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Abstract

The prevalence of carbapenem-resistant Enterobacterales (CRE) in the Arabian Peninsula

is predicted to be high, as suggested from published case reports. Of particular concern, is

carbapenem-resistant E. coli (CR-EC), due to the importance of this species as a commu-

nity pathogen. Herein, we conducted a comprehensive molecular characterization of puta-

tive CR-EC strains from Oman. We aim to establish a baseline for future molecular

monitoring. We performed whole-genome sequencing (WGS) for 35 putative CR-EC. Iso-

lates were obtained from patients at multiple centers in 2015. Genetic relatedness was

investigated using several typing approaches such as MLST, SNP calling, phylogroup and

CRISPR typing. Maxiuium likelihood SNP-tree was performed by RAxML after variant call-

ing and removal of recombination regions with Snippy and Gubbins, respectively. Resis-

tance genes, plasmid replicon types, virulence genes, and prophage were also

characterised. The online databases CGE, CRISPRcasFinder, Phaster and EnteroBase

were used for the in silico analyses. Screening for mutations in genes regulating the expres-

sion of porins and efflux pump as well as mutations lead to fluoroquinolones resistance were

performed with CLC Genomics Workbench. The genetic diversity suggests a polyclonal

population structure with 21 sequence types (ST), of which ST38 being the most prevalent

(11%). SNPs analysis revealed possible transmission episodes. Whereas, CRISPR typing

helped to spot outlier strains belonged to phylogroups other than B2 which was CRISPR-

free. The virulent phylogroups B2 and D were detected in 4 and 9 isolates, respectively. In

some strains bacteriophages acted as vectors for virulence genes. Regarding resistance to

β-lactam, 22 were carbapenemase producers, 3 carbapenem non-susceptible but carbape-

nemase-negative, 9 resistant to expanded-spectrum cephalosporins, and one isolate with

susceptibility to cephalosporins and carbapenems. Thirteen out of the 22 (59%) carbapene-

mase-producing isolates were NDM and 7 (23%) were OXA-48-like which mirrors the situa-

tion in Indian subcontinent. Two isolates co-produced NDM and OXA-48-like enzymes. In

total, 80% (28/35) were CTX-M-15 producers and 23% (8/35) featured AmpC. The high-risk

subclones ST131-H30Rx/C2, ST410-H24RxC and ST1193-H64RxC were detected, the
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latter associated with NDM. To our knowledge, this is the first report of ST1193-H64Rx sub-

clone with NDM. In conclusion, strains showed polyclonal population structure with OXA-48

and NDM as the only carbapenemases in CR-EC from Oman. We detected the high-risk

subclone ST131-H30Rx/C2, ST410-H24RxC and ST1193-H64RxC. The latter was reported

with carbapenemase gene for the first time here.

Introduction

Infections caused by E. coli comprise a huge public health problem [1]. Particularly this is true

for infections caused by carbapenem-resistant E. coli (CR-EC), as carbapenems are among the

last-resort treatment options for multidrug-resistant strains [2]. Carbapenem resistance can

occur due to an interplay between a number of mechanisms including intrinsic mutations in

existing genes, leading to either overexpression of efflux pumps or downregulation of porins.

Another mechanism is the acquisition of novel genes encoding carbapenem-hydrolysing

enzymes such as blaKPC, blaNDM and blaOXA-48-like by horizontal gene transfer (HGT), largely

due to plasmids [3]. Phages also play an important role in the HGT. However, their contribu-

tion to the spread of antibiotic resistance genes (ARGs) remains inconclusive, with conflicting

evidence in the literature [4–8].

Counteracting HGT, the acquisition of plasmids and phages in bacteria is restricted by

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) [9]. CRISPR and

CRISPR-associated genes (CRISPR-cas) system consists of cas genes, direct repeats (DR) and

spacers [10]. Spacers contain part of the invaders DNA sequences to immunize the bacteria

against them [11]. Additionally, CRISPR has been suggested as a typing tool in which related

strains share similar spacers [12, 13]. In E. coli, CRISPR-cas system consists of I-E and I-F sub-

types. I-E subtype is the commonest with two main loci—CRISPR 2.1 and CRISPR 2.3, as well

as occasionally CRISPR 2.2 locus. While, the I-F subtype is less frequent with two loci—

CRISPR 4.1 and CRISPR 4.2 [14, 15].

Multilocus sequence typing (MLST) of resistant strains is an important approach to study

bacterial clonality and hence to trace an outbreak. Also, it helps to recognise particular high-

risk clones (HiRC) that originate from single bacterial strains yet have the potential for global

expansion [16]. In E. coli, the commonest HiRC is ST131-H30Rx/C2. It is fluoroquinolone-

resistant and contributed to the dissemination of CTX-M-15 globally [17]. Worryingly, it

was reported with carbapenemase in the UK recently [18]. Another emerging HiRCs is

ST1193-H64Rx. It is resistant to fluoroquinolones and to multiple antibiotics including cepha-

losporins [19]. Both subclones belong to the virulent B2 phylogroup. A convergence of virulent

HiRC with antibiotic resistance determinants, particularly carbapenemase genes, is of great

concern to public health globally due to their ability to spread rapidly.

In Oman, infection caused by CRE are notifiable under the communicable disease act. For

reporting purposes, CRE are defined as either resistant to meropenem (MIC�4 mg/L) or erta-

penem (MIC�2 mg/L), based on susceptibility testing at the reporting facility or by the pro-

duction of a carbapenemase demonstrated using a recognised test according to Clinical and

Laboratory Standards Institute (CLSI) guidelines [20, 21]. Based on this definition, the inci-

dence of CRE infection in 2018 was 11 per 1,000 bacteremic patients, compared to 12 the year

before. However, the mortality rate almost doubled from 32% to 62% [22]. A report from the

World Health Organization (WHO)’s Global Antimicrobial Resistance Surveillance System

(GLASS) stated that 2% of 261 tested E. coli from Oman were CR-EC in 2017 [23]. Although a
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few reports are available on the antibiotic resistance profiles of CR-EC in Oman, there is a pau-

city of studies on other genetic characteristics such as the plasmid and virulence profiles as

well as clonality.

In this study, we sought to unravel the genetic background of CR-EC from Oman with sev-

eral in silico typing approaches such as SNPs, MLST, phylogroup, serotypes and CRISPR typ-

ing. Moreover, we studied their resistome, plasmidome, virulome, and prophage contents.

Lastly, we investigated possible transmission episodes, by high-resolution epidemiological typ-

ing data.

