
Tau propagation is dependent on the genetic
background of mouse strains
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Progressive cognitive decline in Alzheimer’s disease correlates closely with the spread of tau protein aggregation across neural net-
works of the cortical mantle. We tested the hypothesis that heritable factors may influence the rate of propagation of tau pathology
across brain regions in a model system, taking advantage of well-defined genetically diverse background strains in mice. We virally
expressed human tau locally in the hippocampus and the entorhinal cortex neurons and monitored the cell-to-cell tau protein spread
by immunolabelling. Interestingly, some strains showedmore tau spreading than others while tau misfolding accumulated at the same
rate in all tested mouse strains. Genetic factors may contribute to tau pathology progression across brain networks, which could help
refine mechanisms underlying tau cell-to-cell transfer and accumulation, and potentially provide targets for understanding patient-to-
patient variability in the rate of disease progression in Alzheimer’s disease.
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Introduction
The intraneuronal deposition of hyperphosphorylated tau
proteins in insoluble aggregates is a hallmark of around 20
pathologies known as tauopathies including Alzheimer’s dis-
ease.1 Characteristic populations of neurons in each of these
disorders begin to accumulate tau inclusions, which then
typically ‘spread’ to anatomically connected sites as the dis-
ease progresses, in a process referred to as propagation.2–4

Risk factors such as age and genetics clearly contribute to
these diseases.5–8 We have developed an animal model sys-
tem to measure the propagation of tau species from one neu-
ron to the next in vivo, by transducing neurons with an
adeno-associated viral (AAV) vectors construct that encodes
both green fluorescent protein (GFP) and human tau.
Transduced neurons immunostain for both gene products,
whereas a subset of neurons downstream of the injection
site contain only tau, and are interpreted to have received hu-
man tau protein trans-synaptically.9,10 We have previously
used this system to demonstrate that age impacts the likeli-
hood of propagation of tau to downstream neurons.5 We
now have examined a set of genetically diverse mouse

strains, to begin to explore the possibility that heritable fac-
tors might impact tau propagation.

Materials and methods
Animals
All procedures were performed following the guidelines of
the Institutional Animal Care and Use Committee and in
compliance with the Animal Welfare Act, the Guide for the
Care and Use of Laboratory Animals, the Office of
Laboratory Animal Welfare and the guidelines of
Massachusetts General Hospital. The animals’ living condi-
tions, including housing, feeding and non-medical care, were
maintained by the house internal animal facility. Mice of the
following strains were purchased from the Jackson
Laboratory (Bar Harbor, ME, USA): A/J (Stock Number
#000646), C57BL/6J (Stock Number #000664), 129S1/
SvlmJ (Stock Number #002448) and CAST/EiJ (Stock
Number #000928), CD-1 IGS mice (Strain Code 022) were
obtained from Charles River (Wilmington, MA, USA).
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AAV design, cloning and production
The cloning of enhanced GFP (eGFP)-2a-WTtau and
eGFP-2a-P301Ltau under the ubiquitous chicken β-actin
promoter was performed as described previously.5 The plas-
mid DNA of both eGFP-2a-huTau constructs and GFP were
then tested for inverted terminal repeat integrity by digestion
with the restriction enzyme Sma I, DNA of sufficient quality
was packaged into an AAV2/8 (titres �0.6× 1013 virus par-
ticles/ml; Massachusetts Eye and Ear Institute vector core),
and active AAV stock was aliquoted and stored at −80°C
to prevent freeze–thaw cycles.

