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Abstract: Melanoma is a highly aggressive cancer with the poorest prognosis, representing the dead-
liest form of skin cancer. Activating mutations in BRAF are the most frequent genetic alterations,
present in approximately 50% of all melanoma cases. The use of specific inhibitors towards mutant
BRAF variants and MEK, a downstream signaling target of BRAF in the MAPK pathway, has sig-
nificantly improved progression-free and overall survival in advanced melanoma patients carrying
BRAF mutations. Nevertheless, despite these improvements, resistance still develops within the first
year of therapy in around 50% of patients, which is a significant problem in managing BRAF-mutated
advanced melanoma. Understanding these mechanisms is one of the mainstreams of the research
on BRAFi/MEKi acquired resistance. Both genetic and epigenetic mechanisms have been described.
Moreover, in recent years, oxidative stress has emerged as another major force involved in all
the phases of melanoma development, from initiation to progression until the onsets of the metastatic
phenotype and chemoresistance, and has thus become a target for therapy. In the present review,
we discuss the current knowledge on oxidative stress and its signaling in melanoma, as well as
the oxidative stress-related mechanisms in the acquired resistance to targeted therapies.

Keywords: melanoma; targeted therapies; BRAFi; MEKi; resistance; oxidative stress; ROS; RNS;
antioxidants; Nrf2; lipid peroxidation; ALDH

1. Melanoma and Targeted Therapies

Melanoma, which originates from a malignant transformation of melanocytes, is
the third most common malignant tumor of the skin, after the most frequent basal cell
carcinoma and the squamous cell carcinoma, both of which arise from keratinocytes or
their precursors. However, melanoma is the most threatening cancer with the poorest
prognosis, representing the deadliest form of skin cancer.

Globally, in 2020, new melanoma cases occurred in 324,635 people and resulted
in 57,043 deaths [1]. Over the past four decades, the incidence of melanoma has increased
throughout the world, with the greatest incidence rates in predominantly fair-skinned
populations living in New Zealand, Australia, North America, and Europe [2,3].

Metastatic melanoma (MM) is poorly responsive to conventional chemotherapeutic
regimens, with an estimated 5-year survival rate of about 15% [4]. However, over the past
few years, new targeted treatments and immunotherapy [5] have significantly improved
the global approach toward melanoma.

For MM patients harboring the cytoplasmic serine/threonine kinase B-Raf (BRAF)
wild type, current guidelines recommend the use of monoclonal antibodies targeting
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immune checkpoint proteins such the anti-programmed death 1 (PD-1) (pembrolizumab or
nivolumab) or the cytotoxic T-lymphocyte antigen 4 (CTLA-4) (ipilimumab) in combination
with an anti-PD-1 therapy [6].

Activating mutations in BRAF are the most frequent genetic alterations, present in ap-
proximately 50% of all melanoma cases [7], and more than 90% of those have an activating
valine–glutamic acid substitution in codon 600 of the BRAF (V600E) [8]. Furthermore, other,
less frequent missense mutations of this codon have been described in melanoma, such as
V600K, V600R, and V600D [9]. The activating V600E mutation is considered a phospho-
mimetic substitution and brings to a constitute activation of the mitogen-activated protein
kinase (MAPK) signaling pathway. V600E mutated BRAF has been found in younger
patients and in more aggressive disease. BRAF inhibitors (BRAFi) such as vemurafenib
and dabrafenib have been successfully employed in patients with advanced V600E/K
BRAF melanoma diseases. These treatments resulted in an increase in median progression-
free survival compared to dacarbazine, which was considered the most effective sin-
gle chemotherapeutic agent for the treatment of advanced MM in use for more than
30 years [10].

However, following the initially enthusiastic response rates, resistance to the targeted
therapy emerges with a median time to progression of 5.1–8.8 months, quite often caused
by a reactivation of the MAPK pathway [11]. Thus, new therapeutic options aim to
simultaneously target both BRAF and its downstream effector, mitogen-activated protein
kinase (MEK), to overcome one of the most important genetic mechanisms of escape.
Indeed, when comparing BRAFi/MEKi combination therapy with BRAFi alone, increases
in progression-free survival (PFS) and the overall survival (OS) have been proven [12].

Patients treated with the dabrafenib (BRAFi)–trametinib (MEKi) combination showed
26.1 months OS, with a significant improvement over the 17.8 months OS observed in pa-
tients treated with vemurafenib (BRAFi) monotherapy. Median PFS in the dabrafenib–
trametinib arm was 12.1 months, and that in the vemurafenib arm was 7.3 months [13].
Similar results were obtained with the dabrafenib–trametinib combination when compared
with dabrafenib alone: 11 months was the median PFS for the patients in the combination
therapy arm, compared to 8.8 months in the monotherapy arm; 25.1 and 18.7 months,
respectively, were the median OS [14]. Quality of life and side effect analysis favored
the combination over the monotherapy [13–15].

