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Atrial Fibrillation

AF is the most common cardiac arrhythmia, affecting >59 million people 
worldwide, contributing to increased morbidity and mortality.1 Significant 
progress has been made in understanding the underlying molecular 
mechanisms of AF. However, traditional antiarrhythmic drugs were not 
specifically developed to target these mechanisms. As a result, novel 
mechanism-based approaches could potentially be more effective, 
enabling improved therapeutic strategies for managing AF.2

Essentially, an episode of AF can be initiated and maintained by focal 
ectopic (triggered) activity or re-entry mechanisms. Re-entry requires both 
a vulnerable substrate and an initiating trigger, typically caused by focal 
ectopic firing.3–5 The most common causes of focal ectopic activity include 
delayed afterdepolarisations (DADs) and early afterdepolarisations. DADs 
are generated upon full repolarisation, and are small, spontaneous 
depolarisations that are able to promote ectopic firing (generation of a 
spontaneous action potential; AP) if they reach the firing threshold. DADs 
are caused by transient inward currents mainly mediated by the Na+/Ca2+ 

exchanger in response to a transient rise in diastolic cytoplasmic Ca2+ 
concentration. This often occurs due to Ca2+-handling abnormalities, such 
as spontaneous Ca2+ release from the sarcoplasmic reticulum via 
ryanodine receptor type 2. Early afterdepolarisations occur before full 
repolarisation, during late phase 2 and early phase 3 of the AP, typically 
when the AP is excessively prolonged due to increased inward L-type Ca2+ 
current or late Na+ current, or reduced K+ currents. The prolonged AP 
allows L-type Ca2+ channels to recover from inactivation and reactivate, 
resulting in a depolarising current as Ca2+ influx increases. Spontaneous 
ectopic activity can be transient, resulting in single atrial ectopic beats, or 
repetitive, leading to tachycardia and AF.6

Re-entry mechanisms are crucial for sustaining AF, and depend on the 
atrial refractory period and tissue conduction properties, with conduction 
slowing and/or block, as well as shortening of the refractory period 
promoting re-entry. Both focal ectopic activity and re-entry are promoted 
by various factors, including the rapid atrial activity caused by AF, genetic 
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and epigenetic factors, as well as comorbidities that alter the atrial tissue 
structure and function.7−10

With the increasing understanding of the fundamental mechanisms of AF, 
there is potential to develop new and improved antiarrhythmic 
approaches. Rhythm control therapy using antiarrhythmic drugs remains a 
cornerstone of AF management, despite the increasingly widespread use 
of ablation therapies, and has been shown to improve clinical outcomes 
when applied early in the disease process.9,10 Emerging preclinical and 
early-phase clinical trials have suggested small-conductance Ca2+-
activated K+ (SK)-channels as a promising atrial-preferential antiarrhythmic 
target for AF management.9 Although several potential antiarrhythmic 
drugs are under clinical development, SK-channel inhibitors appear to be 
the most advanced antiarrhythmic agents.9,11

In this review, we focus on SK channels as a potentially important atrial-
preferential drug target, highlighting their functional role and complex 
regulation in AF by reviewing data from both animal and human studies.

Small-conductance Ca2+-activated K+ Channels
The family of Ca2+-activated K+channels is subdivided based on their 
single-channel conductance into three subtypes: big (~180 pS 
conductance), intermediate (~40 pS conductance) and small (~10 pS 
conductance).12−14 The SK channels are further subdivided into SK1, SK2 
and SK3 (KCa2.X) encoded by KCNN1, KCNN2 and KCNN3, respectively.14 
SK channels are present in the plasma membrane of various cell types, 
where they regulate cellular excitability and influence the AP morphology, 
although SK channels could also locate in the mitochondrial inner 
membrane of cardiomyocytes.15,16 The regulation of SK channel function is 
complex, and is governed by the tight control of their Ca2+ sensitivity, and 
their channel trafficking and membrane targeting, as discussed in detail 
below.