Materials and methods

Bacterial isolates and phenotypic characterisation

As a part of the National Health Policy in Oman, clinical isolates with reduced susceptibility (I

or R) to carbapenems, are identified as putative CR-EC and shall be sent to the Public Health

Laboratories for further analyses. Herein, we studied 35 E. coli isolates which were initially

reported with reduced susceptibility to carbapenem according to CLSI guidelines [21]. They

were collected from January to October 2015. Demographic data were obtained from clinical

data repositories complementing the strain collection forms.

Strains were further investigated at Karolinska Institutet for a wide range of antibiotics with

disk diffusion (imipenem, meropenem, ertapenem, cefotaxime, ceftazidime, aztreonam, piper-

acillin-tazobactam, ciprofloxacin, amikacin, gentamicin, ceftazidime-avibactam), agar dilution

(fosfomycin) and broth microdilution (colistin, tigecycline) according to EUCAST guidelines

[24]. Diagnostic kits from ROSCO Diagnostica A/S (Taastrup, Denmark) were used to classify

carbapenemases into MBL, OXA-48-like or ESBL. The kits, which is based on the combination

disk testing principle, consist of cartridges with ready-to-use tablets that classify carbapene-

mases based on their response to chemical inhibitors phenotypically. Rapidec Carba NP (bio-

Mérieux SA, Marcy-l’Étoile, France) was used to test the production of carbapenemase

enzymes as described previously [25].

Whole genome sequencing

Genomic DNA was extracted with the MagNA Pure 96 system (Roche Applied Science, Man-

heim, Germany) automated DNA-extraction system, following the manufacturer’s guidelines.

The quantity of the extracted DNA was measured using Qubit dsDNA assay kit (Life Technol-

ogies Europe, Bleiswijk, The Netherlands). Next, WGS was performed with Illumina Nextera

Library Prep kits using HiSeq 2500 (Illumina, San Diego, USA) at the Science for Life Labora-

tory (SciLifeLab, Solna, Sweden) generating 2×100 paired-end sequences. Sequencing quality

control showed that 30x coverage was >80% for 74% of isolates. Mean duplication rate was

4.7% (SD 2.5) and mean median insert size was 327 (SD 201) (S1 Table). Raw reads data

generated in this study were deposited in SRA as project PRJNA544438 (accession no.

SAMN11840190-SAMN11840224).

The generated raw reads were uploaded to the EnteroBase web resource. Triming, de novo
assembly, quality control and annotation were performed through the associated EnteroBase

pipeline [26]. Mean N50 and N90 of the assembled genomes were 151,472 (SD 42,739) and

31,424 (SD 8,405), respectively. The mean length of genome size was 5,027,470 (SD 174,295)

while the mean of contigs number was 162 (SD 62) (S1 Table).

Furthermore, the downloaded draft assemblies were remapped to short reads back onto the

assembly using the BWA-MEM algorithm of BWA v0.7.17. Next, the output SAM files were

sorted to BAM files using SAMtools v0.1.9 and finally polished with Pilon v1.23 to fill gaps and

fix local misassemblies [27–29]. In the improved assemblies, a total reduction of 29% and 26%
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were observed in number of gaps and N-counts, respectively. Five strains were gap- and N-

free (S1 Table). The genomic quality data were either obtained from EnteroBase web resource

or calculated by assembly-stats v1.0.1 tool [30].

Strains typing and SNPs calling

We used different typing approaches to reveal the genetic background of the studied strains.

For MLST typing, EnteroBase web resource was used to obtain classical MLST (MLST), core-

genome MLST (cgMLST) and whole-genome MLST (wgMLST) [31]. Also, we used the same

database to obtain O:H serotypes. While for phylogroup, the assembled genomes were

uploaded to the ClermonTyping v1.4.0 web tool as described previously [31, 32].

Furthermore, variant calls for SNP analysis were performed using Snippy v4.4.5 against the

chromosome of E. coli O55:H7 str. RM12579 (CP003109.1) as it was the closest common

ancestor to the studied strains [33]. Alignment file was filtered from variants with elevated

densities of base substitutions as a putative recombination events by Gubbins v2.4.1 with a

threshold to exclude taxa with>30% missing data [34]. Since the reference strain belonged to

a different ST type (ST335), we masked the seven house-keeping genes used for MLST typing,

to avoid false correction by Snippy and false-positive recombination sites by Gubbins yet they

were unmasked after filtering out recombination sites. Then SNP-sites v2.5.1 was used to

reduce the filtered alignment to the core polymorphic sites [35]. Next, the core alignment out-

put was used to create SNP-matrix by snp-dists v0.7.0 (https://github.com/tseemann/snp-

dists) as well as to create randomised accelerated maximum likelihood (RAxML) tree by

RAxMLv8.2.12 under GTR-GAMMA model bootstrapping (1,000 replicates) with vectorised

AVX2 instructions [36]. The tree layout was graphically edited using iTOL v5.6 [37]. Allelic

difference with� 10 SNPs to the nearest neighbour was used as a cut-off value for clonal relat-

edness [38].

Additionally, CRISPR loci and cas genes identification were performed using CRISPRcas-

Finder server (accessed on 16th July 2020) while cas gene detection was performed via subtyp-

ing clustering model option [39, 40]. CRISPRcasFinder gives evidence level for each CRISPR

locus as 1 being less evident. We reported only CRISPR with evidence level� 4 or those with

<4 but harbouring cas genes. CRISPR loci were defined based on flanking genes as CRISPR

2.1 flanked by cysH and iap, CRISPR 2.3 and CRISPR 2.2 sandwiched between ygcF and ygcE,

while CRISPR 4.1 just after clpA and CRISPR 4.2 just before infA. Annotated genomes

obtained from EnteroBase were used to allocate the arrays for the classification and for direc-

tion verification. To screen for anti-CRISPR and self-target spacer, we used CRISPRminer

database [41]. Also, spacers were aligned against viruses and plasmids using BLASTn to deter-

mine similarity with phages and plasmids. An Expect value (E-value) of 0.0001 or less was

used to identify matches. The spacers were considered similar, if their sequences were at least

90% identical.

Analysis of accessory genes

Assembled genomes were uploaded to the Center for Genomic Epidemiology (CGE) database.

Resistance genes were screened with a threshold of 100% identity over 100% coverage using

ResFinder v1.3 web tool [42]. We looked particularly for ARGs against β-lactam, yet ARGs

against other broad spectrum of antibiotic classes (aminoglycosides, fluoroquinolones, tetracy-

cline, folate synthesis inhibitors and phenicol) were also reported. Additionally, reads were

aligned against K-12 (NC_000913.3) to identify missense mutations in genes related to fluoro-

quinolone resistance (parE, parC and gyrA) as well as in genes regulating AcrAB-TolC efflux
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pump (acrR, marA, marB, marR, soxS, soxR, envZ) and porins (ompC, ompF, ompR) using

CLC Genomics Workbench 20.0 (Qiagen Bioinformatics, Aarhus, Denmark).