Furthermore, in a phase 3 randomized clinical trial (coBRIM), the combination of
vemurafenib and cobimetinib (MEKi) was more effective than vemurafenib alone in BRAF-
mutated patients with advanced disease. The combination showed a significantly higher
response rate (RR) (68% in the combination therapy arm versus 45% in the monotherapy
arm), PFS (9.9 versus 6.2 months, respectively), and 9-month survival rates (81% versus
73%, respectively) [16].

More recently, the new anti-BRAF agent encorafenib, in combination with the MEKi
binimetinib, was investigated in the COLUMBUS trial. At 3-year analysis, the combination
showed a median OS of 33.6 months, while vemurafenib alone showed a median OS
of 16.9 months [17]; moreover, the median PFS was 14.9 months with the combination
and 7.3 months with monotherapy. Nevertheless, despite these improvements, after
the combined treatment, nearly 50% of patients developed resistance within the first
year of the targeted therapy, representing the most challenging management problem of
the disease [12].

Understanding these mechanisms is still one of the mainstreams of the research on
BRAFi/MEKi acquired resistance. However, high heterogeneity among patients and within
individual tumors makes difficult to fully identify them. Nevertheless, a number of ge-
netic and epigenetic mechanisms have been described in BRAF/MEKi resistance. Genetic
alterations providing resistance to BRAFi are found in the majority of resistant tumors.
In melanoma patients resistant to targeted therapy, mutations leading to the reactiva-
tion of the MAPK pathway are the most representative [18]. BRAFV600 amplifications,
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BRAF splice site variants, and activating mutations of NRAS and MEK1/2 have been
described [19].

In addition to reactivation of the MAPK pathway, in around 20% of melanoma patients
developing resistance to targeted therapy, there is increased signaling in the phosphatidyli-
nositol 3-kinase (PI3K) and protein kinase B (AKT) pathway [20]. Activating mutations
of PI3K and AKT have been described as responsible for the upregulation of this signal
pathway. Unfortunately, combined use of BRAFi/MEKi with PI3K/AKT inhibitors failed
to show benefit in clinical trial studies [21].

Not only are MAPK and PI3K pathways upregulated in resistant melanoma cells,
but so are their upstream receptor tyrosine kinases (RTKs), such as the Erb-B2 receptor tyro-
sine kinase 3 (ERBB3), the insulin-like growth factor (IGF)-1 receptor, the hepatocyte growth
factor receptor (c-MET), the epidermal growth factor receptor (EGFR), and the platelet-
derived growth factor receptor α (PDGFR α) [21–26]. Unfortunately, BRAFi treatment
elicits the activation of multiple RTKs in the same tumor, and not a selective upregulation
of specific receptors; this feature hinders the possibility of a therapeutic intervention aimed
at a particular type of RTK [21]. Several other non-MAPK pathway dysregulations have
been described in BRAFi/MEKi resistance, such as the copy number variations of cyclin D1
and cyclin-dependent kinase inhibitor p16INK4A and the inactivation of retinoblastoma
(Rb) protein [27,28].

Epigenetic mechanisms can also participate in acquired BRAFi/MEKi resistance. DNA
methylation pattern at individual CpG sites [29], post-translational modifications of hi-
stones, and noncoding RNA deregulation have been demonstrated to be involved [30].
These epigenetic mechanisms profoundly affect the expression of critical genes involved
in favoring the growth and progression of melanoma, such as a set of transcriptional
“master regulators” [31]. For instance, the upregulation of the transcription factor c-JUN
participates in the acquisition of epithelial–mesenchymal transition (EMT)-like pheno-
types in melanoma cells [32]. The inhibition of this transcriptional master regulator
together with BRAFi [33] elicited cell death decreased a population of melanoma cells
with a mesenchymal-like phenotype, which represents an early adaptive state adopted by
some melanoma cells in response to BRAFi [33–35]. Microphthalmia-associated transcrip-
tion factor (MITF), involved in melanocyte development, was found to be upregulated
in BRAFi/MEKi resistance. On the contrary, other studies have demonstrated that during
the acquisition of the resistance to targeted therapies, a population of melanoma cells
exhibited low MITF expression [36].

In addition to these molecular mechanisms, in recent years, researchers have focused
their attention on oxidative stress as a major force in eliciting genetic mutations and
controlling gene expression. Indeed, redox biology, which includes reactive oxygen and
nitrogen species (ROS and RNS) and antioxidants, plays a central role in tumors, including
melanoma. In the present review, we discuss the current knowledge on oxidative stress
and its signaling in melanoma and the oxidative stress-related mechanisms in acquired
resistance to targeted therapies.

2. Oxidative Stress in Physiopathology and in Cancer

Oxidative stress describes an imbalance between the production of ROS/RNS in tis-
sues and the ability, from the biological systems, to detoxify these highly reactive species or
to repair the resulting damage [37,38]. ROS/RNS, which are constantly produced in living
organisms, include free radicals (superoxide anion O2

•−; hydroxyl radical •OH; nitric oxide
NO•; nitrogen dioxide •NO2) and nonradicals, such as singlet oxygen (1O2), peroxides
(hydrogen peroxide H2O2; peroxynitrite ONOO−), and hypochlorous acid (HOCl) [39,40].

