
Genome Biology 2006, 7:404

Correspondence
Feature-level exploration of a published Affymetrix GeneChip
control dataset
Rafael A Irizarry*, Leslie M Cope† and Zhijin Wu‡

A comment on Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control

dataset by SE Choe, M Boutros, AM Michelson, GM Church and MS Halfon. Genome Biology 2005, 6:R16.

Addresses: *Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205-
2179, USA. †Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 550 N. Broadway, Suite
1131 Baltimore, MD 21205, USA. ‡Center for Statistical Sciences, Department of Community Health, Brown University, 167 Angell Street,
Providence, RI 02912, USA. 

Correspondence: Rafael A Irizarry. Email: rafa@jhu.edu

Published: 1 September 2005

Genome Biology 2006, 7:404 (doi:10.1186/gb-2006-7-8-404)

The electronic version of this article is the complete one and can be
found online at http://genomebiology.com/2006/7/8/404

© 2006 BioMed Central Ltd 

In a recent Genome Biology article,

Choe et al. [1] describe a spike-in

experiment that they use to compare

expression measures for Affymetrix

GeneChip technology. In this work, two

sets of triplicates were created to repre-

sent control (C) and experimental (S)

samples. We describe here some prop-

erties of the Choe et al. [1] control

dataset one should consider before

using it to assess GeneChip expression

measures. In [2] and [3] we describe a

benchmark for such measures based on

experiments developed by Affymetrix

and GeneLogic. These datasets are

described in detail in [2]. A web-based

implementation of the benchmark, is

available at [4]. The experiment

described in [1] is a worthy contribu-

tion to the field as it permits assess-

ments with data that is likely to better

emulate the nonspecific binding (NSB)

and cross-hybridization seen in typical

experiments. However, there are

various inconsistencies between the

conclusions reached by [1] and [3] that

we do not believe are due to NSB and

cross-hybridization effects. In this Cor-

respondence we describe certain char-

acteristics of the feature-level data

produced by [1] which we believe

explain these inconsistencies. These

can be divided into characteristics

induced by the experimental design

and an artifact.

Experimental design
There are three characteristics of the

experimental design described by [1]

that one should consider before using it

for assessments like those carried out

by Affycomp. We enumerate them

below and explain how they may lead

to unfair assessments. Other consider-

ations are described by Dabney and

Storey [5].

First, the spike-in concentrations are

unrealistically high. In [3] we demon-

strate that background noise makes it

harder to detect differentially expres-

sion for genes that are present at low

concentrations. We point out that in

the Affymetrix spike-in experiments

[2,3] the concentrations for spiked-in

features result in artificially high inten-

sities but that a large range of the

nominal concentrations are actually in

a usable range (Figure 1a of this

Correspondence). Figure 1b demon-

strates that in a typical experiment [6],

features related to differentially

expressed genes show intensities with a

similar range as the rest of the genes -

in particular, that less than 10% of

genes, including the differentially

expressed genes, are above intensities

of 10. Figure ADF5-3 in the Additional

data files for [1] shows that less than

20% of their spiked-in gene intensities

are below 10. Additional data file 5 of

[1] also contains a reanalysis using only

the lower-intensity genes, which

provide results that agree a bit better

with results from Affycomp. A problem

is that for the Affycomp assessment

one needs to decide a priori which

genes to include in the analysis, for

example, setting a cutoff based on

nominal spike-in concentration. In the

analysis described in Additional data

file 5 of [1] one needs to choose genes a

posteriori, that is, based on observed

intensities. The latter approach can

easily lead to problems such as favoring

the inclusion of probesets exhibiting

low intensities as a result of defective

probes. Furthermore, our Figure 1c

shows that, despite the use of an
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experimental design that should induce

about 72% of absent genes, we observe

intensities for which the higher per-

centiles (75-95%) are twice as large as

what we observe in typical experi-

ments. This suggests that the spike-in

concentrations were high enough to

make this experiment produce atypical

data. We do not expect a preprocessing

algorithm that performs well on this

data to necessarily perform well in

general, and vice versa.

Second, a large percentage of the genes

(about 10%) are spiked-in to be differ-

entially expressed and all of these are

expected to be upregulated. This design

makes this spike-in data very different

from that produced by many experi-

ments where at least one of the follow-

ing assumptions is expected to hold: a

small percentage of genes are differen-

tially expressed, and there is a balance

between up- and downregulation.