Furthermore, to reflect on plasmidome contents, we used in silico plasmid replicon (rep)

typing approach as described previously [43]. We uploaded the assembled genomes to Plas-

midFinder v1.3 web tool with default setting (95% identity and 60% minimum length) and

subtyped frequent replicons (IncF, IncI1, IncN) with plasmid MLST using pMLST v1.4 web

tool as described previously [44]. To identify mobile genetic elements (MGEs) and their rela-

tion to carbapenemase genes we uploaded the assembled genomes into MobileElementFinder

v1.0.2 within CGE database with default setting (95% minimum alignment coverage, 90%

identity and 30 nt maximum truncation).

Additionally, virulence genes and fimH type from assembled genomes were performed

with default settings (90% identity and 60% minimum length) using VirulenceFinder 2.0 and

FimTyper 1.0 (95% identity) web tools, respectively, as described previously [45].

Finally, prophage typing was performed using the Phaster database (accessed on 18 July

2020) [46, 47]. Phaster categorises prophages based on their score into three groups; intact

(score > 90), incomplete (score 90–70) and questionable (score <70). The obtained sequences

were screened for ARGs and virulence genes using CGE web tools as described previously

[48].

Ethical statement

Ethical approval was obtained from Ministry of Health in Oman to utilise the described bacte-

rial isolates and collected (anonymised) patients’ data for this study (MH/DG/R&S/32/2015).

Results

Demographic data

The samples were obtained from Oman, which is a country located in the Arabian Peninsula.

A total of 35 positive isolates in the initial screening for CR-EC were collected from eight ter-

tiary care hospitals in Oman between January and October 2015 (S1 Fig). The majority of

them (n = 20/35) were from Khoula Hospital (S2 Table). It is a tertiary care unit specialised in

bone injury including car accidents which are a serious public health problem in Oman [49].

The majority of isolates were clinical (n = 22/35) with wound being the predominant source

(Table 1). The remaining isolates were from screening (n = 13/35). The screening isolates were

obtained as per infection prevention and control guidelines in Oman. This includes all cases

admitted previously in hospitals within Oman or abroad for the last three months or 6 months,

respectively. Also, all cases admitted in intensive care unit (ICU) or those exposed to positive

CRE cases are screened as per the guidelines. The source of screening isolates varied from rec-

tal and wound swabs to catheter sites and tracheal secretions if patients were intubated.

The majority of the strains were isolated from male patients (n = 25/35). Median age of the

patients was 50 years (IQR = 20–66). Five patients expired, of whom two had confirmed bac-

teraemia (S2 Table). The data regarding antibiotic usag by the source patients were available

for 32 samples. Nine of them were treated with meropenem and seven were treated with

extended-spectrum cephalosporins. Ten patients (29%) had a travel history to India.

Genetic diversity showed a polyclonal population structure

To unravel population structure and genetic diversity, different typing approaches were used

including SNPs, MLST, phylogenetic and CRISPR typing. Core SNPs analysis was inferred

based on 25,534 input positions remained after filtering (Fig 1). The core SNPs diffrences
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Table 1. Summary of clinical and genetic data for the 35 E. coli isolates from Oman.

Demographics

Source

Hospital Khoula (57%), Royal (14%), SQH (11%), SQUH (3%), Sohar (6%), Buraimi (3%),

Nahda (3%), Sur (3%)

Nationality Omani (68.6%), Yemeni (25.7%), Indian (5.7%)

Purpose screening (37%), clinical (63%)

Specimen fecal screening (37%), wound (26%), urine (14%), blood (6%), biopsy (9%),

respiratory (6%)

Patient information

Age (years) mean (44), median (55), range (3 weeks-81 years)

Sex male (71%), female (29%)

Survival 86%

Antibiotic usage meropenem (29%), β-lactam inhibitor (43%), 3rd generation cephalosporin (17%),

penicillin (11%)

fluoroquinolones (23%), gentamicin (9%), colistin (11%)

Travel information India (29%)

Bacterial phylogenetics and sequence types (n�)

Group A (12) ST1702 (2), ST167 (3), ST617 (3), ST46 (1), ST540 (1), ST361 (2)

Group B1 (4) ST101 (2), ST448 (1), ST156 (1)

Group B2 (4) ST131 (1), ST73 (1), ST127 (1), ST1193 (1)

Group C (4) ST410 (3), ST652 (1)

Group D (9) ST38 (4), ST405 (3), ST2914 (1), ST2659 (1)

Group F (2) ST1340 (1), ST6870 (1)

CRISPR-cas system (m��)

I-E subtype (m) CRISPR 2.3 (30), CRISPR 2.1 (29)

I-F subtype (m) CRISPR 4.1 (5), CRISPR 4.2 (1)

Direct repeat 4 groups

Spacers (Total = 637) unique (144), self-targeting (1), matching phage (28), matching plasmid (10)

cas genes (m) I-E subtype: present fully (25) present partially (4) absent (1)

I-F subtype: present fully (1), absent (4)

β-lactamase genes and plasmid replicons (m)

β-lactamase genes (m)

Carbapenemases (24) NDM-5 (8), NDM-1 (5), NDM-4 (1), NDM-7 (1), OXA-181 (5), OXA-48 (4)

ESBLs (32) CTX-M-15 (28), CTX-M-24 (1), CTX-M-3 (1), CTX-M-55 (1), SHV-12 (1)

AmpC (13) CMY-42 (7), CMY-2 (3), CMY-6 (1), DHA-1 (2)

Penicillinase (44) TEM-1B (24), OXA-1 (18), OXA-9 (2)

Plasmid Replicons (Total = 136)

Incompatibility groups

(116)

IncFIA (23), IncFII (30), IncFIB (23), IncX (14), IncI1 (11), IncA/C2 (1), IncL/M (3),

IncN (3), IncY (2),

IncQ1 (5), IncR (1)

Colicin (19) BS512 (9), ColKP3 (3), ColpVC (4), Col156 (3)

Others (1) p0111 (1)

Virulence genes and prophages (m)

Virulence genes

(Total = 380)

Adhesion (73) fimH (24), air (10), eilA (10), iha (3), lpfA (10), pap (5), foc (1), afa (3), yfcV (6), sfa (1)

Toxins (32) astA (2), cnf1 (2), clbB (2), microcin genes (7), colicin genes (5), senB (6), pic (2), sat
(3), vat (3)

Siderophores (95) iroN (2), iucC (12), iutA (12), irp2 (17), fyuA (17), chuA (15), sitA (20)

(Continued)
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ranged between 0 (OM852 and OM898) to 8,031 (OM82 and OM260). Clonality between indi-

vidual strains (SNP�10) was observed on several occasions (Fig 1).