ROS can be generated by nonenzymatic processes, such as the Fenton/Haber–Weiss
reaction, and enzymatic reactions, which include the mitochondrial electron transport
chain, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs), cyclooxy-
genases, or xanthine oxidases [40].
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ROS can act as intracellular signaling molecules, participating in the homeostatic adap-
tation of cells to external stimuli [41,42]. During inflammation, ROS can be overproduced
since they are highly toxic to pathogens [43].

In the condition of oxidative stress, ROS/RNS are produced in excess, and they are
very harmful compounds. At high concentrations, they can damage cellular DNA, proteins,
and lipids. In lipid membranes, ROS/RNS trigger polyunsaturated fatty acid (PUFA)
oxidative degradations. This process is known as lipid peroxidation (LPO) and induces
the formation of lipid radicals and other reactive intermediates (lipid radical L•, lipid
peroxy radical L-OO•, lipid hydroperoxide L-OOH), as well as several highly reactive
aldehydes, including 4-hydroxynonenal (HNE) and malondialdehyde (MDA), further
amplifying the toxic effect of free radicals [44,45].

Prof. Mario Umberto Dianzani [46], to whom this special issue is dedicated, was
the first scientist who ever described the occurrence of lipid peroxidation in relevant patho-
physiological conditions, such as carbon tetrachloride-induced liver injury [47]. Together
with Prof. Esterbauer [48], the first scientist who demonstrated the biological origin of
HNE [49], Prof. Dianzani gave a fundamental contribution to the comprehension of the role
played by HNE and other aldehydic products derived from lipid peroxidation in human
diseases [50,51].

ROS/RNS and LPO products have been identified as major players in several diseases,
such as diabetes, rheumatoid arthritis, stroke, cardiovascular diseases, atherosclerosis,
chronic inflammatory pathologies, aging-related disorders, autoimmune diseases, neurode-
generative conditions, and cancer [39,45,52–58].

Several enzymes and molecules present in our tissues can protect cells from oxidative
stress damage, being able to neutralize free radicals and metabolize the toxic aldehydes
produced during LPO. They include both endogenous and exogenous molecules acting
through enzymatic and nonenzymatic pathways. The endogenous antioxidant defense
system enzymes are represented by glutathione peroxidases (GPXs), superoxide dismu-
tases (SODs), glutathione S-transferases (GSTs), catalases (CAT), thioredoxins (TRXs),
thioredoxin peroxidases (TRXPs), peroxiredoxins (PRDXs), and heme oxygenase-1 (HO-1);
nonenzymatic molecules with antioxidant properties include tripeptide glutathione (GSH),
proteins (i.e., ferritin, transferrin, albumin, ceruloplasmin), and several low-molecular-
weight scavengers (uric acid, coenzyme Q, and lipoic acid). Plant-derived exogenous
antioxidants present in fruits and vegetables, such as Vitamin C, E, and A, are also involved
in free radical detoxification [59,60]. Furthermore, several protective metabolic pathways
are responsible for the rapid intracellular catabolism of the toxic aldehydes produced
during LPO. For instance, HNE, one of the most extensively studied products of LPO, can
be metabolized by aldehyde dehydrogenases (ALDH), aldo/keto-reductase (AKR), alcohol
dehydrogenase (ADH), and GST [61,62].

One of the main proteins involved in regulating antioxidant response is the transcrip-
tion factor Nrf2 (NF-E2-related factor 2), which has been considered the master regulator
of cytoprotective and antioxidant genes [63,64]. In physiological conditions, Nrf2 is found
in the cytosol linked to its inhibitor, Keap1 (Kelch-like ECH-associated protein), leading to
inactivation via ubiquitination and proteasomal degradation. Under oxidative stress, Keap1
become oxidized in its cysteine residues, undergoes a conformational change, and releases
Nrf2, which translocates into the nucleus and binds to the antioxidant response element
(ARE) sequences present in the promoter of genes coding for aforementioned antioxidant
enzymes, such as HO-1, PRDXs, TXN, as well as genes involved in GSH synthesis, such as
γ-glutamate-cysteine ligase (GCL), which catalyzes the first step in the production of GSH,
and xCT, which codifies the light chain component of the system Xc

-. Xc
- is an antiporter

able to export glutamate and import cystine, which is then reduced to cysteine and used
for the synthesis of GSH [65].

A mountain of evidence has suggested that redox imbalance and resulting lipid per-
oxidation products play an important role in cancer development, progression, metastasis,
and chemoresistance. These findings, excellently presented in several reviews [56,66–73],
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are far from being unique. For instance, scientists have highlighted some paradoxes re-
lating to the two faces of ROS, which are able to both promote and suppress cancer [74].
Similarly, Nrf2 and its antioxidant target genes are regarded as double-edged swords,
with their anticancer and protumoral activities, depending on the stages of malignant
transformation [75].

In this scenario, melanomas are not an exception. It has been demonstrated that
ROS/RNS play a central role in all the phases of the disease, from the initiation to progres-
sion until the onsets of the metastatic phenotype and chemoresistance, including that to
targeted therapies; furthermore, as in other cancers, ROS/RNS and antioxidant systems
show two-faced roles, often in relation to the different stages of disease progression [76–79].