Many preprocessing algorithms (for

example, loess normalization, variance

stabilizing normalization (VSN), rank-

invariant) implement normalization

routines motivated by one or both of

these assumptions; thus we should not

expect many of the existing expression

measure methodologies to perform

well with the Choe et al. [1] data.

Third, a careful look at Table 1 in [1]

shows that nominal concentrations and

fold-change sizes are confounded. This

problem will slightly cloud the distinc-

tion between ability to detect small fold

changes from the ability to detect dif-

ferential expression when concentra-

tion is low. Why this distinction is

important is shown in [3]. However,

Figure ADF5-1 in Additional data file 1

of Choe et al. [1] demonstrates that this

difference in nominal concentrations

does not appear to translated into

observed intensities. This could,

however, be an indication of satura-

tion, which is a common problem when

high intensities are observed (see the

first point of this argument above). One

case of the confounding is seen: genes

with nominal fold-changes larger than

1 result in intensities that, on average,

are about three times larger than genes

with nominal fold-changes of 1. 

The artifact 
Figure 1a-c of this Correspondence is

based on raw feature-level data. No pre-

processing or normalization was per-

formed. We randomly selected 100

pairs of arrays from experiments stored

in the Gene Expression Omnibus (GEO)

and without exception they produced

MA-plots similar to those seen in Figure

1a,b (MA-plots are log expression in

treatment minus (M) log expression in

control versus average (A) log expres-

sion plots). These plots have most of the

points in the lower range of concentra-

tions and an exponential tapering as

concentration increases [7]. However,

the Choe et al. [1] data show a second

cluster centered at a high concentration

and a negative log ratio. Not one of the

MA-plots from GEO looked like this.

Figure 2 in this Correspondence reveals

that the feature intensities for genes

spiked-in to be at 1:1 ratios behave very

404.2 Genome Biology 2006, Volume 7, Issue 8, Article 404 Irizarry et al.                                                         http://genomebiology.com/2006/7/8/404

Genome Biology 2006, 7:404

Figure 1
MA and cumulative distribution function (CDF) plots. MA-plots are log expression in treatment
minus (M) log expression in control versus average (A) log expression plots. (a) For two sets of
triplicates from the Affymetrix HGU133A spike-in experiment [2,3] we calculated the average log
ratio across the three comparisons (M) and the average log intensity (A) across all six arrays for each
feature. The figure shows M plotted against A. However, because there are hundreds of thousands of
features, instead of plotting each point, we use shades of blue to denote the amount of points in each
region of the plot. About 90% of the data is contained in the dark-blue regions. Orange points are
the 405 features from the 36 genes with nominal fold changes of 2. (b) As in (a) but using two sets
of biological triplicates from a study comparing three trisomic human brains to three normal human
brains. The orange dots are 385 features representing 35 genes on chromosome 21 for which we
expect fold changes of 1.5. (c) Empirical cumulative density functions for the median corrected log
(base 2) intensities of 50 randomly chosen arrays from the Gene Expression Omnibus (GEO), three
randomly selected arrays from Affymetrix HGU133A spike-in experiment, and the three S samples
from Choe et al. [1] facilitate the comparison; the intensities were made to have the same median.
The dashed black horizontal lines show the 75% and 95% percentiles. (d) As (a) but showing the two
sets of triplicates described by Choe et al. [1]. The orange dots are 375 features randomly sampled
from those that were spiked-in to have fold changes greater than 1. The yellow ellipse is used to
illustrate an artifact: among the data with nominal fold changes of 1, there appear to be two clusters
having different overall observed log ratios.
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differently from the features from non-

spiked-in genes which, in a typical

experiment, exhibit, on average, log fold

changes of 0 (in practice there are

shifts, some nonlinear, but standard

normalization procedures correct this). 

This problem implies that, unless an ad

hoc correction is applied, what Choe et

al. [1] define as false positive might in

fact be true positives. Figure 2 shows that

this problem persists even after quantile

normalization [8]. In Choe et al. [1] a

normalization scheme based on knowl-

edge of which genes have fold-changes of

1 is used to correct this problem.

However, preprocessing algorithms are

not designed to work with data that has

been manipulated in this way, which

makes this dataset particularly difficult

to use in assessment tools such as Affy-

comp. Furthermore, Figure 1c,d of this

Correspondence shows that the data

produced by [1] is quite different from

data from typical experiments for

which most preprocessing algorithms

were developed.

