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Increased visceral adiposity is a risk factor for metabolic
disorders such as dyslipidemia, hypertension, insulin resistance
and type 2 diabetes, whereas peripheral (subcutaneous)
obesity is not. Though the specific mechanisms which
contribute to these adipose depot differences are unknown,
visceral fat accumulation is proposed to result in metabolic
dysregulation because of increased effluent, e.g., fatty acids
and/or adipokines/cytokines, to the liver via the hepatic portal
vein. Pathological significance of visceral fat accumulation is
also attributed to adipose depot/adipocyte-specific charac-
teristics, specifically differences in structural, physiologic and
metabolic characteristics compared with subcutaneous fat. Fat
manipulations, such as removal or transplantation, have been
utilized to identify location dependent or independent factors
that play a role in metabolic dysregulation. Obesity-induced
alterations in adipose tissue function/intrinsic characteristics,
but not mass, appear to be responsible for obesity-induced
metabolic dysregulation, thus “quality” is more important than
“quantity.” This review summarizes the implications of obesity-
induced metabolic dysfunction as it relates to anatomic site
and inherent adipocyte characteristics.

Introduction

The distribution of accumulating adipose tissue varies among
individuals but can generally be classified as lower body,
abdominal subcutaneous (underneath the skin), overall coverage
or visceral fat (located in the abdominal cavity among organs)
(Fig. 1). Obesity-related adverse health consequences, however,
are less related to total body fat deposition, and more strongly
associated with a precise fat distribution. More specifically, lower
body1 and abdominal subcutaneous2-4 fat accumulation are
associated with reduced metabolic perturbations whereas upper
body fat distribution and increased visceral fat,5-8 is associated
with metabolic dysregulation. Metabolic disorders associated
with upper body/visceral obesity include dyslipidemia,9

hypertension,10,11 insulin resistance and type 2 diabetes.12,13

Though the mechanisms for this connection remain to be
elucidated the negative consequences of visceral fat are commonly
attributed to fat mass, location and/or adipocyte specific
physiology.

Adipose Tissue Location

Approximately 85% of total adipose tissue mass, in lean or obese
humans, is subcutaneous while the remaining 15% constitutes
intra-abdominal fat, including both visceral and retroperitoneal
adipose depots.14 Visceral fat, encompassing mesenteric and
omental adipose depots (Fig. 1), only constitutes ~10% of total
body fat,14 yet has the highest associated risk for metabolic
dysregulation. Visceral obesity is presumed to predispose
individuals to adverse health consequences based on its anatomical
site and venous drainage to the liver; i.e., insulin-sensitive
hepatocytes are directly exposed to the metabolites and secretory
products released by visceral adipocytes into the portal vein.15-17

Because substrate delivery is a major determinant of both hepatic
gluconeogenesis and very low-density lipoprotein (VLDL)
synthesis,6 an increased volume of visceral fat, and subsequent
release of fatty acids, glycerol and lactate in addition to numerous
adipokines and pro-inflammatory cytokines directly into the
portal vein would be expected to have a major influence on these
hepatic processes.

Chronic exposure of the liver to elevated free fatty acids
promotes liver gluconeogenesis,17,18 reduces enzymes involved in
fatty acid oxidation and increases fat storage and synthesis in the
liver19-21 and insulin resistance.21 Elevated fatty acid flux to the
liver also decreases hepatic insulin binding and degradation.22

This results in systemic hyperinsulinemia23 and additional
attenuation of insulin suppression of hepatic glucose production
(i.e., hepatic insulin resistance).24 In addition, fatty acids facilitate
hepatic glucose production by providing a continuous source of
energy and substrate.24 Overall, an excess lipid load to the liver
can result in ectopic lipid accumulation and development or
exacerbation of insulin resistance.23,25 The insulin resistance
associated with these processes in turn amplifies the metabolic
effects of obesity by increasing dyslipidemia.26

Though visceral obesity is associated with an increase in post-
prandial27 and post-absorptive28 systemic fatty acid concentration,
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and portal vein fatty acid concentration appears to increase
proportionally with visceral fat accumulation29 (Fig. 2), some
suggest visceral obesity is not the principal initiator of metabolic
dysfunction. Alternative observations propose obesity-induced
pathophysiology of the liver may be due to the limited ability of
subcutaneous adipose tissue to store excess energy. In obese
humans it is estimated that the subcutaneous adipose depot
supplies the majority of free fatty acids in the portal29 and systemic
circulation.29,30 Indeed, some estimate that only 5–20% of the
portal vein fatty acid concentration originates from visceral
adipose tissue.29 While factors other than visceral fat are likely
involved in obesity-related metabolic disturbances, these data
imply that the strong association of visceral fat and metabolic
dysfunction involves multiple secreted factors.