Intracranial injections
AAVs encoding eGFP-2a-P301Ltau were injected bilaterally
into the entorhinal cortex and in the contralateral hippocam-
pus of 3-month-old mice (per injection site: 2.0 µl of AAV,
AAV concentration: 0.6× 1013 virus particles/ml). Six ani-
mals per strain were injected, three males and three females.
Animals, where the injection sites were missed, were ex-
cluded from subsequent analysis resulting in a lower n num-
ber in some groups. Injections were performed as described
previously under standard aseptic surgery conditions: ani-
mals were anaesthetized with isoflurane (3% induction and
2% maintenance), a midline incision of the skin was made
above the injection sites and burr holes were drilled through
the skull at the selected coordinates; coordinates (from breg-
ma) for EC injections: anterior/posterior (A/P): −4.7 mm,
medial/lateral (M/L): −4.5 mm, dorsal/ventral (D/V):
−2.0 mm from brain surface with an 18° angle; coordinates
(from bregma) for the hippocampus injections: A/P:
−2.5 mm, M/L: +2 mm, D/V: −2 mm. After lowering the
needle into the brain to the injection location, AAV solutions
were injected at a flow rate of 0.2 µl/min. A 10 µl Hamilton
syringe with a 30 gauge bevelled needle that was coupled to
an injector pump was used. The injector was attached to a
stereotaxic frame, in which the mice were head fixated.
After finishing the injection, the needle was left in place for
2 min to allow the diffusion of the injected AAV solution.
Afterwards, the skin over the injection site was sutured,
and the animals were allowed to recover from anaesthesia
on a 37°C warming pad before returning them into a clean
home cage. For analgesia, all mice received a subcutaneous
injection of buprenorphine (0.05 mg/kg) immediately after
AAV injection and were treated with Tylenol (in drinking
water) for 3 days after the surgery.

Immunofluorescence labelling
For immunofluorescence labelling of brain sections, injected
mice were transcardially perfused with cold phosphate-
buffered saline (PBS) for 5 min before switching to PBS con-
taining 4% paraformaldehyde. The whole brains were
extracted and postfixed in 4% PFA/PBS for 2 days at 4°C
and then cryoprotected in 30% (w/v) sucrose in PBS until
they sank, cut horizontally into 40 µm-thick brain sections

on a freezing microtome and stored in PBS/50% glycerol at
−20°C. For immunostaining, the floating brain sections
were washed briefly in PBS and then permeabilized with
0.2% Triton X-100/TBS for 20 min at room temperature,
blocked in 5% normal goat serum/PBS for 1 h at room
temperature and then incubated with primary antibodies
diluted in 3% NGS/PBS overnight at 4°C: chicken
anti-eGFP (1:1000, Aves Labs), mouse anti-human tau
Tau13 (1:1000, BioLegend) and mouse anti misfolded tau
Alz50 (1/100, kind gift from Dr Peter Davis). After washing
three times with PBS, secondary antibodies were diluted in
3% NGS/PBS and applied for 1.5 h at room temperature:
Alexa 488 anti-chicken, Alexa 555 anti-mouse (1:1000,
Thermo Fisher Scientific). After three washes in PBS, sections
were stained with 4′,6-diamidino-2-phenylindole (DAPI)
and then mounted on microscope glass slides with mounting
media.

Imaging of immunolabelled sections was done using the
40× objective on an Olympus VS120.

Stereological cell counts
For the stereological analysis, a series of 40 µm-thick coronal
sections separated by 360 µm were analysed. The number of
huTau donor cells, huTau recipient cells and DAPI+ nuclei
as well as the number of cells positive for misfolded tau, in
the EC, subiculum and hippocampal formation of
AAV-injected hemispheres were determined by counting all
(eGFP+), (huTau+/GFP−), cells in the area of interest using
the cellSens software (Olympus). The per cent area of GFP
expression was obtained by thresholding using the cellSens
software (Olympus).

Statistical analysis
To compare cell numbers and propagation rates, we deter-
mined the average cell number or cell percentage (no. of re-
cipients/no. of donors) per mouse, individual mice being
the experimental unit of the analysis in this study.
Statistical analysis of differences between groups was per-
formed using GraphPad Prism 6; when normal distribution
was applicable, groups were compared using one-way
ANOVA Tukey’s test for multiple comparison.
Non-parametric distributions were analysed using the
Mann–Whitney non-parametric test. All values are given as
mean+ standard error of the mean.