Currently, experiments where the nor-

malization assumptions do not hold

seem to be a small minority. However,

our experience is that they are becom-

ing more common. For this type of

experiment we will need new prepro-

cessing algorithms, and the Choe et al.

[1] data may be useful for the develop-

ment of these new methods.

Additional data files 
Additional data file 1 contains MA plots

for 100 randomly chosen pairs of

arrays from the Gene Expression

Omnibus (GEO) is available online

with this Correspondence.
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Sung E Choe, Michael Boutros, Alan M

Michelson, George M Church and

Marc S Halfon respond:

Irizarry et al. raise a number of interest-

ing points in their Correspondence that

highlight the continued need for care-

fully designed control microarray

experiments. They posit that “the spike-

in concentrations are unrealistically

high” in our experimental design.

Although we have estimated that the

average per-gene concentration is

similar to that in a typical experiment

[1], we do not know individual RNA

concentrations and so cannot verify or

deny this assertion. Since the majority

of probesets in our dataset correspond

to non-spiked-in genes, and therefore

have a signal range consistent with

absent genes, we think it seems reason-

able that the spiked-in genes have

higher signal than the rest of the chip.

Regardless of this, in Additional Data

File 5 of [1], we repeated the receiver-

operator characteristics (ROC) analysis

using as the “known differentially

expressed” probe sets only the subset

with low signal levels. The results we

obtained for gcrma (robust mutli-array

average using sequence information)

[9] were very similar to the conclusions

in [3] and [10]; in addition, the perfor-

mance of MAS5 [11] was similar

between [1] and [10]. The inconsisten-

cies between the different studies may

therefore be less extreme than they

seem. In particular, we think that a

large source of the disagreement

between [1] and [3] is simply the differ-

ent choice of metric for the ROC curves.

There is no question that our analysis

of low-signal-intensity probesets as
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Figure 2
Log-ratio box-plots. (a) For the raw probe-level data in [1] we computed log fold changes comparing
the control and spike-in arrays for each of the three replicates. The C and S arrays were paired
according to their filenames: C1-S1, C2-S2, and C3-S3. Box-plots are shown for five groups of probes:
not spiked-in (gray), spiked-in at equal concentrations (purple), spiked-in with nominal fold-changes
between 1 and 2, 2 and 3, and 3 and 4 (orange). (b) As (a) but after quantile normalizing the probes.
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well as the specific selection of non-dif-

ferentially expressed genes to use for

normalization purposes required prior

knowledge of the composition of the

dataset. This, of course, is one of the

great strengths of a wholly-defined

dataset such as that from [1] - we can

choose idealized conditions for assess-

ing the performance of different

aspects of the analysis. Unfortunately,

as Irizarry et al. correctly point out, it

also makes it difficult to use for certain

other types of assessment, such as

those provided by Affycomp [3].

A more critical consideration lies in the

point raised by Irizarry et al. that our

dataset violates two main assumptions

of most normalization methods: that a

small fraction of genes should be differ-

entially expressed; and that there

should be roughly equal numbers of up-

and down regulated genes. It is impor-

tant to note that these two assumptions

are just that - assumptions - and ones

that are extremely difficult to prove or

disprove in any given microarray exper-

iment. Thus there is an inherent circu-

larity in the design of analysis

algorithms that explicitly rely on these

assumptions: they perform well on data

assumed to have the properties based

on which they are designed to perform

well. This is an issue all too often over-

looked in the microarray field. The vio-

lation of these two core assumptions

seen in our dataset may be more

common than generally appreciated;

certainly we can conceive of many situa-

tions in which they are unlikely to hold

(for example, when comparing different

tissue types, in certain developmental

time courses, or in cases of immune

challenge). Developing assumption-free

normalization methods, and diagnostics

to assess the efficacy of the normaliza-

tion used for a given dataset (see [12]

for an example), should thus be impor-

tant research priorities.

This discussion underscores the need

for more control datasets that specifi-

cally address matters of RNA concen-

tration, fractions of differentially

expressed genes, direction of changes

in gene regulation, and the like. Only

then can we truly devise and assess the

performance of analysis methods for

the large variety of possible scenarios

encountered in the course of conduct-

ing microarray experiments focused on

real biological problems.

Correspondence should be sent to Marc

S Halfon: Department of Biochemistry

and Center of Excellence in Bioinfor-

matics and the Life Sciences, State Uni-

versity of New York at Buffalo, Buffalo,

NY 14214, USA. Email:

mshalfon@buffalo.edu
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