In the next two paragraphs, we discuss the main and growing body of recent evidence
for oxidative stress-related pathways in cancer disease, focusing on melanoma and its
acquired resistance to targeted therapies.

3. Oxidative Stress in Melanoma
3.1. ROS/RNS in Melanoma
3.1.1. Reasons for ROS/RNS Increase

A growing body of evidence indicates that compared with normal healthy tissue,
tumor tissues, including melanoma, exhibit a high level of ROS/RNS [68,80,81]. Several
reasons can explain this feature through both environmental and internal mechanisms.
Cigarette smoke and ultraviolet (UV) radiation are certainly among the primary external
causes of ROS increasing [82,83]. In terms of internal mechanisms, ROS production is
enhanced in cancer cells as a result of the activation of several well-known oncogenes,
loss of tumor suppressors [84,85], tumor hypoxia [84,86], altered integrin signaling [87],
and reprogrammed metabolism [84,88].

In comparison with other solid tumors, ROS levels are particularly elevated in melanomas [89]
(Figure 1). Two important tissue characteristics may explain this further increase: the natu-
ral exposure to UV radiation and the presence of melanin [90].
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Figure 1. Major ROS sources in melanocytes. ROS can be generated from UV irradiation,
melanosomes, mitochondria, and NOS and NOX family enzymes. Moreover, NOX enzymes can be
activated by arachidonic acid metabolites from both the COX and LOX pathways, as well as from
the activated N-RAS, AKT, and RAC1 oncogenic pathways.
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UV irradiation, a major contributor to skin cancer, can directly damage DNA via form-
ing a large amount of cyclobutane pyrimidine dimers (CPDs), pyrimidine (6-4) pyrimidone
adducts [79]; moreover, UV induces the skin to produce, through photosensitizer molecules,
high levels of ROS (singlet oxygen and hydroxyl radicals) immediately after irradiation and
of RNS (NO and possibly ONOO−) at later timepoints [91,92]. Free radical enhancements
can also originate from UV-dependent activation of ROS-producing enzymes, such as
NOXs [93].

Another important source of ROS in the skin is melanin synthesis, which involves
oxidative reactions, with the production of superoxide anion and hydrogen peroxide (H2O2)
at various steps of the synthetic melanin pathway [88]. Moreover, melanin has a two-faced
role in determining oxidative stress levels: on the one hand, it absorbs UV radiation, thus
protecting skin cells from oxidative damage; on the other hand, it shows pro-oxidant
activities [94]. This double role can be partially explained by considering the different
pro-oxidant activity of the two main forms of melanin present in the skin: the brown-black
eumelanin and reddish-yellow red pheomelanin. Indeed, red pheomelanin-dependent
ROS formation has been reported to occur with or without UV radiation [95], while black
eumelanin, if present in sufficient amounts, can counterbalance this production. Thus,
higher levels of pheomelanin can indirectly contribute to mutagenesis through enhanced
ROS production [96]. Furthermore, the human melanocortin 1 receptor gene (MC1R) wild
type signaling, which is responsible for black eumelanin production [97], also promoted
DNA repair and ROS scavenging [98]; loss-of-function variants of MC1R associated to
pheomelanin production [97] elicited enhanced ROS production and impairment of DNA
repair [98], likely contributing to the observed higher rate of melanoma onset.

In cancer cells, the major source of ROS/RNS has been attributed to the dysfunction of
mitochondrial respiratory chain enzymes [99]; however, in melanoma, other enzymes seem
to play a major role in ROS production: the NOX family, nitric oxide synthases (NOSs),
arachidonic acid cyclooxygenases (COXs), and lipoxygenases (LOXs) [76,94].

The ROS-producing NOX enzymes are complex multidomain proteins with different
distribution in tissues and cellular sublocalization (plasma membrane, cytoplasm, nuclear
membrane, mitochondrial, ER membranes). The first identified member was NOX2, present
in the phagocytic vacuole of “professional” phagocytes; later, six additional members were
found (NOX1, NOX3, NOX4, NOX5, DUOX1, DUOX2) [100]. Among them, NOX1, NOX4,
and NOX5 have been found to be expressed in the melanocytic lineage [76]. Interestingly,
early studies suggested that NOXs contribute to melanoma cell proliferation [101]. Later,
emerging evidence indicated that specific NOX isoforms may impact both melanomagene-
sis and melanoma progression [76]. NOX1 was found to be overexpressed in melanoma cell
lines, and its ability to enhance cell invasion by matrix metalloproteinase-2 upregulation
and EMT induction was demonstrated [102]. NOX1 can be activated by the small GTPase
Ras-related C3 botulinum toxin substrate 1 (RAC1) [103], a Rho GTPase family protein
involved in the regulation of migration with a recognized role in cancer metastasis [104].
Mutated N-RAS also can stimulate NOX1 to produce ROS in melanocytes [77]. Moreover,
the specific NOX1 inhibitor GKT771 decreased B16F10 melanoma cell proliferation in vitro
and suppressed B16F10 tumor growth and blocked angio/lymphangiogenesis in vivo [105].
However, despite its well-demonstrated proinvasive role in preclinical studies, NOX1
expression is not associated with melanoma progression, since there were reportedly simi-
lar levels in early-stage noninvasive primary tumors and MM human samples [76]. On
the contrary, NOX4 was found to be highly expressed in metastatic samples as compared
to in early-stage primary tumors [76]. NOX4 contributes to the transformed phenotype of
melanoma cells by regulating G2–M cell cycle progression [106]. It is also a downstream
target of AKT, a serine-threonine kinase frequently activated in melanoma [107]; in particu-
lar, it has been proposed that the ROS generated by the AKT-activated NOX4 contribute to
the transformation of radial growth to vertical growth required for the acquisition of the in-
vasive and metastatic phenotype [108]. Interestingly, it has been demonstrated that ROS
produced by NOX4 are able to coordinate cell survival through the focal adhesion kinase
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(FAK) pathway, thus maintaining cell adhesion and viability [109]. NOX5 is upregulated
in melanoma as well as in other cancer types [110]. Moreover, it has been demonstrated
that NOX5 can affect cell proliferation partially through ROS extracellular production and
is able to modulate several signaling pathways, such as HIF-1α and p27Kip1 [110].