Structure and Ca2+ Sensitivity of Small-
conductance Ca2+-activated K+ Channels
The structure of the SK channels is similar to most other K+ channels, with 
four α-subunits containing six transmembrane domains (S1–S6) with both 
the N- and C-terminal ends orientated intracellularly (Figure 1). SK 
channels assemble as homo- or hetero-tetramers to form a functional 
channel with a K+-permeable pore that is also the target of several SK 
channel inhibitors (discussed below). Although their topology resembles 
that of voltage-gated K+ (channel with six transmembrane domains, the S4 
segment that acts as voltage sensor in voltage-gated K+ channels contains 
fewer positively charged arginine residues, making the SK channels 
largely voltage-independent.14,15

The Ca2+ sensitivity of SK channels is a critical determinant of their function, 
enabling them to respond to intracellular Ca2+ levels, and contribute to the 
regulation of membrane potential dynamics and ionic homeostasis.14,15 It 
also represents a second option for pharmacological modulation of SK 
channels, as discussed below. All three SK channel subtypes are activated 
within milliseconds (5–15 ms) by Ca2+ in the submicromolar range (K0.5: 
300–700 nM).14,17–19 Unlike other Ca2+-activated K+ channels, SK channels 
do not have obvious Ca2+-binding sites in their primary structure. Instead, 
SK channels rely on an interaction between their C-terminal domain and 
the Ca2+-sensor and signalling molecule calmodulin (CaM; Figure 1).

Gating Behaviour of Small-conductance 
Ca2+-activated K+ Channels
The interaction between SK channels and CaM is facilitated by the CaM-

binding domain (CaMBD), a highly conserved 90 amino acid region 
located in the C-terminal region of SK channels.18,20 CaM associates with 
the CaMBD of the SK channel in both Ca2+-dependent and Ca2+-
independent manners.21 Gating is initiated when intracellular Ca2+ 
concentrations increase, leading to Ca2+ binding by the N-lobe of CaM. 
This binding induces an interaction between two adjacent CaMBDs, 
resulting in the formation of a CaMBD dimer complex. As each functional 
SK channel incorporates four CaM molecules, two CaMBD dimer 
complexes are formed, which together drive the opening of the channel. 
Channel deactivation occurs upon Ca2+ dissociation from CaM, highlighting 
the critical role of CaM in both activating and deactivating SK channels.21,22 
Data on SK single-channel kinetics are sparse, but have shown complex 
gating kinetics, including two open times and three closed times, as well 
as two distinct behaviours characterised by high and low open 
probabilities. These behaviours can switch spontaneously and are 
influenced by the actual Ca2+ concentration, with higher Ca2+ levels 
promoting high open probability states.19

High-resolution stimulated emission depleted imaging and quantitative 
analyses have shown that SK2 channels are located in close vicinity to 
L-type Ca2+ channels and cardiac ryanodine receptor type 2 channels, 
allowing a tight Ca2+ regulation of SK channels. This proximity suggests a 
functional relationship, where local Ca2+ movements from L-type Ca2+ 
current and ryanodine receptor type 2 channels precisely regulate SK 
channel activity, although a subfraction of SK channels may also operate 
outside of such functional units.23

Besides CaM, the SK channel macromolecular complex contains additional 
key regulatory proteins (Figure 1), including the catalytic and regulatory 
subunits of casein kinase type 2 (CK2α and CK2β) and protein phosphatase 
type 2A (PP2A). These regulate SK channel gating by tuning the degree of 
CaM phosphorylation at threonine 80. In particular, PP2A-mediated 
dephosphorylation of CaM at threonine 80 increases the Ca2+ affinity and 
the functional gating of SK channels (Figure 1).24

Dynamic Trafficking of Small-conductance 
Ca2+-activated K+ Channels
SK channel trafficking and membrane targeting are highly dynamic 
processes that depend on interactions with several key cytoskeletal 
proteins (Figure 1).25,26 CaM is not only crucial for gating, but also for the 
assembly, trafficking and targeting of SK channels.18 Several studies 
indicated that the Ca2+-independent interaction between the C-lobe of 
CaM and the CaMBD on the SK channel is necessary for proper membrane 
expression.20,22,27,28 The N-terminal region of SK2 channels interacts with 
the C-terminal region of filamin A, which also supports membrane 
targeting of SK channels in cardiomyocytes. SK2 channel trafficking is 
also highly dependent on intracellular Ca2+ levels, with increased Ca2+ 
levels enhancing SK2 channel surface expression, especially when co-
expressed with α-actinin-2.25