Regarding MLST, both cgMLST and wgMLST resulted in unique STs for each strain, which

did not help to recognise genetic relatedness between the studied strains. Classical MLST,

based on 7 house-keeping genes, revealed 22 sequence types (STs) with ST38 being the most

common as it was detected in 4 isolates (Table 1). Other STs were ST167, ST617, ST405 and

Table 1. (Continued)

Protectin (162) kpsE (15), kpsMII (10), neuC (3), gad (34), usp (4), iss (21), terC (34), traT (23), hra
(15), tcpC (3)

Others (18) capU (11), ompT (7)

Prophages (Total = 200)

Detection (%) intact (40%), questionable (12%), incomplete (48%)

Virulence genes (m) iss (14), irp2 (1), kpsE (1), kpsMII (1)

�n: total number of geneome with the respective attribute.

��m: total number of attribute presented in the whole genomic collection.

https://doi.org/10.1371/journal.pone.0239924.t001

Fig 1. Genetic diversity for the studied strains. The maximum likelihood tree was inferred with 1,000 bootstrap based on 25,534 core SNPs. Sample

ID is indicated in the tip of each branch. Since OM852 and OM898 strains were identical in SNPs analysis, only one strain (OM852) is presented here;

marked with black dot at the branch. Serotypes and fimH variants were presented only if occured more than once. Bars represent total number of

spacers in 4 CRISPR arrays, resistance genes in 6 antibiotic classes (β-lactams, aminoglycosides, fluoroquinolones, tetracyclines, folate synthesis

inhibitors and phenicols), plasmid replicons, virulence genes and prophages. Asterisk indicates strains obtained from the same patient.

https://doi.org/10.1371/journal.pone.0239924.g001
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ST410 which were detected in 3 strains each. The majority of STs were singletons. This reflects

a polyclonal popluation structure with wide genetic diversity as expected since the samples

were obtained for surveillance purpose rather than outbreak investigation.

Furthermore, 6 phylogenetic groups were detected. The majority of isolates belonged to

phylogroup A (12/35). The virulent B2 group was detected in four isolates. Also, D and F phy-

logroups were detected in 9 and 2 isolates, respectively (Table 1 and Fig 1).

CRISPR typing differentiates strains within the same phylogroup into subclusters. For

example, within phylogroup A we saw three different clusters (Fig 2). Yet, MLST had higher

resolution than CRISPR typing. For example, ST1702 and ST167 both belong to clonal com-

plex 10 and had identical CRISPR-cas system (Figs 1 and 2). Interestingly, all four strains with

B2 phylogroup lacked CRISPR as well as one strain of F phylogroup, known to be genetically

close to B2 phylogroup.

We identified 65 CRISPR loci in 30 isolates (Table 1). Within I-E subtype, 29 strains had

both 2.3 and 2.1 loci while one harboured CRISPR 2.3 only (OM126). Yet, CRISPR 2.2 locus

Fig 2. CRISPR-cas system for the 35 E. coli strains. Graphic representation of CRISPR-cas system of I-E (A) and I-F (B) subtypes. In the structural

demonstration gray boxes represented genes not part of CRISPR-cas system. Boxes point towards direction of transcription. Within CRISPR locus,

leader represented by “L”. Direct repeats depicted with black diamond and spacers with coloured rectangles. Strains were ordered based on SNPs

analysis while spacers were ordered as per their occurance in a positive strand direction in each strain. Identical colours and letters present identical

spacers while unique spacers have white background. Letters in bold font represent spacers occurred more than once in the same loci.

https://doi.org/10.1371/journal.pone.0239924.g002
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could not be detected in any strain. Regarding I-F subtype, five strains only had this subtype

with one isolate having both 4.1 and 4.2 loci (OM664).

The presence of CRISPR system does not always indicate an active system. To reflects on its

activity, we studied two factors. First, the presence of cas genes as this most likely suggests an

active CRISPR-cas system (Fig 2). Within strains having I-E subtype, we found 25 complete, 4

partial, and one isolate with no trace of cas genes. The latter had one array only (CRISPR 2.3)

with 4 spacers which might suggest decaying system. Regarding I-F subtype, 4 strains had no

cas geneswhile they still harboured cas genes at I-E subtype (Fig 2). Interestingly, OM664 had a

complete set of cas genes in both I-E and I-F subtypes, reflecting an active CRISPR-cas system.

The second factor that reflects the activity of CRISPR-cas system is the number of spacers.

Here, 637 spacers were detected, among which 144 (23%) were unique (Fig 2). The highest

number of spacers (n = 46) was observed in OM644 (ST448 and phylogroup B1). All of them

were unique spacers whereas the majority of strains shared at least one spacer with each

other. This indicates a distinct genetic background for this particular strain (OM664). Inter-

estingly, it was isolated from a patient with a recent travel history to India (S2 Table). Hence,

CRISPR particularly in E. coli might be a useful tool to recognise outlier strains with distinct

genetic background. Unexpectedly, identical spacers occurred more than once in the same

CRISPR loci within the same strain. For example, OM211 and OM347 both had two copies

of a particular spacer named kt and ob, respectively (Fig 2). This is uncommonly seen in

CRISPR system and we could not exclude this might be due to technical error related to

sequencing or assembly. Additionally, we investigated if spacers had genetic interaction with

phages and plasmids. We found 28 spacers matching phages and 10 matching plasmids while

one spacer was matching bacterial chromosome as self-targeting (Fig 2). Worth noting,

strains with identical spacers, tend to have the same serotype (Fig 2). For example three out

of four strains with identical spacers at I-F subtypes, were O9:H30 (Fig 2). Similar finding

was reported previously [15].

For serotyping, we used an in silico approach. While H-antigens could be identified in all

strains, O-antigens could not be predicted in 7 strains. We could identify 12 H-types with H9

being the commonest (n = 7), followed by H6 (n = 5). On the other hand, 15 O-types could be

seen with O89 being the most common (n = 6), followed by O9 (n = 4). O- and H-antigens

revealed 19 different serotypes, with O89:H9, O9:H30 and O102:H6 being slightly predomi-

nant in 3 isolates each (Figs 1 and 2).

