about linkage and linkage disequilibrium (LD) of genetic
variants. In burden-based methods, the LD pattern may be missing or reduced after collapsing
rare genetic variants into a single variable. Linear kernel-based methods utilize only pairwise
LD in their kernel matrix. They do not model higher-order LD among the genetic variants
[27].

The third approach, based on a functional data analysis (FDA), allows for better utilization
of information on LD and linkage in regional analysis of association between rare variants and
both quantitative [27, 28] and dichotomous [29–31] traits. This approach takes into account
not only a set of genotypes of genetic variants within the region of interest, but also the physical
locations of these variants (i.e., their order and the distances between them). An individual’s
multiple densely located genetic variants can be considered as a continuum of sequence data
rather than discrete observations, and therefore can be treated in the FDA as a realization of a
stochastic process [32–34]. Thus, the genome of an individual can be regarded as a stochastic
function that contains both linkage and LD information.

The FDA-based method of regional association analysis of quantitative traits has been
applied to the independent samples [27, 28]. Simulation analysis demonstrates that FDA test
using functional linear models has a higher power than sequence kernel association test for
most scenarios. However, the FDA approach to regional association analysis has not yet been
applied to structured samples and it remains unclear whether its statistical properties change
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when the number of variants in the region is small. The situation with the small number of var-
iants is important for the exome studies. There, the analyzed variants are often limited to non-
synonymous substitutions, missense, stop-gained, and stop-lost mutations, the number of
which is small in some genes.

In this paper, we extend the FDA approach to samples with (sub)structure and implement
the method in a computer program. We compare the power of our new method to the burden-
based, kernel-based methods, and their optimized combination using Genetic Analysis Work-
shop 17 mini-exome family data [35] and a wide range of simulation scenarios. In addition, we
consider the case when the regions have a small number of genetic variants.

Materials and Methods

Model
Consider a genomic region containingm genetic variants with known physical locations
ti(i = 1,. . .,m). We order these locations, 0� t1 <. . .< tm = T, and scale the region size from
[t1,T] to [0,1].

For a family-based sample of n individuals, let y denote an (n×1) vector of known trait val-
ues, X denote an (n×c) matrix of the c covariates such as age and sex, and G denote an (n×m)
matrix of genotypes ofm variants. Here, Gij is equal to the number of minor alleles of the i-th
individual at the j-th variant with the location tj.

The traditional linear mixed model used to analyze a family-based sample is

y ¼ Xaþ Gbþ hþ e: ð1Þ

Here α is a (c×1) fixed vector of regression coefficients measuring the effects of the c covari-
ates; β is an (m×1) fixed vector of regression coefficients measuring the effects of them genetic
variants; h is an (n×1) random vector of polygene effect values distributed as Nð0; s2

hRÞ, and e
is an (n×1) vector of random errors distributed as Nð0; s2

e IÞ, where s2
h and s

2
e are respective

variance components, and R and I are (n×n) relationship and identity matrices, respectively.
Model (1) assumes that the phenotypes y follow a multivariate normal distribution with a
mean vector E(y) = Xα+Gβ and a covariance matrix O ¼ s2

hRþ s2
e I.

For each related individual, we interpret discrete genotypic values of ordered variants in a
region of interest as continuous data by using functional linear analysis techniques. Such an
interpretation is possible because of the high density of genetic variants, whose genotypes are
continuous rather than discrete observations. These techniques have been applied to region-
based association analysis for unrelated samples in [27].

For family-based samples, we introduce a functional linear mixed model as

y ¼ Xaþ R1
0

~GðtÞ~bðtÞdt þ hþ e: ð2Þ

Here, ~GðtÞ ¼ ð~G1ðtÞ; . . . ; ~GnðtÞÞT denotes an (n×1) unknown vector of genetic variant func-

tions (GVFs), and ~bðtÞ denotes an unknown continuous beta-smoothing function (BSF) of t in
[0,1]. In contrast to the functional linear model used in the analysis of independent samples,
the proposed model additionally includes a random polygenic effect h.