Small-conductance Ca2+-activated K+ Channel 
Distribution and Localisation in the Heart
Numerous studies have confirmed the expression of SK channels not only 
in atrial and ventricular cardiomyocytes, but also in pulmonary vein (PV) 
cardiomyocytes, and in atrioventricular and sinoatrial nodal cells of 
different species.17,29−38 SK2 protein expression appears significantly 
higher in human atrial compared with ventricular tissue, and both SK1 and 
SK2 messenger RNA (mRNA) were more abundantly expressed in mouse 
atrial compared with ventricular tissue, while the SK3 mRNA was similar in 
both regions.17,39 However, there have been some discrepancies between 
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studies in terms of expression levels in different regions of the heart, 
which is most likely caused by different detection techniques, as well as 
by the degree of cardiac remodelling in different animal and patient 
cohorts. However, mRNA and protein data do not provide information 
about the functionality of these channels. Although SK channel transcripts 
have been found in several regions of the heart, functional SK channels 
appear to be preferentially located in the atria, which makes them a 
potential target for treatment of atrial arrhythmias with minimal ventricular 
side-effects.

Functional Role and Remodelling 
of Cardiac Small-conductance 
Ca2+-activated K+ Channels in AF
The highly-selective SK channel inhibitor, apamin, was instrumental for 
the detection of SK currents (ISK) in the heart, showing a significantly larger 
ISK in atrial compared with ventricular cardiomyocytes in mice.17 
Subsequently, Özgen et al. demonstrated that early electrical remodelling 
induced by short-term burst pacing protocols mimicking ectopic activity in 
rabbit PVs, known to trigger paroxysms of AF, is linked to an enhanced 
expression and trafficking of SK channels to membrane sites.37 This led to 
an increased ISK that correlated with a shortening of AP duration (APD) in 
PVs, suggesting that SK2 channels play a prominent role in the 
development of a pro-arrhythmic substrate in AF.37 The important role of 
SK channels in the PVs was further validated in another canine model, 
where SK2 channels were more abundant in PVs compared with the left 
atrium at baseline, along with a larger ISK in the PVs compared with the left 
atrium. Upon 7 days of atrial tachypacing, ISK was increased in both the left 
atrium and PVs, which was attributed in part to a higher single-channel 
open probability.40

In humans, genome-wide association studies have pointed to a potential 
causal role of SK channels in AF.39,41 We could show that SK2 channels 
were more abundant at the sarcolemma of atrial cardiomyocytes from 
patients with persistent (chronic) AF (cAF), and carried a greater ISK in atrial 
cardiomyocytes from cAF patients. This enhanced membrane localisation 
of SK channels was sensitive to inhibitors of anterograde (latrunculin A) 
and retrograde (primaquine) protein trafficking, which eliminated the 
differences in SK2 membrane levels and ISK between cAF and control 
cardiomyocytes, suggesting enhanced trafficking/membrane targeting as 
a potential mechanism of enhanced ISK in cAF patients. Our study also 
validated the highly dynamic nature of SK2 channel trafficking, showing 
that rapid electrical activation (5 Hz for 10 min) in control cardiomyocytes 
increased SK2 membrane localisation and ISK, reaching the levels 
observed in cAF cardiomyocytes.29

Small-conductance Ca2+-activated K+ Channels 
as a Novel Antiarrhythmic Drug Target
In isolated dog and monkey hearts, apamin produced an increase in 
cardiac force and resistance, and was able to restore normal rhythm, 
pointing to potential antiarrhythmic effects. When injected in the animals, 
apamin did not lead to any significant changes in blood pressure or ECG 
characteristics. The antiarrhythmic properties of apamin were observed 
for 90 min, and the authors even concluded that the long-term 
antiarrhythmic properties of apamin should be further explored.42 
However, the purity of the apamin used in this early study was later 
questioned, and the existence of cardiac Ca2+-activated K+ channels was 
doubted for years.43,44

Since then, apamin has been used in numerous experiments to selectively 
block SK channels, and various other compounds modulating SK channel 

activity have been developed. The compounds belong to two groups: SK 
channel pore blockers and negative modulators. Pore channel blockers 
achieve this by directly inhibiting ion permeation through SK channels, 
while negative modulators reduce the activity of SK channels by 
decreasing their sensitivity towards Ca2+. Besides apamin, which is the 
most potent and selective SK channel blocker allosterically binding to the 
external pore region of the channel, UCL1684 and ICA/ICAGEN are SK 
channel blockers acting by binding to the apamin binding site 
(Figure 2).45–47 The best known negative channel modulators of SK 
channels are NS8593, AP14145 and AP30663 (Figure 2).48–50

Although both types of inhibitors reduce ISK, which typically prolongs APD, 
each inhibitor uniquely regulates the gating kinetics and unitary current of 
SK channels. These distinct biophysical characteristics are likely key to 
understanding the distinct functional effects of these inhibitors during the 
dynamic Ca2+-dependent channel activation in vivo.51 These compounds 
have been tested for their antiarrhythmic properties in numerous animal 
models (Table 1), as discussed below.