In melanomas, besides NOX, other enzymes can also contribute significantly to oxida-
tive stress increase, such as the nitric oxide synthase (NOS) family, which can synthesize
RNS such as NO [76,111]. Superoxide produced by NOX may react with NO, which is
produced by NOS, thereby generating the peroxynitrite ONOO−. All the three isoforms,
neuronal (nNOS), inducible (iNOS), and endothelial (eNOS), have been demonstrated
to be involved in melanoma progression. iNOS and nNOS promote melanoma cell pro-
liferation [112,113]; nNOS has a role in melanoma invasion [112]; iNOS is associated
with increased resistance to cisplatin [114] and poor patient survival [115]; and eNOS is
involved in lymphangiogenesis and lymphatic metastasis [116]. In some cases, eNOS
catalyzes the reduction of O2 to O2

•− instead, a phenomenon that is usually described as
uncoupling [117]. In addition, peroxynitrite, in turn, has been shown to uncouple eNOS,
thereby converting eNOS to a superoxide-producing enzyme. As a consequence, NO pro-
duction is reduced, and the oxidative stress, in particular represented by both the O2

•− and
ONOO− species, further increases [118–120]. Interestingly, it has been demonstrated that
eNOS uncoupling, by eliciting superoxide overproduction, can drive malignant melanoma
transformation [119]. Moreover, a high level of nitrotyrosine, an indirect biomarker of NO,
was found to be significantly associated with poor survival of melanoma patients [115].

It has been demonstrated that arachidonic acid metabolites from both COX and LOX
pathways may activate ROS production via NOX stimulation [120]. Interestingly, inhibitors
of both COX and LOX pathways convert mouse melanoma to a noninvasive phenotype
by downregulating matrix metalloproteinase-2 (MMP-2) [121], an enzyme able to degrade
the basement membrane components that can be activated by intracellular ROS/RNS [122];
thus, COX and LOX inhibitors could possibly reduce invasiveness by lowering ROS levels,
which in turn would downregulate MMP-2 activity.

3.1.2. Consequences of ROS/RNS Increase

Enhanced ROS production triggers the occurrence and development of melanoma
through genotoxic and nongenotoxic pathways.

At the nuclear level, ROS elicit DNA oxidative damage by generating 7,8-dihydro-8-
oxo-2′-deoxyguanosine (8-oxodG) and by producing DNA double-strand breaks (DSBs),
leading to genomic instability [123]. 8-oxodG is considered a premutagenic DNA lesion,
since during DNA replication, it can cause a dC:dG to dA:dT transversion [124]. In agree-
ment with its mutagenic role, 8-oxodG was demonstrated to be lower in melanoma patients
with significantly longer survival time than in those with shorter survival time [125].
Moreover, the genotoxic pathway includes epigenetic modifications, in particular eliciting
a global hypomethylation of the genome and aberrant CpG island hypermethylation of
some genes [79]. Thus, through direct mutagenesis or epigenetic dysregulation of gene
expression, protooncogenes such as BRAF, N-Ras, and RAC1 can be activated, while tumor
suppressors like p53, protein patched homolog 1 (PTCH1), and phosphatase and tensin
homolog (PTEN) can be inactivated [79].

In addition, ROS have a nongenotoxic protumoral effect by modulating a number
of oxidative-stress signaling pathways, as well as antioxidant pathways, such as MAPK,
PI3K/protein kinase B (PKB), AKT/mammalian target of rapamycin (mTOR), Nrf2, and nu-
clear factor-κB (NF-κB) [77,79,126].

Interestingly, ROS produced by melanoma cancer cells or exogenously by UV irradia-
tion also have the ability to modulate functions of noncancer cells surrounding the tumor,
such as cancer-associated fibroblasts (CAFs) and tumor-infiltrating T-cells (TITL) [127].
Moreover, other cells of the tumor microenvironment (TME), such as tumor-associated
macrophages (TAMs) or inflammatory cells, also produce ROS, which in turn can affect
the functioning of immune and cancer cells [128]. This complex interplay between ROS
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produced by tumor cells and by cells of the TME regulates melanoma progression, drug
resistance, and immunosurveillance [127].