Our goal is to find a functional vector ~GðtÞ such that its discrete realization ~GiðtjÞ becomes

as close as possible to real Gij,i = 1,. . .,m, and to define a function ~bðtÞ to smooth the regression
coefficients. We select a system of basis functions ff1ðtÞ; . . . ;fKG

ðtÞg, whose linear combina-

tions allow us to approximate each of ~GðtÞ. The values of these basis functions in all positions
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tj(j = 1,. . .,m) are represented as an (m×KG) matrix F, for which the closest orthogonal matrix
is F(FTF)−1. The GVFs may thus be written for t 2 [0,1] as in [32], Chapter 4:

~GðtÞ ¼ GFðFTFÞ�1fðtÞ; ð3Þ

where fðtÞ ¼ ðf1ðtÞ; . . . ;fKG
ðtÞÞT . Note that to perform matrix inversion in expression (3),

the number of basis functions must be no more than the number of genetic variants in the
region (i.e., KG �m).

Similarly, using other (or the same) system of Kβ basis functions fc1ðtÞ; . . . ;cKb
ðtÞg (see

details in S1 Note), we can estimate the BSF in Model (2) as

~bðtÞ ¼ cTðtÞbF ; ð4Þ

where bF ¼ ðbF1
; . . . ; bFKb

ÞT is a (Kβ×1) vector of model regression coefficients and

cðtÞ ¼ ðc1ðtÞ; . . . ;cKb
ðtÞÞT .

Substituting estimates (3) and (4) into Model (2), we obtain a functional linear regression
model including fixed effects (α and β) and random effects (h and e):

y ¼ Xaþ GW bF þ hþ e; ð5Þ

whereW ¼ FðFTFÞ�1

�R1
0

fðtÞcTðtÞdt
�
. From the way F and the integral are defined, we see

thatW depends only on the given basis functions and positions of genetic variants in the
region.

The matrixW can be represented as a product of two matricesW1 andW2, whereW1 = F

(FTF)−1 of dimension (m×KG), andW2 ¼
R1
0

fðtÞcTðtÞdt of dimension (KG×Kβ). Unlike the

matrixW1, the matrixW2 is independent of the real data being analyzed. It is defined only by a
selected set of basis functions and is the same for all regions if the number of basis functions is
fixed. However, to uniquely and correctly estimate the parameters βF in Model (5), the restric-
tionm� KG � Kβmust be introduced; otherwise the matrixW used for βF estimation is not
invertible (see details in S2 Note).

Note thatW is an (m×Kβ) transition matrix between the vector β in Model (1) and the new
vector βF in Model (5). The number of elements of the new vector βF is at most the one of the
vector β, because Kβ�m. This allows us to decrease the number of parameters describing the
model.

In addition to Model (5), we construct a simplified functional linear model, which directly
uses the genotype data. In this case, only beta smoothing function β(t) is estimated, using a sys-
tem of Kβ basis functions:

y ¼ Xaþ GCbF þ hþ e: ð6Þ
In the formula (6), them×Kβ matrixC is constructed analogously to them×KGmatrix F in
Model (5), which depends on the selected function basis and the genetic variant positions; that
is, an elementCij of the matrixC is a value of the i-th basis function in the j-th position. There-
fore, we obtain Model (6) from Model (1), performing the single replacement β =CβF.

Statistical test
In a framework of the functional linear Model (5), we treat the fixed effects βF as unknown con-
stant parameters. To check the associations between the genomic region and the quantitative
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trait, we test the null hypothesis H0: βF = 0 againstH1: βF 6¼ 0. As in the case of independent
samples, the null hypothesis H0 may be tested using F-statistic with degrees of freedom Kβ and
n − Kβ − 1, see [36]. However, for samples of related individuals an F-statistic is defined as:

F ¼ ðRSS0 � RSS1Þ=Kb

RSS1=ðn� Kb � 1Þ ;

where RSS0 = (y − Xα)TO−1(y − Xα) and RSS1 = (y – Xα – GW βF)
TO−1(y − Xα – GW βF) are

the weighted sums of the correlated squared residuals under the null and alternative models,
respectively.

To calculate F-statistic for a sample of related individuals, the maximum likelihood esti-
mates of covariance matrix O and the vector of regression coefficients α are obtained under the
null hypothesis. The vector of regression coefficients βF is estimated under the alternative
hypothesis using the obtained values of O and α as

bF ¼ ðWTGTO�1GWÞ�1WTGTO�1ðy � XaÞ:
For independent samples, this expression does not include covariance matrix O.

The likelihood ratio test (LRT) distributed asymptotically as χ2 with Kβ degrees of freedom
and the χ2-distributed score test are used as alternative tests to compare hypotheses H0 and H1.