Animal Studies of Small-conductance 
Ca2+-activated K+ Channel Inhibition
Overexpression of SK3 channels in mice significantly shortened atrial 
cardiomyocyte APD90, which increased susceptibility to inducible atrial 
arrhythmias, providing direct evidence on the link between SK channels 
and AF (Figure 2).52 Studies in rats revealed antiarrhythmic effects of 
pharmacological SK channel inhibition.53,54 Injection of NS8593 (5 mg/kg), 
which reduces Ca2+ sensitivity of SK channels, significantly shortened the 
duration of inducible AF in vivo, comparable to the effect of amiodarone. 
Importantly, the SK channel inhibition did not affect the QT interval, 
indicating an atrial preferential action without ventricular proarrhythmic 
effects. In isolated rat hearts, NS8593 (10 µmol/l) also prolonged the atrial 
effective refractory period (aERP), and was able to terminate AF and 
prevent its reinduction by burst pacing.53

Subsequently, experiments in large-animal models (dogs, pigs, goats and 
horses) validated the antiarrhythmic effects of SK channel inhibition. In 

Figure 1: Major Components of the Small-conductance 
Ca2+-activated K+ Channel Macromolecular 
Complex That Regulates Small-conductance Ca2+-
activated K+ Channel Targeting and Function
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The channel’s Ca2+ sensitivity is controlled by phosphorylation of threonine 80 on calmodulin by 
casein kinase type II and its dephosphorylation by protein phosphatase type 2A. Channel 
trafficking and membrane targeting are regulated by interactions with several cytoskeletal-
associated proteins, including  a-actinin-2, filamin A and myosin light chain type 2. 
CaM = calmodulin; CK2 = casein kinase type II; MLC2 = myosin light chain type-2; PP2A = protein 
phosphatase type 2A.
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dogs, NS8593 significantly prolonged aERP in both control animals and 
dogs subjected to atrial tachypacing for 7 days. The aERP prolongation 
was stronger in the tachypaced (~90%) compared with the control (~15%) 
group. This difference likely reflects the high atrial rate-dependent 
upregulation of channel trafficking to the membrane and the enhanced 
Ca2+ sensing of SK channels under these conditions.29,37 Overall, both 
inducibility of AF and the duration of inducible AF episodes were 
significantly reduced by the SK channel blocker, NS8593.

The majority of research on SK channels in large animal models has been 
performed in pigs (Table 1). Diness et al. showed that the SK channel 
inhibitor, AP14145, which also reduces the Ca2+ sensitivity of SK channels, 
successfully converted AF to sinus rhythm and prevented reinduction of 
AF in all tested pigs. Both AP14145 and vernakalant significantly prolonged 
aERP, and reduced AF duration without affecting ventricular ERP or blood 
pressure.55 The same group subsequently demonstrated that the first Ca2+ 
sensitivity-reducing SK channel blocker enrolled in a clinical trial 
(AP30663) significantly increased aERP in a dose-dependent manner, with 
a ≥30 ms prolongation achieved at 5 mg/kg, indicating the minimal 
efficacious dose. AP30663 successfully converted AF to sinus rhythm in 
six out of 10 pigs with vernakalant-resistant AF, and prevented reinduction 

in four of these six pigs. AP30663 caused a significant decrease in heart 
rate without a clear dose-dependent pattern. The QTc increased by ~11 ms 
at the highest dose applied, suggesting a dose-dependent effect on QTc, 
although this increase was relatively small, and its clinical significance 
remains uncertain.