Adipokine/cytokine effluent to the hepatic portal vein is also
proposed to play a role in the adverse health consequences
resulting from visceral adipose tissue expansion. Common
adipocytokines proposed to contribute to insulin resistance of
the liver include adiponectin, leptin, resistin, tumor necrosis
factor (TNF)-a and interleukin (IL)-6 (Fig. 2). Adiponectin is a
modulator of numerous metabolic processes such as glucose
regulation and fatty acid metabolism. It is considered an anti-
diabetic, -atherogenic and -inflammatory peptide that is highly
correlated with systemic insulin sensitivity.31-33 Unlike the
majority of adipokines, adiponectin secretion and receptor
expression within the liver are inversely associated with increasing
adipose tissue mass and non-alcoholic steatohepatitis.34,35

However, obesity-induced alterations in portal vein adiponectin
do not appear to be different than arterial adiponectin as a marker
of hepatic metabolic dysregulation.36 Although both leptin and
resistin can induce insulin resistance, these effects do not
appear to be due to differences in portal vein and systemic
concentration.37,38

Another consequence of expanding adipose tissue mass is
increased production of proinflammatory molecules released from
adipocytes and/or infiltrating macrophages.39 Obesity is char-
acterized by elevations in several proinflammatory cytokines,
including TNF-a and IL-6, and these cytokines have been linked
to impairments in insulin action in liver, muscle and adipose
tissue.37,40 Though systemic blood concentrations of TNF-a are
increased in obesity, portal vein concentrations are not different
than those measured in the peripheral artery.38 Some studies
suggest, that TNF-a in blood of humans, unlike rodents,41 is not
secreted at measurable levels.42,43 Instead of inducing alterations
systemically, TNF-a modulates insulin sensitivity locally42 within
adipocytes and stimulates expression of other adipo/cytokines like
leptin and IL-6 and also increases the release of fatty acids.44

Though portal and systemic TNF-a concentration do not appear
to be different, when detectable, TNF-a induced alterations in
local adipose depot factors may contribute to portal vein increases
in other adipo/cytokines. Alternatively, IL-6 in obese humans is
~50% higher in the portal vein than in the peripheral artery,38

thus is a potential mechanistic link between adipose depot
anatomical site and obesity-induced adverse health consequences.

Figure 1. Description of body fat distribution in humans. Lower body: fat storage around the buttocks, hips and thighs. Abdominal subcutaneous:
subcutaneous fat storage around the stomach and chest. Overall coverage: fat accumulation in the arms, breast, thighs, buttocks, lower back and breast.
Visceral: intra-abdominal fat deposition among organs such as the intestines, stomach, liver and pancreas. Fat distributed within the visceral cavity is
highly associated with obesity-related health consequences whereas other fat distribution is not.
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Overall, further research is needed to clarify the direct effects of
visceral fat pad expansion on hepatic and extra-hepatic metabolic
regulation and the extent to which these effects are mediated by
molecules secreted into the portal vein.

Inherent Characteristics of Adipose Tissue

Adipose tissue depots display distinct structural, physiologic and
metabolic characteristics. Thus, it has been proposed that distinct
biologic properties of native adipocytes contribute to the
association between visceral fat and metabolic dysregulation.
Since adipose tissue has been recognized as an endocrine organ
that secretes numerous proteins that modify metabolism, much of
the research has focused on depot-specific differences in adipo/
cytokine release. Because the production of most adipo/cytokines
is increased in the adipose tissue of obese individuals,45 it has been
proposed that differential protein secretion accounts for the
divergent metabolic consequences of visceral vs. subcutaneous fat.
Obesity increases many adipo/cytokines, but only a few have been
demonstrated to be consistently different between adipose depots
(Fig. 2). For example, leptin and adiponectin gene expression46-48

and release49,50 appear to be higher in subcutaneous adipose tissue
compared with visceral. Conversely, cytokine expression, specifi-
cally IL-6, IL-8, PAI-1, MCP-1 and Visfatin, appears to be greater
in visceral fat compared with subcutaneous fat (for a review see
ref. 51).