Implementation
We implemented the new method into the R-function ‘famFLM’ using two common types of
basis functions: the B-spline and Fourier bases (see details in S1 Note). The function ‘famFLM’

allows the use of both GVF and BSF, or BSF only. The type and number of basis functions can
thus be set by the user. The software provides: covariates and dominance, three types of test
statistic (F, χ2, and LRT), sequential or parallel calculation, and running time estimation. Any
type of relationship matrix (genome- or pedigree-based) can be used. The ‘famFLM’ function
is distributed under GPLv3 license and is freely available at http://mga.bionet.nsc.ru/soft/
famFLM/.

Simulations
We used genotypes of the Genetic Analysis Workshop 17 (GAW17 [35]) family-based sample
that consists of 697 individuals in eight families. This data set includes only 200 repeats of sim-
ulated traits, which are not sufficient to estimate the type I error and the power of different
methods. Therefore, we simulated additional replicas of a quantitative trait with h2 = 0.29
under H0 (as in Q2 quantitative trait of GAW17).

To estimate the type I error, we analyzed 12,636 genetic variants in 1,702 gene regions that
contain more than one polymorphic exome genetic variant of the GAW17 data set. We ana-
lyzed 105 replicas (1.7×108 regions) to obtain the type I error estimates down to the significance
level of 2.5×10−6.

For power estimation, we selected one region that contains 50 polymorphic genetic variants
(MAFs ranged from 0.1% to 34.7% with median of 1%). The following scenarios were consid-
ered for simulations: 1) proportion of causal variants in the regions 0.05, 0.1, or 0.2; 2) propor-
tion of effects that have the same direction 0.5, 0.8, or 1; 3) for each causal variant, the effect
size |β| = log(c)|log10(MAF)| / 2 as in [27], with constant c being 2, 3, 5, or 7.

To explore the power of different methods for regions with small number of genetic vari-
ants, we simulated effects only for rare genetic variants within the region (36 rare variants with
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MAF� 0.03, medianMAF after excluding common variants: 0.6%). Subsequently, we analyzed
all rare variants and rare variants after excluding 50% or 80% non-causal variants.

We analyzed the association between the quantitative traits and the genotypes of SNPs in
the region using F-statistics for testing fixed effects in the mixed model. For each scenario,
1000 replicas were analyzed and the power was estimated as a proportion of P values that are
less than 2.5×10−6.

Comparison methods
We tested the statistical properties of the new method as compared with burden-based, kernel-
based, and optimized kernel-based methods. We used the ‘famFLM’ function for the new
FDA-based method. We used cubic B-spline and Fourier bases that contain 15 and 25 func-
tions, respectively. Such values were recommended by Fan et al. [27] and tested on our data
(S1 Note). If the fixed number of basis functions exceeded the number of genetic variants in a
region of interest, the number of basis functions was automatically reduced to the number of
genetic variants. To describe the GVFs and the BSF in Model (5), we considered all combina-
tions of function bases: Fourier basis for both the GVF and the BSF (F-F), B-spline basis for
both the GVF and the BSF (B-B), Fourier basis for the GVF and B-spline basis for the BSF
(F-B), and finally, B-spline basis for the GVF and Fourier basis for the BSF (B-F). Furthermore,
we considered cases in which only the BSF was described, (0-B and 0-F, in case of B-spline and
Fourier bases, respectively) (Model (6)).

We used the MONSTER package for the burden-based, kernel-based, and optimized ker-
nel-based methods [26].

Running time
The running time of a mini-exome regional analysis was estimated on a single processor of a
computer server that was equipped with 192 GB memory and two Intel Xeon E5-2650 v2 eight
core 2.60 GHz processors, CentOS 6.5 Linux 2.6.32–431.29.2.el6.x86_64. We used the same
data as in the type I error estimation to compare the running times of a whole mini-exome
analysis using different models. The mentioned running time does not take into consideration
the null model estimation step. This step is the same for all compared models, can be per-
formed once, and took 1.56 seconds in the GAW17 family sample. To explore how the running
time increases with the sample size, we used the regions with fixedm. To obtain samples of dif-
ferent size, we used a subset of 500 related individuals in 7 pedigrees from the GAW17 family
sample and doubled it to generate sample sizes of 1,000, 2,000 and 4,000 individuals, respec-
tively (as in [25]).

Results
We estimated the empirical type I error rates for six significance levels down to 2.5×10−6

(Table 1). For all models that differed from each other in type of their function basis used to
describe GVFs and BSF, the empirical type I error rates were close to the nominal α values. For
one model, 0-F, we estimated the type I error rates at lower levels and found a good correspon-
dence to the declared values (0.92×10−7 for α = 1×10−7 and 4.47×10−8 for α = 5×10−8, based on
1.7×109 regional P values). The proposed test controls type I error rate correctly over all signifi-
cance levels. Therefore, it can be used in both candidate gene and exome-wide studies (the
model 0-F even in genome-wide studies).