In 2015, Haugaard et al. demonstrated that the SK channel blocker, 
NS8593, significantly prolonged the aERP in healthy, anaesthetised 
horses, with the most pronounced effects at lower atrial stimulation rates. 
NS8593 achieved a 100% cardioversion rate for acutely induced AF, and 
significantly reduced both vulnerability to AF and the duration of inducible 
AF episodes. Cardiac biopsies showed equivalent mRNA levels of SK 
channel isoforms in both atria and ventricles, but there were no drug-
induced effects on QRS duration, QTc or heart rate, indicating a minor 
functional role of SK channels in ventricular tissue under normal conditions 
(Table 1).56

Ex Vivo and In Silico Human Studies 
Employing Small-conductance 
Ca2+-activated K+ Channel Inhibitors
Several studies have addressed the potential role of SK channels in 
patients with AF (Table 2). At the mRNA and protein level, most studies 
point towards either no change or downregulation of SK channel isoforms. 
However, the majority of the functional studies indicate an upregulation of 
ISK in patients with AF. The discrepancies between studies may be related 
to heterogeneities in patient cohorts and stratification of patients, genetic 
variability and concomitant medication. Furthermore, technical differences 
in the experimental setups, including the use of different SK channel 
blockers ranging from the channel pore blocker, apamin, to Ca2+-
dependent gating modulators, such as NS8593, may have influenced the 
individual studies. However, the primary distinction appears to be the 
differences between whole-cell mRNA/protein data and functional data, 
underscoring the importance of post-translational regulation of SK 
channel trafficking/membrane targeting and Ca2+ sensitivity as key 
mechanisms of altered SK channel function (Table 2).

Inhibition of ISK produced a slight APD prolongation in atrial monolayers 
obtained from human induced pluripotent stem cell-derived 
cardiomyocytes, or adult human atrial cardiomyocytes from patients 
without persistent AF.57,58 However, in a recent study, we demonstrated 
that the upregulation of ISK is associated with decreased CaM 
phosphorylation at threonine 80, likely due to the accompanying 
upregulation of dephosphorylating PP2Ac in cAF cardiomyocytes, in line 
with previous evidence of increased PP2Ac expression and activity in 
patients with cAF.24,29,59,60 Consistent with the increased ISK, apamin 
prevented the AF-promoting APD shortening in cAF cardiomyocytes, 
suggesting that the inhibition of upregulated ISK in AF patients could 
constitute a potential treatment option.29

Cardiomyocyte Ca2+ handling is remodelled in AF patients, which should 
impact the Ca2+-dependent gating of SK channels.61,62 Computer models 
incorporating the changes in atrial cardiomyocyte Ca2+ handling were 
employed to validate the effects of ISK inhibition with fixed intracellular 
Ca2+ or during a control or AF-specific Ca2+ transient, confirming the APD-
prolonging effect under all conditions.29 Subsequent in silico analyses 
confirmed that ISK activation shortens atrial APD and ERP, and slightly 
increases the propensity for alternans in both control and cAF conditions.63 
Moreover, ISK inhibition in 2D virtual tissue was able to stop sustained 
arrhythmia-maintaining rotors in the presence of simulated acetylcholine 
(ACh) concentrations up to 0.01 μM.64 Conversely, increased ISK counteracts 

Figure 2: Role of Small-conductance Ca2+-activated 
K+ Channel Upregulation in AF and Potential 
Consequences of Small-conductance 
Ca2+-activated K+ Channel Inhibition
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Small-conductance Ca2+-activated K+-channel current can be upregulated due to changes in 
Ca2+-dependent gating and increased membrane trafficking/targeting, driven among other things 
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small-conductance Ca2+-activated K+ current can promote re-entry by shortening atrial action 
potential duration and effective refractory period, but can also inhibit ectopic/triggered activity by 
stabilising the resting membrane potential. Small-conductance Ca2+-activated K+ channel inhibitors 
reverse these effects, thereby potentially showing both pro- and antiarrhythmic effects, although 
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Furthermore, small-conductance Ca2+-activated K+ channel inhibitors can have distinct 
mechanisms; for example, directly blocking the channel pore or reducing Ca2+-dependent 
activation, with potentially distinct electrophysiological effects. APD = action potential duration; 
CaM = calmodulin; CK2 = casein kinase type 2; CV = cardiovascular; ERP = effective refractory 
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DAD development by enhancing the repolarisation force that opposes the 
Ca2+-dependent depolarisation.63 Thus, inhibition of ISK in human atrial 
cardiomyocytes might have both anti- and proarrhythmic effects; reducing 
re-entry, while promoting triggered activity (Figure 2). Consistent with the 
latter, SK2 knockout in mice prolonged APD90 in association with increased 
occurrence of early afterdepolarisations and a higher susceptibility to 
inducible AF in vivo, while no ventricular arrhythmias occur.65 Thus, 
depending on the prevailing arrhythmia mechanism in individual patients, 
SK channel inhibition may exert anti- or proarrhythmic effects, which may 
offset each other in some patients. This hypothesis warrants further 
extensive proof and validation in both preclinical and clinical studies in 
different subpopulations of patients.