Mechanisms of carbapenem resistance

We used the cut-off value of<28 mm for meropenem (10 μg) reading to screen for carbapene-

mases as per EUCAST guidelines (www.eucast.org). Twenty-five isolates fulfilled this criterion

and were considered putative carbapenemase producers (S2 Fig). Out of them, 22 isolates har-

boured known carbapenemase genes. Thirteen of them were NDM with four variants of which

NDM-5 was the commonest (8/13), followed by NDM-1 (5/13). Seven isolates were OXA-

48-like with both OXA-181 (4/7) and OXA-48 (3/7) variants. The remaining two isolates co-

produced both enzymes (Fig 3).

In addition, almost all carbapenemase-producing strains had ESBL enzymes (n = 21/22)

except OM481, which was an OXA-48 producer only (Fig 3). Overall, 31 isolates produced

ESBL enzyme with CTX-M-15 as the most common ESBL-variant (n = 28/31). All isolates

were susceptible to colistin, fosfomycin and tigecycline while all OXA-48-like producers were

susceptible to ceftazidime-avibactam (S2 Fig).

Three isolates had no known carbapenemase genes, but meropenem reading <28 mm.

They harboured blaAmpC (OM112), blaESBL (OM211), or a combination of both genes
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(OM5639). They were negative by Carba NP, whilst were identified as OXA-48-like or ESBL

with porin loss in ROSCO disk (S2 Fig).

Aside from the presence of carbapenemase genes, loss of porins or alteration in AcrAB-

TolC efflux pump play a role in CR-EC. Thus, we further looked into chromosomal changes in

the three strains which harboured no known carbapenemase genes but were carbapenem non-

susceptible. OM5639 had a single variation in ompC whereas OM211 had genetic variations in

both ompF and ompC genes. Interestingly, OM112 had a wild-type sequence in ompF, ompC

and ompR. Regarding genes regulating the AcrAB-TolC efflux pump, no variation could be

seen neither in OM5639 nor in OM112. Yet, we detected one missense mutation in AcrR

resulting in a frameshift of valine amino acid at codon 29 (V29fs) in OM211 (S3 Table). The

data show, at least in one strain (OM112) the reduced susceptibility to carbapenem could not

be attributed neither to carbapenemases nor to mutations in chromosomal genes.

For the rest of the strains, we reported high frequency of missense mutations in porins

(OmpC and OmpF), while only one was seen in regulatory OmpR protein in one strain

(OM150) (S3 Table). Regarding efflux pump, we reported already known missense mutations

in AcrR (T5N), MarR (G103S, Y137H, K62R, S3N), SoxR (T38S, G74R), and SoxS (A12S) to

induce overexpression of the AcrAB-TolC efflux pump and contribute to fluoroquinolones

and tigecycline resistance in E. coli [50–55]. Also, we saw a A111T missense mutation in SoxR,

which has unclear clinical significance, as it has been seen previously in isolates with normal

expression of soxS mRNA [52, 55]. Another genetic alteration commonly seen was a frame

shift at codon 29 of AcrR regulator protein (V29fs). In the same codon, V29G was reported by

others [55]. Additionally, we detected other SNPs that might be significant, but have not been

reported previously in the literature (S3 Table).

With regards to the 10 isolates with meropenem zone diameter�28 mm, 9 strains carried

β-lactamase genes—either blaAmpC, blaESBL, or both. One isolate (OM333), was susceptible to

cephalosporins by disk diffusion and lacked any known acquired resistance gene in all

screened classes of antibiotics (Fig 3 and S2 Fig).

Plasmidome and mobile genetic element

Carbapenemase genes are often carried by plasmids. Here, we used in silico plasmid replicon

(rep) typing approach to reflect on plasmidome content (Table 1). A total of 136 replicons

were detected within 34 isolates, with one isolate being plasmid-free (OM1433).

Fig 3. Heatmap presents in silico analyses of β-lactamase and virulence genes. Strains were arranged based on SNPs

analysis. Black shaded box indicates gene is present. For fimH, numbers within shaded cells, indicate allelic variants.

Asterisk within isolates harbouring microcin genes indicates strains had Col replicon.

https://doi.org/10.1371/journal.pone.0239924.g003
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As expected repIncFII (also designated as repIncFIIA) alone or in combination with

repIncFIA or/and repIncFIB, was the most common replicon in E. coli (Table 1) asit was seen

in 30 strains. While we detected repIncFIA and repIncFIB in 23 isolates each. Replicon subtyp-

ing showed higher diversity in repIncFIB with 7 subtypes, compared to repIncFIA having only

3 subtypes (S2 Fig). Additionally, we detected 4 replicons of colicingenic plasmids (ColBS512,

ColKP3, ColpVC, Col156) which usually carry colicin as an important virulence factor in

E. coli.
Usually mobile genetic elements (MGEs) flank ARGs. So we sought to screen for MGEs in

close proximity to carbapenemase genes. Out of 22 isolates producing carbapenemase, we

could detect MGEs in only five. OM561 had 3 MGEs sandwiched between blaNDM-7 (IS5:

blaNDM-7:IS26:ISKox3). Both OM1071 and OM1273 had ISKpn19 within the same contig

where carbapenemase genes were found. Moreover, OM1301 harboured two carbapenemase

genes in two distinct contigs. While the contig with blaOXA-181 had 2 MGEs (ISKpn19:

ISKox3), we could see one MGE (IS26) close to blaNDM-5. Also, ISAba14 was seen close to

blaNDM-1 in OM1136. The rest of carbapenemase genes might have MGEs, but this could not

be confirmed due to the limitations of short-read sequences.

Virulence determinants

One of the factors that determines the ability of CR-EC to establish an infection is its arsenal of

virulence genes. Here, the total number of virulence genes were 380 ranging from 4 to 29 (Fig

3). OM333 had the highest number of of virulence genes. It belonged to B2-phylogroup and

did not have any ARGs (Fig 3). Yet, the lowest number of virulence genes (n = 4) was seen in

OM1273 and OM1301 strains. They belonged to phylogroup C and ST410. The virulence fac-

tors could be categorized into adhesin, toxin, siderophore and protectin related genes

(Table 1).

Among adhesin-related genes, type 1 fimbrin D-mannose specific adhesin protein encoded

by fimH gene is an important typing scheme in E. coli. Twelve types of fimH were seen in 24

isolates. Six of them were singletons whereas fimH54 was the commonest (n = 5). The notori-

ous fimH30 (n = 3) and fimH64 (n = 1) alleles were detected mainly in B2-strains. Also,

fimH24 was reported in three isolates belonged to phylogroup C. Eleven isolates could not be

typed (Fig 3).