Metabolic characteristics also differ between visceral and
subcutaneous adipose tissue depots (Fig. 2). For example, human
studies have demonstrated a higher turnover of triglyceride in the
upper body compartment compared with lower body fat.52 These
differences are presumably due to higher triglyceride/fatty acid
turnover in visceral adipocytes compared with subcutaneous fat
due, at least in part, to a combination of increased lipolysis and
decreased sensitivity to the antilipolytic effects of insulin.53

Consistent with this observation are studies that have examined
the metabolic properties of isolated visceral adipocytes. In
comparison with subcutaneous adipocytes, adipocytes isolated
from visceral fat were characterized by higher rates of catecho-
lamine-induced lipolysis,54,55 increased expression of β-1, -2
and -3 adrenergic receptors,56,57 and reduced responsiveness
to the cAMP-lowering effects of a-adrenergic agonists.58

Consequently, although obesity appears to be associated with

Figure 2. Differences between visceral and subcutaneous adipose tissue depots. Drain location: the visceral depot (left) releases products into the portal
vein, while the subcutaneous depot (right) releases products into the systemic circulation. In obesity, portal vein effluent to the liver contains higher
concentrations of free fatty acids and interleukin-6 compared with the systemic circulation. Adipose depot: Visceral and subcutaneous fat are
characterized by inherent differences. When compared with subcutaneous fat, visceral fat is characterized by reduced adiponectin and leptin,
increased inflammatory adipo/cytokines, enhanced lipolysis, a reduced response to insulin and reduced differentiation and angiogenesis.
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reduced expression of hormone-sensitive lipase and increased
expression of lipoprotein lipase and fatty acid synthase, these
proteins are all higher in visceral adipose tissue when compared
with subcutaneous.59-61 In addition, in obese humans there is a
direct inverse correlation between the antilipolytic effect of insulin
and the amount of visceral adipose tissue, but not with
subcutaneous adipose tissue or waist-hip-ratio (WHR),62 suggest-
ing that antilipolytic signaling mechanisms are less active in
visceral fat cells. In humans local infusion of insulin into the
visceral region suppresses lipolysis, but only at a higher
concentration than is effective in non-visceral adipose tissue.63

In vitro studies confirm that visceral adipocytes are less responsive
to the antilipolytic effect of insulin than are subcutaneous
adipocytes,64,65 visceral fat has a lower binding affinity for insulin66

and reduced insulin receptor substrate (IRS)-1 protein expression
compared with subcutaneous adipocytes.65

Other intrinsic and extrinsic differences between adipose tissue
depots may also modify gene expression and metabolism in
adipocytes. Some proposed intrinsic influences include mean
adipocyte size, adipocyte expansion capacity and cell heterogen-
eity. Increased visceral adipocyte size is linked to adipose tissue
dysfunction, inflammation, adipocyte apoptosis, systemic lipo-
toxicity and subsequent decline in metabolic parameters67-69

whereas an increase in adipocyte size in subcutaneous adipose
tissue is not.70 Visceral fat is also characterized by a reduced
capacity for differentiation71 and increased susceptibility to
apoptotic stimuli69 compared with subcutaneous fat. Other
factors currently receiving attention include variations in
connective tissue, macrophages, immune cells and stromovascular
cells.72,73 Extrinsic factors which may play a role in the metabolic
complications associated with increased visceral fat mass include
angiogenic capacity and innervation.74,75 Overall, current research
demonstrates that visceral adipose tissue is morphologically and
functionally different than subcutaneous. The precise mechanisms
responsible for adverse health consequences of expanding visceral
fat, however, still remain unclear.