Small-conductance Ca2+-activated K+ Channel 
Inhibitors Employed in Clinical Studies
The first clinically tested SK channel blocker AP30663 inhibits SK channels 
by reducing Ca2+ sensitivity. Thus, in the presence of AP30663, larger 
increases in intracellular Ca2+ concentration are required to activate SK 
channels, which reduces their function, thereby prolonging the aERP. In 
vitro patch-clamp studies have shown that AP30663 inhibits all three SK 
channel isoforms, but exhibits a slightly lower potency for KCa2.1, which is 
less abundantly expressed in human atrial tissues compared with KCa2.2 
and KCa2.3. In heterologous expression systems, AP30663 had minimal 
effects on Kir3.1/Kir3.4 (underlying the ACh-activated inward-rectifier K+ 
current; IK,ACh), KV1.5 (underlying the ultrarapid delayed-rectifier K+ current), 
KV7.1/KCNE1 (underlying the slow delayed-rectifier K+ current), KV4.3/
KChiP2 (underlying the transient outward K+ current), Kir2.1 (underlying the 
basal inward-rectifier K+ current) channels and L-type Ca2+ current. 
Although AP30663 inhibited the rapid delayed-rectifier K+ current 
mediated by KV11.1 channels, the inhibition was significantly weaker 
compared with its effect on SK channels. The compound also exhibited 
minor effects on peak INa, but significantly inhibited the late INa, which may 
help suppress ventricular arrhythmias.66

The first clinical trial investigated the safety, tolerability, pharmacokinetics 
and pharmacodynamics of AP30663. This randomised, single ascending 

dose, double-blind, placebo-controlled Phase I study enrolled 47 healthy 
male subjects aged 18–45 years, who received AP30663 IV in ascending 
doses across six cohorts. AP30663 was generally well tolerated. Of the 34 
adverse events related to AP30663, most were mild, temporary and 
associated with infusion site reactions, such as vein hardening, redness 
and pain. These reactions were mitigated in later cohorts by modifying 
the administration procedure and formulation. There were no serious 
adverse events or discontinuations due to adverse events. 
Electrocardiographic monitoring revealed no significant effects on P-wave 
duration, PR interval, RR interval or QRS duration. However, a dose-
dependent, transient prolongation of the QTcF interval was observed.67

In the subsequent human Phase II clinical trial, AP30663 demonstrated 
significant efficacy in converting recent-onset AF to sinus rhythm. The 
study involved 66 patients who received IV infusions of AP30663 at doses 
of 3 or 5 mg/kg, or a placebo. Cardioversion rates were 42% for the 3-mg/
kg dose and 55% for the 5 mg/kg dose, compared with 0% for the placebo 
group. These conversion rates are comparable to those obtained with the 
approved antiarrhythmic drug, vernakalant (51.7% for patients with short-
duration paroxysmal AF68), and the new inhaled formulation of flecainide 
(46.9% in patients without previous exposure to flecainide69). The mean 
time to cardioversion was 47 min for the 3-mg/kg dose and 41 min for the 
5 mg/kg dose. A dose-dependent, transient increase in the QTcF interval 
was observed, with the highest dose causing an increase of 18.8 ± 4.3 ms. 
This effect was mediated through increases in the J-point to T-peak 
interval and T-peak to T-end interval subintervals, without affecting the 
QRS duration.50 These results require confirmation in larger studies. 
Moreover, the clinical relevance of effectiveness for acute cardioversion 
of a single AF episode may be limited in view of the high rate of 
spontaneous cardioversion.70 Nevertheless, these results represent an 
important milestone, providing support for the further development of 
these SK channel inhibitors towards formulations that can ultimately also 
be used for long-term rhythm control. Currently, a Phase I trial 
(NCT06066099) is being conducted with a second-generation oral lead 
compound, AP31969, indicated for sinus rhythm maintenance. The 
estimated date of completion is September 2024.