Among toxin-related gene, bacteriocins (colicin and microcin) are known to be produced

by E. coli against competitors as a defence mechanism. Genes codify colicin (cma, cea, cia, cib)

were detected in 5 isolates whereas those codify microcin (mchBCF, mcmA and cvaC) were

detected in 4 strains (Fig 3). Col plasmids usually carry bacteriocin genes. Here both repCol

and bacteriocin genes were seen together in two isolates (Fig 3). Also, two strains harboured

clbB (colibactin) which is another toxin-related gene. They belonged to B2 phylogroup

(OM333 and OM1692). Besides, all B2-strains (n = 4) carried genes (pic, vat, sat) encoding ser-

ine protease autotransporters of Enterobacteriaceae (SPATE) toxins.

Siderophores were common in the studied strains. Aerobactin (iucC, iutA) were detected in

12 strains whereas yersinabactin (irp2, fyuA) were seen in 17 strains. Both aerobactin and yer-

sinabactin were found in 9 isolates. Additionally, salmochelin (iroN) was detected in two

strains both of them belonged to B2 phylogroup. Moreover, iron transport gene (sitA) and

iron receptor gene (chuA) were detected in 20 and 15 strains, respectively (Fig 3).

Protectin factors include genes related to capsule and those involved in resistance to sub-

stances that are unfavourable to bacterial growth. The commonest were gad (glutamic decar-

boxylase) and terC (tellurium iron resistance), as they were seen in most of the strains (n = 34).
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Another important protectin factor is iss (increased serum resistance) which was detected in

21 isolates (60%) and our data show it could be gained by HGT from prophages.

Prophages carried virulence genes

As phages were used historically to type bacteria, we typed the prophage content in silico. In

total 200 prophages were detected in 35 isolates. Based on their identity score, 80 were intact,

24 were questionable and 96 were incomplete (S2 Fig). Interestingly, we identified prophages

carrying virulence genes (Table 2). For example, the iss gene was detected within prophages in

14 isolates, while irp2, kpsE and kpsMII were detected within prophages in one strain. Note-

worthy, most of the prophages harbouring virulence genes were intact (n = 10) (Table 2).

High-risk clones

The spread of resistance genes globally, is linked to particular clones known as high-risk clones

(HiRC). Here, we detected three HiRCs among five strains. All were resistant to fluoroquino-

lones (R) and produced CTX-M-15 (x). Two of them belonged to the virulent B2 phylogroup

whereas the remaining three strains belonged to C phylogroup. All of them harboured resis-

tance genes to most classes of antibiotics except colistin, fosfomycin and tigecycline (S2 Fig).

One of the B2-strain was ST131-H30Rx/C2 (OM260). It was resistant to fluoroquinolones

due to mutations in GyrA (S83L, D87N) and ParC (S80I, E84V) proteins. It produced AmpC

and CTX-M-15 enzymes (S4 Table). The second B2-strain was ST1193-H64Rx (OM1136). It

had mutations known to cause fluoroquinolones resistance in GyrA (S83L, D87N), ParC

(S80I) and ParE (L416F) proteins. Additionally, it produced CTX-M-15, AmpC and worry-

ingly NDM-1 (S4 Table).

The third clone was ST410-H24RxC which was seen in 3 strains of C phylogroup. All of

them carried three repIncF (repIncFII, repIncFIB, repIncFIA) and had repIncX3. Two of them

(OM1273 and OM1301) had identical virulence genes (gad, IpfA, terC) and identical repIncF

with pMLST (F1:A1:B49). In addition to blaCTX-M-15, both strains possessed blaTEM1B-

Table 2. Virulence genes found within propahges in the studied strains.

Strain Genes (Identity) Contigs number Position in WGS Position in prophage Prophage completeness

OM78 iss (100%) 3 15367–15660 76–39772 questionable

OM126 iss (99.7%) 36 15378–15719 54–16050 intact

OM260 iss (100%) 14 5237–5578 88–28717 incomplete

OM347 iss (100%) 20 75350–75643 55542–76554 incomplete

OM693 iss (99.7%) 26 38970–69812 38970–69566 intact

OM853 iss (98.6%) 34 36367–36708 12683–40942 incomplete

OM855 iss (99.7%) 43 4609–4950 59–17951 intact

OM898 iss (99.7%) 22 56574–56915 26075–77569 intact

OM979 iss (99.7%) 21 22639–22980 50–40467 intact

OM1071 iss (99.4%) 21 56597–56938 26098–77591 intact

OM1168 iss (99.7%) 61 1548–1889 2–16882 intact

OM1341 iss (100%) 50 866–1159 2–16038 incomplete

OM1626 iss (99.7%) 47 66–17958 66–17958 intact

OM1692 irp2 (99.9%) 2 84621–118851 84621–118851 intact

kpsE (100% 3 111–4554 questionable

kpsMII (100%)

OM5639 Iss (99.7%) 22 56469–56810 38970–73781 intact

https://doi.org/10.1371/journal.pone.0239924.t002
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blaOXA1-strAB-dfrA17-sul2-tetB resistance genes. Yet, OM1273 harboured blaOXA-181 only

whereas OM1301 co-harboured blaOXA-181 and blaNDM-5. They had quite destinct mutations

encoding fluoroquinolones resistance (S4 Table). The remaining strain (OM561) carried

blaNDM-7 gene and repIncF with pMLST (F31:A4: B1). It did not have any mutations in ParC

and ParE proteins. Yet, we saw two missense mutations in GyrA (S83L, D87N) (S4 Table).

Correlating genomic and clinical epidemiologies

To achieve a better understanding of the spread of CR-EC in Oman, we assessed potential

transmission particularly for strains with� 10 SNPs apart. There were 8 pairs with this crite-

rion (Table 3). Interestingly, one pair (OM79 and OM147) was isolated within a month from

the same neonatal patient with a travel history to India (S2 Table). Despite both were NDM-

producers, OM79 carried NDM-4 variant whereas OM147 had NDM-1 (Fig 3). Nevertheless,

both strains most likely arose from the same ancestor, apparently their contents of accessory

genes evolved. Whether the alteration occurred within the host who might encounter the

strain initially from India yet due to change in antibiotic pressure, the strain content of ARGs

changed or the patient might encounter two independent strains circulating in the hospital is

not clear from the data we had. Generally, if the isolates carry different carbapenemase genes

they are unlikely to be involved in the same transmission event despite their similar genetic

background. Hence, we will focus on pairs with the same carbapenemase genes as a potential

transmission events.

The first event involved two ST1702 isolates (OM852 and OM898) with no SNPs differ-

ences. They were separated by one and two genes with cgMLST and wgMLST, respectively

(Table 3). The two isolates had the same accessory genes as well as identical replicon types of

repIncF pMLST (F2:A4:B-) and IncI1 pMLST(C) (S2 Fig). They were isolated one month

apart from the same hospital, yet in different wards, at least at the time point of sampling (S2

Table). This suggest local transmission, although infection control data to support the likeli-

hood of such an event could not be obtained.