3.1.3. Enhancing ROS Production as Melanoma Anticancer Therapy

Several chemotherapeutics trigger cancer cell death by increasing ROS production.
High, lethal levels of ROS can be generated by anthracyclines (e.g., doxorubicin, daunoru-
bicin, and epirubicin), platinum-based complexes (e.g., carboplatin, cisplatin, and oxali-
platin), camptothecins (e.g., irinotecan and topotecan), epipodophyllotoxins (e.g., etopo-
side), and alkilant agents (dacarbazine, temozolomide-TMZ, carmustine, fotemustine),
while taxanes (e.g., paclitaxel and docetaxel) and vinca alkaloids (e.g., vincristine and
vinblastine) generate low ROS levels [129]. These conventional pro-oxidant drugs are
scarcely effective in melanoma; however, some classes of ROS inducers have attracted
the attention of scientists. This is the case for photosensitizing chemical substances (Ps).
They belong mainly to the porphyrin, phthalocyanine, chlorin, and porphycene classes,
and most of them are of plant origin. Ps have been successfully employed in photodynamic
therapy (PDT), which has been investigated for the past 30 years as an unconventional
and alternative treatment for cancer [130]. Ps are nontoxic dyes, but when excited by
visible light, they can produce ROS at lethal doses able to kill cancer cells [130]. Although
melanoma can benefit from this approach, with the employment of Ps such as verteporfin,
5-aminolevulinic acid (5-ALA), and others in preclinical studies [131], its clinical use to
treat in situ melanoma is still controversial.

Another extremely attractive strategy consists in the use of pro-oxidant drugs loaded
in nanoparticles. Indeed, the employment of nanotechnology is extremely attractive
in cancer drug delivery mechanisms. Drug-loaded nanoparticles offer several advantages:
prolonging drug half-life, enhancing drug localization, increasing drug efficacy, minimizing
toxic side effects, and diminishing the chances of multidrug resistance [132]. Melanoma
also can benefit from these advantages [133–135]. Thus, treatments with old pro-oxidant
drugs, such as paclitaxel, dacarbazine, doxorubicin, but also Ps loaded in nanoparticles,
being more effective, become more appealing for clinical treatments [133–136]. Recently,
the nanoparticle-albumin-bound paclitaxel (Nab-Paclitaxel), indicated as monotherapy
or in combination with other drugs for the treatment of advanced breast, pancreatic,
and non-small cell lung cancers [137], has also gained attention for MM treatment [138].
In particular, a recent clinical trial showed that ipilimumab immunotherapy followed by
chemotherapy with Nab-Paclitaxel and the antiangiogenic bevacizumab for the treatment
of BRAF wild-type MM revealed a favorable effect [139].

Finally, novel natural ROS-inducer compounds derived from plants or animals have
been continuously under study in preclinical research. For example, cantharidin, a ter-
penoid isolated from the insect mylabris (Mylabris phalerata Pallas), and Withaferin A (WFA),
a withanolide derived from the medicinal plant Withania somnifera, have demonstrated
antitumorigenic activity in melanoma through the generation of ROS [140,141].

3.2. Antioxidant Systems in Melanoma

To maintain acceptable sublethal ROS levels, which allow tumorigenic phenotype
maintenance, cancer cells, including melanoma, usually increase their antioxidant systems
to protect cells from oxidative stress damage and favor their survival. However, this
adaptative process seems to elicit the rise of more resistant cell subclones [59,60].

Below, the main antioxidant defenses in melanoma under the control of the transcrip-
tion factor Nrf2, together with other enzymatic and nonenzymatic pathways, are reported.

3.2.1. Nfr2 and Its Signaling Pathway

Initially, a protective role for Nrf2 was recognized in the early stages of malignant
transformation because of its ability to detoxify carcinogens and protect cells from ox-
idative stress damage. However, Nrf2 in the advanced stages of the cancer disease has
an opposite role, since its activation has been shown to be involved in modulating cell



Antioxidants 2021, 10, 1942 9 of 30

proliferation, EMT, migration, invasion, angiogenesis, and tumor progression [63,142] as
well as chemoresistance and radioresistance of various malignant tumors [143,144].

Nrf2 has also been found to have a critical role in disease progression in melanoma.
In a cohort of 36 nevi, 14 lentigo maligna, and 71 malignant melanomas, Hintsala and col-
laborators [145] demonstrated that nuclear Nrf2 expression correlated with deeper Breslow
depth, invasive phenotype (Clark III–V), nodular growth, and worse melanoma-specific
survival. These authors suggested that Nrf2 could offer melanoma cells a growth advan-
tage, allowing them to better survive in a hostile oxidative stress condition. These results
were later confirmed in larger cohorts of patients, where it was demonstrated that Nrf2
expression was higher and cytoplasmic Keap1 lower in metastatic lesions than at primary
sites [146] and that nuclear Nrf2 expression was correlated with a significantly worse
survival rate [147].