Estimates of statistical power for different scenarios are shown in Figs 1–4. The first set of
scenarios employs both rare and common variants within the region for random selection of
causal variants and for regional association analysis. As shown in Fig 1, the new method
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demonstrates the highest power for most scenarios. The proportion of unidirectional causal
variant effects does not affect the power of any methods, except for the burden-based one. The
burden-based method has the lowest power in comparison with kernel-based and functional
tests, particularly for scenarios with different directions of causal variant effects (Fig 1). A simi-
lar pattern was observed for the second set of scenarios in which only rare variants were used
for random selection of causal variants and for regional association analysis (Fig 2). However,
the power estimates for rare variants were lower than the estimates for both common and rare
variants. The results obtained for rare and both rare and common variants are similar to the
results obtained earlier for independent samples described in [27]. Figs 3 and 4 show the results
for the third and the fourth sets of scenarios where 50% and 80% of non-causal variants were
excluded from the analysis, respectively. The median numbers of genetic variants in a region
were 19, 20, and 22 after excluding 50% of non-causal variants, for scenarios with proportions
of causal variants equal to 0.05, 0.1, and 0.2, respectively. These numbers were 9, 10, and 13 for
the corresponding scenarios with 80% of excluded non-causal variants. The power for all tested
models increased with increasing the proportion of variants removed. The new method dem-
onstrates the highest statistical power for most scenarios not only for the first and second, but
also for the third and fourth sets.

We compared the power of the new method for six functional linear models that differ from
each another in type of their function basis used to describe both the GVF and the BSF or the
BSF only. The method under 0-F and F-F models demonstrated the highest power for most
scenarios (Figs 1 and 2). However, when we excluded a part of non-causal variants from the
analysis, the difference between all six models decreased (Fig 3) and almost disappeared when
80% of non-causal variants were excluded (Fig 4). The explanation for this phenomenon is
given in S2 Note.

All the above features of the power of the new method were confirmed for a significance
level of α = 1×10−4 (see S1–S4 Figs).

Table 2 gives the running time of a mini-exome association analysis under different models.
Models that use the FDA approach for the BSF only (0-B and 0-F) proved to have the fastest
running time. Among the other models, the minimum and maximum running times were
observed in the models using Fourier (F-F) and B-spline (B-B) bases, respectively. Models
using both Fourier and B-spline bases (B-F and F-B) demonstrated intermediate running time.
In general, the models that use Fourier basis were faster than corresponding ones that use B-
spline basis. All running times, however, differed from each other by at most a factor of two.
Moreover, when we analyzed how the running time depends on the sample size using only
regions with fixedm> KG � Kβ, all six models demonstrated very similar results (see S3 Note).
This means that the differences in running times between models shown in Table 2 are due to
recalculations of the matrixW2 for restricted number of basis functions and regions with small

Table 1. Simulation results of type I error rates of six famFLM tests.

α Basis of β(t): B-spline Fourier

Basis of GVF: B-spline No basis Fourier B-spline No basis Fourier

0.05 0.04563 0.05006 0.05012 0.04960 0.04717 0.05008

0.01 0.00897 0.00991 0.00996 0.00982 0.00929 0.00993

1×10−3 8.74×10−4 9.70×10−4 9.74×10−4 9.62×10−4 9.04×10−4 9.73×10−4

1×10−4 8.50×10−5 9.41×10−5 9.50×10−5 9.38×10−5 8.76×10−5 9.63×10−5

1×10−5 8.63×10−6 9.10×10−6 9.20×10−6 9.48×10−6 8.53×10−6 9.49×10−6

2.5×10−6 2.00×10−6 2.15×10−6 2.19×10−6 2.22×10−6 2.07×10−6 2.38×10−6

doi:10.1371/journal.pone.0128999.t001
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number of genetic variants (m< KG and/orm< Kβ). The matrixW2 is not involved in the
models 0-F and 0-B (see formula (6)) and therefore these models showed minimal running
time (Table 2). The number ofW2 recalculations for the model F-F is larger than for the model