The second possible transmission event involved two strains of ST167 (OM855, OM1626).

They had the same NDM variant (NDM-5) and pMLST (F36:A4:B-). OM855 was isolated first

in a screening sample from a Yemeni patient who was admitted at Khoula hospital (Muscat)

on May and discharged four days later. He was paraplegic for a month which could suggest

Table 3. Comparison of typing approaches and their clinical relatedness for isolates with� 10 SNPs apart.

Strain 1 Strain 2 Isolation gap (Month) Source (Hospital) Carbapenemase genes SNPs (25,534) wgMLST (25,000) cgMLST (2,500) MLST (7)

OM852 OM898 1 same same 0 2 1 0

OM855 OM1626 4 different same 1 18 7 0

OM79� OM147� 1 same different 2 27 7 0

OM839 OM82 0 same no‡ 7 347 191 0

OM1301 OM1273 0 different similar§ 8 85 25 0

OM855 OM1071 1 same different 9 215 87 0

OM1626 OM1071 3 same different 10 233 80 0

OM347 OM234 1 same different 10 126 68 0

Clusters were arranged ascendingly based on the number of core SNPs between them. Number within parentheses indicates the total number of SNPs/genes used in

each scheme.

�Isolates were obtained from the same patient.
‡ Isolates produced CTX-M-15.
§OM1301 harboured blaNDM-5 and blaOXA-181, while OM1273 only had blaOXA-181.

https://doi.org/10.1371/journal.pone.0239924.t003
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another medical treatment was involved prior to this admission (S2 Table). In September,

OM1626 was isolated in a clinical sample (wound) obtained from an Omani patient who was

admitted at SQH hospital in Salalah. They had identical accessory genes including the same

IncF replicon (F36:A14:B-). Despite the close genetic similarity between them, there was no

clear temporospatial link between the individuals to infer a common source of infection. Since

Yemen is close to Salalah, we speculate the first patient could be a potential carrier for the

ancestor strain who might initially received a medical care at SQH (Salalah) prior to his admis-

sion at Khoula hospital (Muscat) and became a carrier to the clone isolated from SQH four

months later (OM1626). However, it is not clear from the patient history whether he was

admitted at SQH previously.

We expected that patients’ citizenship or travel history could correlate with the occurrence

of certain resistance genes. Interestingly, the isolates from Indian patients did not produce

NDM nor OXA-48-like enzymes. Data on foreign travel was available only for 10 patients

(29%), hence no proper statistical analysis could be carried out (Table 1).

On the other side, out of five deceased patients two of them had bacteraemia (OM333,

OM78), four had history of diabetes mellitus and hypertension (OM78, OM150, OM333,

OM693), one had gastrointestinal bleeding (OM82) and one had kidney graft dysfunction

(OM693). Thus, we cannot exclude that the deaths were attributed to non-infectious co-mor-

bidities (S2 Table). Notably, one of the expired patients had a strain with no acquired resis-

tance genes but with the highest number of virulence genes (OM333). It belonged to B2

lineage and ST73 (Fig 3).

Discussion

The data presented herein stemmed from a genomic epidemiology and surveillance study of

CR-EC from Oman in 2015. We saw a polyclonal population structure as multiple STs were

seen with low frequency. We demonstrate that all confirmed carbapenemase-producing E. coli
from Oman belonged to either NDM (59%) or OXA-48-like (32%) classes, or a combination

(9%). The high-risk subclones, ST131-H30Rx/C2, ST410-H24RxC and ST1193-H64RxC were

detected. The latter was associated with NDM, to our knowledge for the first time in interna-

tional literature.

Over the last decade, WGS has been increasingly used for epidemological typing, and multi-

ple online pipelines are available for WGS analyses [26, 56, 57]. While this is an advantage it

does create challenges yet to be resolved including, but not limited to, how to correlate studies

utilising different approaches. Another challenge is selecting the approach with optimal

resolution for the aim of the study whether surveillance or tracing the source of an outbreak,

considering the pros and cons in each approach. A third challenge is the management of

recombination, as most of the approaches rely on the recognition of sites with high SNP den-

sity, which is not distinguishable from region with high rate of heterogenisity [58]. Here, we

thought to mask the 7 house-keeping genes prior to variant calling and filtering out recombi-

nation sites, to eliminate the risk of technical error, as the collection is genetically diverse. We

saw good alignment between SNP-calling and cgMLST scheme in allelic differences. We

reported eight putative transmission pairs based on SNPs data (Table 3), although some of

them were less likely, due to for instance presence of different carbapenemase genes. The lack

of clinical data supporting some of the episodes questions whether the algorithm for removal

of recombination could be too strict, thus increasing the overall resolution falsely [59]. More-

over, the downstream analyses are heavily impacted by the quality of reads and the assembled

genome used as input.
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We detected herein a polyclonal population with diverse sequence types of CR-EC in

Oman. Twenty-one STs were seen in 35 isolates yet most of them were singletons. The most

commonly encountered ST was ST38, belonging to phylogroup D (Fig 1). We also detected

ST410-H24RxC in three strains, a subclone that emerged recently [60, 61]. ST410 has been so

far associated with the production of OXA-181 and/or NDM-5 carried on IncX3 plasmid.

Both carbapenemases were detected in one strain. Yet, only NDM-5 or NDM-7 were detected

in the remaining strains (Fig 3). Due to the fact that only short reads are available, we were

unable to determine whether carbapenemase genes were located on IncX3 or on another plas-

mid, but we could confirm the presence of repIncX3 in the three strains (S4 Table). ST410

with NDM-7 has been reported from China previously [62]. Noteworthy, the three strains in

our data belonged to phylogroup C rather than A. The latter was reported for ST410-H24RxC

in literature [61].

Furthermore, HiRC ST131-H30Rx/C2 (OM260) and ST1193-H64Rx (OM1136) were

detected. The latter carried blaNDM-1. To our knowledge this is the first report of

ST1193-H65Rx with the blaNDM gene, now named ST1193H65RxC where C indicates the

presence of carbapenemase gene. Recently, two strains with ST1193 and ST131 were reported

to carry blaIMP gene from Japan. However, no data were available at subclonal level [63].

ST131-H30Rx/C2, was reported recently with different carbapenemases from UK [18]. Such

HiRCs with resistance and virulence genes are worrisome and concerning globally due to their

rapid dissemination with CTX-M-15 previously and being of B2 phylogroup.