Moreover, the inhibition of Nrf2 with siRNA or other genetic or pharmacological strate-
gies elicits a wide range of antitumoral responses in experimental models of melanoma
both in vitro and in vivo. Nrf2 downregulation inhibited melanoma cell proliferation, mi-
gration, and invasion [148,149], induced apoptosis [148], enhanced sensitivity toward
oxidative stress [149] and ionizing radiation [148], and reverted chemoresistance to cis-
platin, dacarbazine [150], and TMZ [151]. Apparently in contrast with this evidence, Zhu
and collaborators [152] demonstrated that Nrf2 deficiency promoted melanoma growth
and lung metastasis when B16-F10 cells were inoculated in Nrf2-null C57BL/6 mice. With
the aim to explain their findings, these authors suggested that a possible mechanism could
be related to the dysregulated immunity observed in Nrf2-null mice, which can have
a profound impact on the progression of the disease.

The mechanisms leading to Nrf2 activation in melanoma need to be fully elucidated.
Somatic Nrf2 gain-of-function and Keap1 loss-of-function mutations are frequent in tumors
and correlate with chemo/radioresistance and poor clinical outcome [153]; however, even
if Keap1 missense or nonsense mutations have also been reported [150], in melanoma,
Keap1 and Nrf2 mutations are not frequent.

Recently, in a large cohort of melanoma tumor samples with different degrees of
malignancy, it was demonstrated that there was no correlation between immunostaining of
the Nrf2 protein and mRNA expression levels [147]. Thus, very likely, post-translational
mechanisms can account for the Nrf2 activation in melanoma [73]. Among these mecha-
nisms, short noncoding RNAs, in particular microRNAs (miRNAs), are gaining attention
for their ability to control gene expression. Their levels are dysregulated in melanoma,
which contributes to disease development and resistance to target therapy [154]. Recent
evidence has shown a negative correlation between miRNA controlling Nrf2 mRNA levels
(miR-23B, miR-93, miR-144, and miR-212) and the protein expression of Nrf2 [147]. More-
over, recent findings demonstrated that BRAF-mutated cells could upregulate Nrf2 protein
through the activation of FAM129B, an antioxidant protein also known as Niban-like pro-
tein 1 or MINERVA. In particular, in BRAF V600E mutant melanoma, the MAPK activated
pathway leads to hyperphosphorylation of FAM129B, which in turn can compete with
Nrf2 for the binding to Keap1; in the absence of its inhibitor Keap1, Nrf2 protein is more
stable; thus, its level can increase [155].

Several Nrf2 downstream genes can also contribute to chemoresistance and tumor
progression.

HO-1 is an enzyme able to degrade the pro-oxidant free heme into carbon monoxide,
ferrous iron, and biliverdin which is quickly transformed into bilirubin. The end-products
of HO-1 have antioxidant activities, and HO-1 overexpression has been found in various
tumor types, facilitating tumor growth, cancer progression, and drug resistance [156].
In melanoma, overexpression of HO-1 resulted in enhanced cell proliferation, resistance to
hydrogen peroxide-induced oxidative stress, and endothelial cell division contributing to
angiogenesis [157]. These results have also been confirmed in vivo by injecting HO-1 over-
expressing melanoma cells in mice, compared to mice injected with wild-type melanoma
cells [157].
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Peroxiredoxins (PRDXs) are non-seleno peroxidases that catalyze the reduction of
a broad spectrum of peroxides. There are six of these enzymes (PRDX 1–6), and they present
thiol groups of their cysteine (Cys) as catalytic centers. PRDX 1–5 contain two conserved
catalytic Cys and utilize thioredoxin as a reductant [158]. Conversely, PRDX6 contains
a single conserved Cys and utilizes glutathione (GSH) but not thioredoxin to catalyze
the reduction of H2O2 and other organic peroxides [158]. PRDX6 seems to be the only PRDX
able to also reduce phospholipid hydroperoxides (PLOOH) [159]; moreover, PRDX6 is
a bifunctional enzyme, having both peroxidase and phospholipase A2 activities. The latter
is involved in physiological lung function, by contributing to the production of surfactant,
as well as in lung cancer metastasis [160]. Both PRDX1 and PRDX6 are downstream targets
of Nrf2 [161], and, as with other peroxiredoxin isoforms, they are frequently elevated
in several human cancers [162–166]. A high level of PRDX6 can be found in most melanoma
cells. Its expression levels are post-transcriptional maintained, particularly by EGFR
signaling. Moreover, it has been demonstrated that PRDX6 enhances cell viability mainly
by enhancing proliferation and that this action is mediated by its phospholipase A2 activity.
In particular, PRDX6 exerts its effect by enhancing the production of arachidonic acid
(AA) [167]. PRDX6 can also be involved in tumor progression, since it was shown that
its expression correlated with melanoma malignancy [168]. Interestingly, other PRDX not
controlled by Nrf2, such as PRDX2, can be correlated with melanoma malignancy [168].