Fig 1. The statistical power of regional association analysis on the familial data when all (rare and common) variants were used in simulations for
random selection of causal variants and in analysis.Compared methods are the burden-based (famBT), kernel-based (famSKAT), optimized kernel-
based (famSKAT-O), and the new FDA-based (famFLM) methods. For famFLM, six functional models were tested: B-spline basis for both the GVF and the
BSF (B-B), only the BSF described via B-spline basis (0-B), Fourier basis for the GVF and B-spline basis for the BSF (F-B), B-spline basis for the GVF and
Fourier basis for the BSF (B-F), only the BSF described via Fourier basis (0-F), Fourier basis for both the GVF and the BSF (F-F).

doi:10.1371/journal.pone.0128999.g001
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B-B because the former is constructed on 25 basis functions (andW2 is recalculated for the
regions withm< 25), while the latter uses only 15 functions andW2 is recalculated only for
the regions withm< 15. Nevertheless, the running time for the model F-F is smaller than for
B-B. This result may be explained by the specific details of B-spline and Fourier basis function
computations (see S1 Note).

Fig 2. The statistical power of regional association analysis on the familial data when only rare variants were used in simulations for random
selection of causal variants and in analysis. The notations of the methods are the same as in Fig 1.

doi:10.1371/journal.pone.0128999.g002
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For the regions with fixedm> KG� Kβ, running time increases quadratically with increas-
ing the sample size and linearly with increasing the number of genetic variants in the region
(see details in S3 Note).

Fig 3. The statistical power of regional association analysis on the familial data when only rare variants were used in simulations for random
selection of causal variants and 50% of non-causal variants were excluded from the analysis. The notations of the methods are the same as in Fig 1.

doi:10.1371/journal.pone.0128999.g003

Region-Based Association Test under Functional Linear Models
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Discussion
The FDA-based approach [27, 30] is currently most effective in regional association analysis of
unrelated samples. In the present work, we extended it to samples of related individuals. The
new method has a higher power than both the burden-based and the kernel-based methods. It

Fig 4. The statistical power of regional association analysis on the familial data when only rare variants were used in simulations for random
selection of causal variants and 80% of non-causal variants were excluded from the analysis. The notations of the methods are the same as in Fig 1.

doi:10.1371/journal.pone.0128999.g004
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introduces a new powerful tool for the analysis of rare variants in samples of related individuals
from families or isolated populations, and in large human samples, where some degree of relat-
edness or population stratification is unavoidable.

We compared the powers of the new method using six models: F-F, F-B, B-B, B-F, 0-B, and
0-F and found two main features. Firstly, we have not seen a difference between models that
use the FDA approach for the BSF only and for both the GVF and the BSF. The powers of the
method using 0-B and B-B models were very close, as well as for 0-F and F-F models. The same
results were obtained on unrelated samples by Fan et al. [27]. To explain this finding we analyt-
ically studied the models when KG = Kβ, and demonstrated that models using the FDA
approach for both the GVF and the BSF, and for the BSF only are equivalent (see S2 Note). For
the F-B model, the condition KG = Kβ is not satisfied (KG > Kβ) and consequently this model is
not equivalent to the 0-B model (see S2 Note). However, we demonstrated that the powers for
F-B and 0-B models are very close. This indicates that the FDA-based test for regional associa-
tion analysis of quantitative traits does not strongly depend on whether the genotype data are
smoothed or not. For such traits, the essence of FDA approach is the smoothing of the geno-
type effects on the trait but not the smoothing the genotypes themselves. For binary traits, in
contrast, the FDA approach is used for the GVF only and a quality of genotype data smoothing
is very important for the power of association test [31].

Secondly, for most scenarios, our method showed the highest power under the models
using Fourier bases (0-F and F-F). The same results were obtained on unrelated samples by
Fan et al. [27]. We can explain these results by the linkage disequilibrium, through which we
obtain the association signals not only in the points of causal variants, but also in the neighbor-
ing areas. In other words, the signal of association does not look as a sharp peak; the signal is
smoothed and spread over the site of the genome around the causal variant. Usually, the causal
variants are separated by a large number of non-causal variants and extended smoothed signals
in the positive or negative areas can be described by a smoothing function without strong local
features. A Fourier series is especially useful for such functions, while B-spline basis is appro-
priate for data where discontinuities in the function itself or in low order derivatives are known
or suspected (see S1 Note and [32], Chapter 3).