Identifying the Link between Visceral Fat
and Deleterious Metabolic Outcomes

through Fat Manipulation

Lipectomy (fat removal) studies. Selective reduction in intra-
abdominal adipose tissue improves metabolic profile. More
specifically, intra-abdominal lipectomy reverses insulin resistance
and glucose intolerance in obese, aged and young rodents.76-81

Though controversial in humans,82,83 omental fat removal
improves insulin action,84,85 whereas removal of non-visceral fat
has no effect.86 Conflicting results among human omentectomy
studies likely occur because outcome measurements are not
consistent or sensitive enough to detect metabolic improvements.
In addition, if omentectomy is combined with gastric bypass, the
accelerated weight loss due to bypass could mask the beneficial
effects of omental fat removal. While several studies have
investigated lipectomy-induced alterations in insulin action,
glucose tolerance and even adipokines, mechanisms by which
these improvements occur remain unclear. Research suggests,

however, that alterations in free fatty acids and adipo/cytokines
may play prominent roles in fat removal-induced improvements
in insulin signaling and glucose homeostasis.76-81

There is another, often forgotten or overlooked, consequence
of lipectomy. In both humans and rodents there are fat
removal-induced compensatory increases in non-excised adipose
tissue depots. There is evidence that human liposuction increases
body fat in non-excised areas87,88 and there is a preponderance of
evidence that lipectomy induces compensatory increases in
rodents.89-97 Several studies have found that compensatory
increases in fat mass result from both larger mean fat cell size
and increased adipocyte number.90,98,99 Hence, enhanced insulin
sensitivity following fat removal may not be dictated by fat
removal alone and may be based in part on compensatory
increases of non-excised fat depots. Further, lipectomy results in
decreased norepinephrine turnover in non-excised adipose tissue
pads,100 implying that decreased sympathetic tone may contribute
to lipectomy-induced compensatory increases of fat mass by
means of promoting lipid accretion through decreased basal
lipolysis. Independent studies indicate that a reduction of
norepinephrine release to adipose tissues results in increased fat
accumulation in adipocytes.98,101 Sensory innervation is hypothe-
sized to initiate compensatory lipid increases via informing the
brain of alterations in lipid reserves and consequently adjusting
lipid storage (for a review see ref. 102).

Previous lipectomy studies in rodents are somewhat limited in
that there is ambiguity as to whether excised fat was in fact
attached to the portal drainage to the liver. As an example,
epididymal white adipose tissue (EWAT) is in an intra-abdominal
location in rats and mice that allows for fast and simple removal,
thus many researchers have considered epididymal fat to be a
visceral depot. However, because of its drainage into the systemic
circulation, EWAT should not be considered a visceral depot.103

In addition, EWAT has no human equivalent, making it more
appropriate to conduct lipectomy studies that manipulate actual
visceral adipose tissue such as mesenteric and omental WAT
(MWAT and OWAT).

Transplantation studies. Recent studies have begun to
investigate metabolic alterations following transplantation of
adipose tissue. Investigation of morphological and physiological
changes in the transplanted adipocytes between lean and
genetically obese mice revealed that abnormalities of obese-
derived adipose tissue are due to extrinsic and not intrinsic
factors.104 That report, however, was limited in that the actual
effects of adipose tissue transplantation on overall physiology were
negated due to small tissue-sample size. Additional studies later
demonstrated that physiological changes can be revealed after
transplantation using larger amounts of adipose tissue. The ability
of larger amounts of adipose tissue to survive after removal and
insertion to another site has been repeatedly demonstrated in
humans by reconstructive and plastic surgeries termed autologous
fat transplantation.105 Only recently have the effects of added
body fat been scrutinized.106 Successful transplantation of
physiologically meaningful amounts of subcutaneous adipose
tissue in mice and Siberian hamsters is associated with
revascularization and normal appearance both macro- and
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microscopically.107-110 Fat transplantation has not been observed
to lead to compensatory decreases in total body fat suggesting that
body fat regulation is a system biased toward rectifying decreases
but not increases in lipid storage capacity.109,110

A seminal study utilizing adipose tissue transplantation to
define the role adipose tissue physiology plays in insulin resistance
and type 2 diabetes used a paradoxical approach via a lipoatrophic
(low fat mass) recipient. This study demonstrated that the
addition of normal subcutaneous adipose tissue to lipoatrophic
mice reversed hyperphagia, insulin resistance, hepatic steatosis and
hypoleptinemia,108 suggesting that lack of adipose tissue caused
the metabolic abnormalities. The mechanisms leading to these
improvements, however, are unknown but may involve enhanced
free fatty acid uptake by adipocytes and muscle and increased
circulating leptin.