Table 1: Small-conductance Ca2+-activated K+ Channel Inhibitors Tested in Animal Models of AF

Compound Species AF Cardioversion Rate (%) Electrophysiological Parameters Side-effects
Acute Paroxysmal Persistent aERP AFR AFCL CV QT/QTc QRS Others

SK channel blockers

Apamin Rat54  HR 

UCL1684
Guinea pig53 100%

Rat54 ↑ HR 

ICAGEN Guinea pig53 100%

SK channel modulators

NS8593

Rat53 100% ↑

Guinea pig53 33–100%

Dog40 ↑

Horse56,89 100% 0% ↑ ↑ ↓   Tremors

AP14145

Guinea pig90 ↑ 

Pig55 100% 50–100% ↑ 
Vomiting
LV ERP 

Goat91 71% ↑ ↑ ↓  

AP30663 Pig92 ↑  HR UCL

aERP = atrial effective refractory period; AFR = AF rate; AFCL = AF cycle length; CV = conduction velocity; HR = heart rate; LV ERP = left ventricular effective refractory period.
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Conclusion
The functional atrial predominance of SK channels, along with an 
extensive set of preclinical data on their antiarrhythmic potential, makes 
them a promising target for novel AF therapy. Nevertheless, potential 
proarrhythmic effects in some patient subpopulations and under specific 
disease conditions by ‘dormant’ ventricular SK channels, as well as extra-
cardiac side-effects, for example, related to the expression of SK channels 
in the brain, should be considered.71 Fortunately, the small molecules that 
are currently available do not seem to pass the blood–brain barrier, and 
do not exert serious neurological adverse effects in animal models or in 
the currently conducted clinical trials. Clearly, further large-scale clinical 
trials are necessary to ultimately demonstrate the efficacy and validate 
the safety of SK channel blockers.

In the present review, we focused primarily on the role of small-
conductance Ca2+-activated K+ channels (SK1-3). It is noteworthy that 

intermediate-conductance Ca2+-activated K+ channels (also known as SK4) 
have also been implicated in AF-promoting atrial remodelling.72,73 
Inhibition of SK4 has shown antiarrhythmic effects in small and large 
animal models.72–74 The structural similarity between SK1-3 and SK4 is low, 
and inhibitors of SK1-3, such as NS8593, do not inhibit SK4, while the SK4 
inhibitor, BA6b9, does not affect SK1-3, positioning these channels as 
distinct targets.74,75 However, although SK4 channels were identified in 
human left-atrial tissue with immunostaining, SK4 currents could not be 
detected with patch-clamp recordings in human right-atrial cardiomyocytes 
of AF patients.29,74 Since no clinical studies have been performed with SK4 
inhibitors in patients with AF, the putative anti-AF efficacy of selective SK4 
inhibitors in humans remains uncertain.

Besides SK channels, the selective inhibition of other apparently atrial-
predominant targets, including TASK-1 and Kir3.1/Kir3.4, constitutes an 
additional antiarrhythmic approach that needs further investigation and 

Table 2: Ex Vivo Human Studies of Small-conductance Ca2+-activated 
K+ Channel Expression and Function in AF Patients

Reference Sample
mRNA Protein Function
KCNN1 KCNN2 KCNN3 SK1 SK2 SK3 EP [Ca2+]i Blocker/conc Outcome

RA

Heijman et al. 2023.29

Tissue −17% −17% +41%* −13% −1% +41% ISK

500 nmol/l
1,000 nmol/l

Apamin 
(100 nmol/l)

500 nmol/l: +397%* [−110 mV]; 
+544%* [+30 mV]
1,000 nmol/l: +705%* [−110 mV]

CM −38% −37%* +49% +32% −14% +20% APD 500 nmol/l Apamin 
(100 nmol/l)

Ctl: +11%*
cAF: +39%*

Rahm et al. 2021.30 Tissue −78%* −55%* −48%*

Darkow et al. 2021.33 Tissue −29% −30% −3%

Yu et al. 2020.93 ISK 500 nmol/l Apamin 
(100 nmol/l) 110 mV: +281%*; +60 mV: +119%*

Shamsaldeen et al. 
2019.94 ISK Unknown Apamin 

(100 nmol/l)
+10 mV −14.3% membrane current by 
apamin

Fan et al. 2018.31 Tissue −76%* −63%* −74%* −29%* −39%* −45%* ISK 500 nmol/l Apamin 
(100 nmol/l)

110 mV: +134%*
+60 mV: +120%*

Skibsbye et al. 2014.32 Tissue −19%* −53%* −40%*
ISK 300 nmol/l ICAGEN 

(100 μmol/l)
Ctl: −28% versus TMC
cAF: −23% versus TMC

APD 35 nmol/l ICAGEN 
(1 μmol/l)