To use the FDA approach, we should select not only the types of basis functions, but also
the number of these functions. If this number is small, we may miss some important aspects of
the smoothing function that we are trying to estimate. It is obvious that the larger the number,
the better the fit to the data. However, in this case we risk also fitting noise or variation that we
wish to ignore. It is generally unclear how to choose the optimal number of basis functions.
Usually two algorithms are used [32], Chapter 4. One of them, the stepwise variable selection
algorithm, adds basis functions one after another, tests at each step whether the added function
significantly improves the fit, and also checks that the functions already added continue to play
a significant role. Other variable-pruning algorithm is used for high-dimensional models; it

Table 2. The running time for six variants of famFLM in performing the regional-based analysis of a
mini-exome.

Basis of β(t) Basis of GVF Running time, s

B-spline B-spline 58.018

No basis 34.801

Fourier 51.552

Fourier B-spline 53.721

No basis 33.502

Fourier 44.373

doi:10.1371/journal.pone.0128999.t002
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removes basis functions one after another, starting with a generous amount of basis function.
However, the existing algorithms are computationally intensive; they are especially time-con-
suming for analysis of associations between multiple genome regions within exome and quanti-
tative traits where sample size is usually large. Fan et al. [27] demonstrated that the fixed
number of basis function can be used for association analysis of quantitative traits in unrelated
samples. We confirmed this conclusion using other data and a sample of relatives (S1 Note).
The possibility to use fixed number of basis functions has a large practical importance, because
it decreases the running time manifold.

The FDA approach suggests that multiple genetic variants in the region are genotyped,
therefore allowing us to consider the individual’s genotype of a particular genomic region as a
continuous function of variants’ physical locations in the region rather than a set of discrete
values. However, a considerable proportion of variants that come from re-sequences are not
polymorphic in the restricted sample of individuals, and some polymorphic variants in exome
are synonymous. Often, only non-synonymous substitutions, missense, stop-gained, and stop-
lost mutations are included in regional association analyses. The number of such variants in
the region can be rather small. This presents the question of whether the new method contin-
ues to perform better than other existing methods if the number of variants in the region is
small. To test our method in such a situation, we excluded a part of non-causal variants from
the analysis. In addition, we adapted our method to the analysis of regions with small number
m of genetic variants, specifically whenm< K, where K is the number of basis functions.
Given smallm, we automatically limited K in our algorithm and its implementation in the
‘famFLM’ function. In the case when K =m, the functional linear regression model (5) analyti-
cally reduces to the traditional linear mixed model (1) (see S2 Note).

The model of multiple linear regression includes genotypes of all genetic variants as predic-
tors. The number of degrees of freedom for this model is automatically fixed asm under the
condition of linear independence of the genotype vectors of the variants. However, usually not
all variants in the region are causal. In this case, fixing the number of degrees of freedom larger
than the number of causal variants can reduce the power. The fewer the number of non causal
variants in the region, the smaller is the power loss. In our ‘famFLM’, the multiple linear regres-
sion is used only for smallm� K, and this small size can be due to exclusion of synonymous
substitutions. We demonstrated that in this case our method has a clear advantage in compari-
son with burden-based and kernel based methods. It was shown that the increase of the pro-
portion of causal variants similarly increases the association power for burden-based and
kernel-based methods [2]. In this study, we demonstrated that our method also has this prop-
erty, and that such a property remains when the number of variants in the region is small.

In the present study, we restricted our analysis by the functional linear models for F-testing
the fixed effects of genetic variants, although these models can also be used for variance
component analysis by means of the functional kernel score test (FKST). In this case the FDA-
approach is applied to the kernel matrix which describes the similarity of genetic variants’ set
in the analyzed region for each pair of individuals [27]. The problem is that the type I errors of
FKST do not correspond to the nominal levels for α< 0.01 and this test has less power than
the F-test [27]. Even though it was demonstrated that the FKST-based method has a high
power when sample size is small and the region includes a single causal variant [27], its statisti-
cal properties should be studied in more details before its practical application.

Introducing the FDA technique in regional association analysis allows for a more complete
use of information on the genetic structure of the analyzed genome regions. All existing meth-
ods operate only with a set of genetic variants in the region, whereas the new method also uti-
lizes information about the order of genetic variants and the distances between the variants.
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This new feature allows us to include pairwise linkage disequilibrium (as existing methods do),
as well as information on linkage and higher-order linkage disequilibrium in the model.

Previously, the new FDA-based approach was developed only for samples of independent
individuals. The present study extends this approach to samples of genetically related individu-
als. The new method provides a powerful tool in identification of rare variants involved in the
control of quantitative traits.
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