Data availability
All data reported in this manuscript are stored at the
Massachusetts General Hospital and are available from the
corresponding author upon reasonable request.

Results
We used a model of tau propagation that we previously de-
scribed in which AAVs encoding the eGFP-2A-Tau construct
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were injected into the entorhinal cortex or the hippocampus
of mice.5,9–11 The 2A peptide is a self-cleaving peptide result-
ing in the equimolar independent expression of the eGFP and
human tau (Fig. 1A). Using this model, we can, therefore, use
immunostaining to easily discriminate the donor neurons
transduced with the AAV (eGFP and tau positive) from the
tau propagation recipient neurons (tau positive only)
(Fig. 1A and B). In order to understand if genetic background
had an effect on tau propagation, we selected five mouse
strains genetically distant from each other (129S1/SvlmJ,
A/J, C57BL/6J, CAST/EiJ and CD-1) and injected them
with the eGFP-2A-TauAAVs in the CA1 region of the hippo-
campus on one side and in the entorhinal cortex on the
contralateral side (Fig. 1A and B). Twelve weeks post-
injection, we collected and immunostained the brains
(Fig. 1B). We quantified the number of (i) tau human posi-
tive, eGFP-positive neurons (neurons expressing the AAVs,
herein referred as ‘expressing neurons’) or (ii) human tau
positive, eGFP-negative neurons (recipients of tau propaga-
tion, herein referred as ‘recipient neurons’) (Fig. 1B). For
each animal, we calculated the ratio of recipient neurons to
expressing neurons and observed significant differences
among strains, with some strains, such as 129S1/SvlmJ or
C57BL/6J, being ‘resilient’ to tau propagation and some
strains, A/J and CD-1 in particular, exhibiting consistently
increased tau propagation (Figs 1B and 2A).

In a set of secondary analyses, we compared the effect
of sex among the whole cohort. There is a slight tendency
towards female animals showing more tau propagation,
but the difference was not significant (Fig. 2B) and mostly
pooled by CD-1 females (Supplementary Fig. 1). We then
compared within strains and found that there appeared to
be a difference in tau propagation between CD-1 females
and CD-1 males. Although this reached statistical signifi-
cance (P= 0.032), we interpret this with caution as the ef-
fect was seen in only one strain out of five, and the
relatively small group sizes may confound secondary
analyses.

We wondered if the difference in propagation between
strains could reflect differential transduction or expression
of the AAVs in the different strains.We, therefore, quantified
the number of AAV-expressing neurons in the two injection
sites. In the hippocampus, no apparent difference was seen in
the expression of the AAVs (Fig. 2C). More variability is ob-
served in the entorhinal cortex, perhaps due to technical vari-
ability in the exact site of injection (Fig. 2D). However, these
differences do not seem to account for differences in the
amount of tau propagation neurons across species
(Fig. 2E), reinforcing the idea that the differences in tau
propagation between strains are not due to differential ex-
pression of the AAVs.

Viral-mediated overexpression of tau can drive the forma-
tion of pathological tau phenotypes such as the appearance
of epitopes of tau hyperphosphorylation or tau misfold-
ing.9,12,13 We postulated that genetic background in these
mice would influence the development of such pathological
phenotypes on tau. Therefore, we immunostained the brain

sections with an antibody recognizing a misfolded form of
tau characteristic of pathological tau (Alz50) and quantified
the number of positive neurons. The first observation is that
most tau propagation recipient neurons are mostly negative
for Alz50 staining and that most of the Alz50+ neurons are
eGFP positive. Interestingly, neither genetic background
(Fig. 3A) nor sex within strains or across the cohort
(Fig. 3B and Supplementary Fig. 1B) seemed to affect
misfolding.