The connection among increased visceral fat mass, insulin
resistance and type 2 diabetes is well documented. However, the
contribution of increased intra-abdominal fat mass vs. obesity-
induced functional modifications in adipose tissue metabolism is
currently being defined. Transplantation of adipose tissue from
lean donor rodents to the intra-abdominal cavity of a lean
recipient, thus mimicking visceral obesity, is a standard model
used to characterize these differences. Although human data
predicts that increased visceral fat mass is a fundamental problem
in obesity-related metabolic disorders, data from rodent studies
support an alternative view. Intra-abdominal transplantation of
adipose tissue of non-visceral origin in most cases has beneficial
effects on metabolism.111-113 In addition, implantation of specific
fat depots produces cell-autonomous distinctive changes in
glucose tolerance and insulin sensitivity.111-113 Mechanisms for
these beneficial improvements are uncertain but do not appear to
involve changes in inflammatory cytokines, adipokines (e.g.,
adiponectin, leptin or resistin) or free fatty acids.111,113 Only one
of the previous studies placed the transplanted tissue in a manner
that allowed for maximal revascularization proximal to the portal
vein. The others sutured transplants to the visceral side of the
peritoneum on the anterior abdominal wall, with a high
probability that revascularization would occur through the
abdominal wall and thus the systemic circulation.111-113 All
previous studies drew blood from the systemic circulation.
Therefore, future studies should utilize approaches that result in
transplanted tissue that is vascularized by vessels that deliver
blood directly into the hepatic portal drainage and blood
sampling from both the portal vein and systemic circulation. In
support of such an approach, recent studies have demonstrated
that transplantation of non-visceral (e.g., subcutaneous) fat into
the visceral cavity improves glucose tolerance and enhances
hepatic insulin sensitivity, in part, via decreased portal vein lipid

concentrations and consequently reduced liver fat storage.114-116

However, at least one study, using similar techniques, observed
impaired glucose tolerance and hepatic insulin resistance,
implicating IL-6 as the mechanism for dysregulation.117

Overall, these data suggest that visceral fat mass per se is not
the mechanism linking visceral fat to obesity-related metabolic
disorders. The link between visceral fat and insulin resistance
likely involves inherent differences in the metabolic behavior of
visceral fat. This suggests that the “quality” of fat plays a larger
role than the “quantity” in the development of obesity-related
metabolic diseases.

Conclusions

Increased visceral adiposity is an associated risk factor of metabolic
disorders; research also suggests it is the origin. Metabolic
improvement following decreases in visceral adipose tissue mass,
but not peripheral (subcutaneous) demonstrates a direct relation-
ship between central obesity and metabolic dysregulation. The
connection, however, cannot exclusively be attributed to location
providing visceral adipose depot adipocytes structure, physiologic
and metabolic characteristics are different than subcutaneous
adipose depot. Fat addition mimicking visceral obesity, via
transplantation, does not impair metabolic function, but rather
improves it, thus implies specific obesity-induced dysfunction of
visceral adipocytes. Indeed, intrinsic properties of adipocytes,
regardless of location, are responsible for metabolic dysregulation.
In accord, obesity-induced alterations in adipose tissue function
rather than mass are responsible for the adverse metabolic
consequences of obesity. Hence, increased intra-abdominal fat
mass is not necessary for the development of insulin resistance. In
addition, to completely understand how adipocyte intrinsic
characteristics regulate obesity-induced metabolic dysregulation
the role of extrinsic factors (i.e., hormones, growth factors,
vasculature, sympathetic/sensory innervation and cross-talk with
associated organs) should be investigated as well. Alterations in the
extrinsic environment following fat removal or transplantation
have yet to be investigated, though fat manipulation causes great
changes between adipocytes, vasculature and nerves. Overall,
identification of regionally secreted or extrinsic factors may
provide targets for treatments to prevent or reverse co-morbidities
associated with obesity.
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