The virulent B2 phylogroup was detected in four isolates. None of them but OM1136,

described above as ST1193-H64RxC, harboured carbapenemase genes. It had blaNDM-1 and

ISAba14 within the same contig. Interestingly, it had the second highest number of ARGs

(n = 18), only one gene less than OM1301 (n = 19). To the contrary, another B2-strain had no

ARGs for all screened classes of antibiotics (OM333-ST73-O6:H1) but had the highest number

of virulence genes (n = 12) and only repIncX1 (Fig 3 and S2 Fig). The strain was isolated from

the bloodstream of a patient who eventually expired (S2 Table). ST73-O6:H1-B2 clone was

reported with CTX-M-15 from Egypt and Japan previously but not with carbapenemases so

far to our knowledge [64, 65]. It is a notorious clone due to its association with bloodstream

infection and expression of a high number of virulence genes [66]. Worth noting, all B2-strains

lacked a CRISPR system (Fig 2), corroborating previous reports [67, 68]. The absence of

CRISPR in the B2 lineage likely increases their susceptibility to acquisition of mobile genetic

elements.

Despite CRISPR system in E. coli known to be static, it could be a valuable tool to recognise

outlier strains, perhaps to a higher degree than for instance MLST [68]. Here, OM664 showed

the highest number of spacers (n = 46) which were unique (Fig 2). This highly divergent strain

was isolated from fecal screening in a patient with travel history to India (S2 Table). The strain

belonged to ST488, a rare ST reported from India previously [69]. This suggests the strain was

recently introduced to Oman from India and not yet merged genetically with other local

strains, hence all spacers were unique. It had blaNDM-5 which was reported recently from India

and China [70, 71].

Likewise, we found NDM-5 as the most frequent variant of NDM in this collection (n = 8).

Also, we detected NDM-7 in one isolate which mirrors a report of low prevalence of NDM-7

in the Arabian Peninsula [72]. In this dataset, NDM and OXA-48-like enzymes were the only

carbapenemases in CR-EC from Oman. The resistance pattern we saw in this study echoes pre-

vious reports from Oman. For example, the first report of CR-EC from Oman was in 2012

from the Royal Hospital in Muscat, with four strains featuring NDM-1 and OXA-48-like

enzymes [73]. Additionally, from the same hospital, Sonnevend et al., examined ten E. coli
strains and reported the presence of blaNDM-7 in one of them in 2015 [74].
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Beside the gain of new genes encodying carbapenemases, alteration in already existing

genes could yield a CR-EC phenotype. Despite there was no porin loss in all isolates, we

noticed genetic variations in ompF, ompC and ompR genes, none of these mutations were pub-

lished previously (S3 Table). Regarding AcrAB-TolC efflux pump, we found genetic alterations

in all regulating genes with soxS and marA having the lowest variation in only one isolate for

each gene. Further experimental work is required to verify their impact. Noteworthy, five iso-

lates (OM112, OM839, OM1301, OM853, OM979) showed wild-type in all screened genes (S3

Table).

As expected, isolates with B2 phylogroup were the most virulent strains. All of them (n = 4)

harboured genes (pic, vat, sat) codify for SPATE toxins. They were isolated from blood

(OM3333-ST73; pic, sat, vat), urine (OM1692-ST127; vat, pic), tracheal secretion

(OM1136-ST1193; sat, vat) and biopsy (OM260-ST131; sat). Interestingly, pic (protease

involved in intestinal colonization) and sat (secreted autotransporter toxin) but not vat
(vacuolating autotransporter toxin) were linked to Enteroaggregative E. coli (EAEC) previ-

ously [75, 76]. Besides, Pic implicates mucinase activity, serum resistance, hemagglutination

and promote intestinal colonisation [77]. While Sat and Vat are known to cause cytotoxic

damages and were associated with uropathogenic E. coli (UPAC) or urosepsis clinical isolates

previously [78–80]. Generaly, most of the detected virulence genes were reported previously in

extraintestinal pathogenic E. coli (ExPEC). For example, fimH, iha, sfa, astA, iroN, cnf1, sat, iss
and irp [81–83].

Another important virulence factor is the presence of siderophore which plays a role in

iron acquisition. Here, we reported three siderophore systems (aerobactin, yersiniabactin, sal-

mochelin) in more than half of the studied strains (n = 19). No enterobactin related genes

were detected despite being the most efficient system in scavening iron [84]. The least com-

mon was salmochelin as it was found in two isolates of B2 phylogroup. Interestingly, one of

them (OM1692) was isolated from urine as Watts et al., suggested that salmochelin plays a role

in urinary tract colonisation [84].

Our data support that prophages could act as a vehicle for virulence genes including iss
(Table 2). Studies of iss evolution in E. coli have demonstrated similarities with the bor gene

from lambda (λ) bacteriophage [62]. With regards to ARGs, we did not detect any ARGs

within prophages. Yet, there were reports supporting prophages could carry ARGs. For exam-

ple, blaCTX-M-27 was detected in SJ46 (P1-like bacteriophage) from Salmonella spp in China

[85]. Prophages with blaTEM, blaCTX-M and qnrS have been reported previously [4–6]. Interest-

ingly, Kleinheinz et al., detected blaOXA-48-like from a prophage in silico [86]. However, a recent

analysis of 659 putative prophages in the human gut revealed that only three prophages

(0.46%) carried resistance genes [87]. The role of prophages in the spread of resistance genes is

still largely unclear and remains to be further investigated.

On the other hand, plasmid is known to carry resistance genes and spread them horizon-

tally. However, we reported a strain (OM1433) with no plasmid replicon but it featured

blaOXA-48-like which is commonly linked to IncL/M (pOXA48) plasmid (S2 Fig). The strain

belonged to ST38 and was umbilicus isolate of an infant with preterm birth (S2 Table). Chro-

mosomally integrated blaOXA-48 has been reported previously in ST38, but we could not

exclude the gene might be located on an untypable plasmid [88–90].

The study has some limitations. One of them is the lack of a control group of wild-type iso-

lates from the same time-period. It would be of interest, for example, to compare CRISPR-cas

system and prophage profiles in susceptible and resistant strains. Besides, the CR-EC isolates

in this study were relatively few even though it presents the largest collection of CR-EC from

Oman during a period of 10 months. In future studies the duration could be increased over a
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year. Another improvement would be to apply long-read sequencing, enabling more detailed

analysis of plasmid content, instead of the replicon approach implemented here.

The primary significance of the study resides in being the first to profile clonal diversity,

replicons and virulence contents for EC-CR and -ESBL from Oman at a subnational level

involving multiple centres. Importantly, we report ST1193-H64RxC with blaNDM, to our

knowledge for the first time. A close monitoring of such HiRC is warranted to curb major

transmission events at an early stage.
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