Discussion
Recent data have shown the importance of genetic back-
ground in the design of mouse models of Alzheimer’s dis-
ease.14 Several studies show differences in tau pathology
accumulation in the rTg4510 mouse model of tauopathy
with different backgrounds.15,16 In a tau seeding para-
digm in rat transgenic models, Smolek et al.17 also find
genetic background heterogeneity. Interestingly, both
amyloid β-deposition and the effect of amyloid
β-deposition on cognition are also highly dependent on
the mouse genetic background, with some strains that
are highly affected while others are resilient.6,18 Here,
we report a pilot study showing that a similar effect may
occur for a tau-related phenotype: propagation. Of inter-
est, one of the strains used in the amyloid β study, the com-
monly used C57BL/6 strain (which is a frequent
background strain in transgenic lines) was fairly resilient
to amyloid β.6 In our current data, this strain is clearly re-
silient to tau propagation as well. These data reinforce the
idea that building genetic risk factors into different strains
may prove to be very fruitful.19

Since propagation rates may be related to the rate of clin-
ical progression in humans with Alzheimer’s disease,20,21

these results may provide insight into further exploration
of genetic underpinnings of Alzheimer’s and tauopathy
symptoms. Some data already suggest specific genetic factors
in this regard. The most common genetic risk factor for non-
autosomal dominant Alzheimer’s disease, the APOE e4
gene, has been associated with more severe tau-related neu-
rodegeneration22 and clinical rates of progression.23 BIN1,
which is one of the most significant genetic risk factors for
Alzheimer’s disease, has also been clearly linked as a modu-
lator of tau pathology24 and an intermediate of tau path-
ology propagation.25 It seems likely that other genes, or
combinations of genes, may impact various aspects of tau
pathobiology as well.

In conclusion, these results suggest that the rate of tau
propagation may depend, to some extent, on heritable fac-
tors. Understanding the genetic loci that impact the ki-
netics of tau aggregation, propagation and neurotoxicity
may open new avenues towards therapeutics for
tau-related neurodegenerative diseases. Moreover, a simi-
lar approach might detect strain-dependent differences in
other misfolded protein disorders in which propagation
has been implicated.26
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Figure 1 Model of tau propagation. (A) Schematic showing the mouse strains used in this study, the AAV sequence, the mRNA and the
proteins encoded in AAV CBA.eGFP-2a-P301Ltau, as well as the tau protein propagation principle and detection methodology. Using a
self-cleaving 2a peptide, transduced ‘donor’ neurons express both eGFP and human tau as individual proteins. The propagation of tau can be
visualized by immunofluorescence labelling of post-mortem brain sections or fixed neurons in culture: human tau detected in ‘recipient’ neurons
that do not express the fluorescence transduction marker eGFP indicates the propagation of tau between cells. Thereby, the upstream location of
the GFP transduction marker prevents the detection of false positives that could occur due to incomplete translation of the mRNA. Bilateral
injection of AAV eGFP-2a-P301LTau into the entorhinal cortex (left side) and in the hippocampus (right side). (B) Representative images of
immunohistochemistry results and tau propagation recipient neurons at different magnifications showing injection sites (upper pictures),
entorhinal cortex to hippocampal formation connection (middle pictures) and two magnifications showing tau propagation recipient neurons in
the hippocampus (lower pictures); scale bars are indicated in the figure.
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Figure 2 Tau propagation is dependent on genetic background. (A) Ratio of recipient cells (hTau+, GFP−) to AAVs expressing cells
(hTau+, eGFP+) across mouse strains showing significant differences between strains (one-way ANOVA, P= 0.0037; with the Tukey multiple
comparison test, *P, 0.05, **P, 0.01). (B) Ratio of recipient cells (hTau+, eGFP−) to AAVs expressing cells (hTau+, GFP+) in male versus
female animals, regardless of the strain. Mann–Whitney non-parametric test, P= 0.97. (C andD) Burden of eGFP expression at the injection sites
in the hippocampus (C) and entorhinal cortex (D) (one-way ANOVA; *P, 0.05. The Tukey multiple comparison test did not show significant
differences between specific groups). (E) Tau propagation ratio in the hippocampus versus eGFP expression in the entorhinal cortex shows no
association. A non-parametric Pearson test was used for this correlation (r=−0.033; P-value= 0.88).
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