Ctl: +13% versus TMC
cAF: −1% versus TMC

Wang et al. 2014.95 ISK

500 nmol/l
1,000 nmol/l

Apamin 
(100 nmol/l)

−130 mV: +134%* [500 nmol/l]
−130 mV: +43%* [1,000 nmol/l]

Yu et al. 2012.93 CM −84%* −84%* −3% −71%* −45%* −24% ISK 900 nmol/l Apamin 
(100 nmol/l)

−120 mV: −53%*
+80 mV: −55%*

Li et al. 2011.96 ISK 500 nmol/l Apamin 
(100 nmol/l) −130 mV: +167%*

Ling et al. 2013.97 Tissue −46%*

Gaborit et al. 2005.98 Tissue −9%

LA

Heijman et al. 2023.29 Tissue +9% +30% +38%

Rahm et al. 2021.30 Tissue +91% −31% −4%

Yu et al. 2012.93 CM −67%* −55%* −5% −49%* −63%* −8%
ISK 900 nmol/l Apamin 

(100 nmol/l) −120 mV: −53%*; +80 mV: –59%*

APD Perforated  
patch

Apamin  
(100 nmol/l)

Ctl: +61%
cAF: +17%

Experiments were performed in ruptured patch-clamp unless otherwise indicated. *Significant differences versus Ctl. APD = action potential duration; cAF = long-standing persistent (‘chronic’) AF; 
conc = concentration; Ctl = sinus rhythm control; CM = cardiomyocyte; EP = Electrophysiology; ISK = (drug-sensitive) small-conductance calcium-activated potassium current; LA = left atrium; 
mRNA = messenger RNA; RA = right atrium; TMC = time-matched control. 
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validation.76−79 Like SK channels, both TASK-1 and Kir3.1/Kir3.4 are 
preferentially expressed in the atria, and the corresponding currents (IK2P 
and IK,ACh) are modulated in patients with cAF, promoting re-entry and 
making these channels interesting targets for rhythm control of persistent 
AF.11,76,78 Upregulation of TASK-1 is due to increased TASK-1 protein levels in 
AF compared with sinus rhythm.76 By contrast, protein levels of Kir3.1/
Kir3.4 are reduced in AF, resulting in a smaller agonist-induced peak IK,ACh. 
However, Kir3.1/Kir3.4 channels develop agonist-independent activity in 
AF, contributing to a constitutive component (IK,AChc) that promotes ERP 
shortening.78

Both TASK-1 and Kir3.1/Kir3.4 are interesting targets from an approved 
antiarrhythmic drug development perspective. TASK-1 provides interesting 
options for drug repurposing, with previous work identifying the Food and 
Drug Administration-approved respiratory stimulus, doxapram, as a 
potent TASK-1 inhibitor with antiarrhythmic properties in human atrial 
cardiomyocytes, large animal models and computer simulations.80 In 
contrast, drug development efforts have resulted in a highly potent 
bioengineered peptibody inhibiting Kir3.1/Kir3.4.81 In aged mice, this 
peptibody reduced the AF inducibility by blocking IK,AChc.

81

Ultimately, it is unlikely that any single target will provide highly effective 
therapeutic effects in a condition as heterogeneous as AF. Different 
comorbidities modulate atrial remodelling in specific manners, producing 
distinct forms of AF-promoting atrial cardiomyopathy.8,82–88 Given these 
different mechanisms driving AF, the identification of the predominant 
arrhythmia mechanisms operative in an individual patient and tailoring the 
antiarrhythmic therapies based on this information will likely be essential 
to provide safe and effective rhythm control therapy. In agreement, 
preclinical data suggest that the remodelling of SK channels may be 
distinct in patients with different comorbidities (e.g. the absence or 
presence of heart failure29), which could potentially affect the 
antiarrhythmic effectiveness of SK channel inhibitors. However, at present, 
there are no clinical data on the efficacy of SK channel inhibition in defined 
patient subpopulations. When single approved antiarrhythmic drugs are 
ineffective, combinations of drugs may need to be applied to inhibit 
multiple targets, keeping the dose of the individual compounds low 
enough to prevent cardiac and extra-cardiac side-effects. However, this 
can be done only if intrinsically safe and effective compounds are clinically 
available. The compounds currently being developed against SK channels 
may represent a first step in this direction. 
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