GSTs are a family of detoxification enzymes able to conjugate reduced GSH to a wide
number of exogenous and endogenous electrophilic and hydrophobic substrates, participat-
ing in tumorigenic processes and drug resistance [169]. Among them, GST alpha (GSTA1-
A4), mu (GSTM1-M4), and pi (GSTP1) are the downstream targets of Nrf2 [161,170,171].
Notably, GSTA4 is able to detoxify the lipid peroxidation product HNE [172]. In melanoma,
it was shown that GSTM3 expression correlated with melanoma malignancy [168]. More-
over, the GSTP1 polymorphism rs1695, which encodes the amino acid change p.Ile105Val,
was associated with metastatic disease [173].

Other Nrf2 downstream targets have been found involved in melanoma progression.
TRX was found to be overexpressed in human melanoma and is positively associated with
metastasis [174]; studies using human tumor biopsy samples demonstrated that overexpres-
sion of xCT was correlated with melanoma stage and progression, and xenograft studies
confirmed the ability of xCT overexpression in melanoma cells to lead to more aggressive tu-
mors compared to vector controls [175], an opposite role from that of a member of the GPX
family, GPX3, which has been found to correlate to poor prognosis in melanoma [176].

3.2.2. Other Antioxidant Enzymes and Molecules

One of the main enzymatic components of the antioxidant defense system is repre-
sented by the metal ion-dependent superoxide dismutases (SODs), which can convert
superoxides to hydrogen peroxide, which is further removed by catalase (CAT) and
glutathione peroxidase (GPx). There are three members of the SOD family, with dif-
ferent subcellular localization: (i) the cytosolic copper/zinc SOD (CnZnSOD or SOD1),
which is present in the nucleus and mitochondrial inner membrane; (ii) the mitochondrial
manganese-dependent SOD (MnSOD or SOD2); and (iii) the extracellular SOD, which
also contains Cn/Zn (EcSOD or SOD3). All three enzymes are involved in the develop-
ment of cancer, but with different roles, which are often controversial [177–179]. Little
is known about cytosolic CnZnSOD in melanoma, while extensive studies on MnSOD
have demonstrated that it is involved in melanoma cancer growth control and tumor
progression. Overexpression of MnSOD promotes the survival of melanoma cells exposed
to the cytostatic and cytotoxic effects of cytokines (interleukin-1, IL-1; tumor necrosis factor,
TNF), chemotherapeutic agents (doxorubicin, mitomycin C), and ionizing irradiation [180].
Moreover, overexpression of MnSOD may promote the survival of melanoma cells exposed
to the chemotherapeutic drug doxorubicin [181]. Interestingly, MnSOD activity has been
found to parallel disease progression, since it progressively rises to start from the early
stage until the metastatic phenotype [182]. In contrast with these findings, Church and
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collaborators demonstrated that increased SOD2 expression suppressed the malignant
phenotype of human melanoma cells [183].

An opposite role was found for EcSOD. Indeed, in melanoma and in other tumors,
it has an antiproliferative role, suggesting that the loss of extracellular redox regulation
creates a microenvironment favorable to cancer progression [179].

Conflicting results have been obtained about the role of catalase in melanoma. On the one
hand, it was shown that catalase overexpression correlated with regression of melanoma
malignancy and that its downregulation could favor malignant progression [184]. On
the other hand, it was demonstrated that catalase activity increased with disease progres-
sion, achieving the maximum in stage III [182].

3.2.3. Targeting Redox Homeostasis as Melanoma Anticancer Therapy

Given the role of ROS in cancer initiation and tumor progression, the use of antioxi-
dants as therapeutical agents is extremely appealing in melanoma.

Dietary polyphenols, a broad spectrum of plant-derived compounds with antioxidant
properties, have shown antimelanoma effects in several in vitro and in vivo experimen-
tal models [185]. For instance, fisetin could reduce melanoma tumor growth in mouse
xenografts [186]; honokiol, a NOX1 inhibitor, by reducing cellular ROS levels, decreased
the migratory potential of melanoma cells in an in vitro model [187]; and anthocyanins
could inhibit proliferation, increase oxidative stress, and reduce mitochondrial membrane
potential in melanoma cells but not in normal cells [188]. However, the clinical applica-
tions of polyphenols as chemopreventive or therapeutical agents are strongly limited by
low bioavailability, since these plant-derived nutrients undergo important degradative or
catabolic processes due to the gastrointestinal transit, including metabolic processation
from the intestinal microbiota [185]. To overcome these limitations, the use of polyphenol-
loaded nanocarriers seems to have effective clinical potential in melanoma [189].

Other natural, such as the pentacyclic triterpenoid lupeol [190] or synthetic, such as
the specific iNOS L-N6-(1-Iminoethyl)lysine (L-NIL) [114], antioxidants also have been
studied with the goal to fight melanoma.

However, it is highly simplistic to consider ROS as promoters of cancer initiation and
progression and antioxidants as anticancer agents. In some cases, antioxidants used to
fight melanoma in in vivo animal studies or in human clinical trials not only failed to stop
the disease but even showed the ability to favor it, proving to be a double edge sword.

This two-faced characteristic has been shown, for instance, for N-acetylcysteine (NAC).
This antioxidant has been shown to protect melanocytes against oxidative stress/damage
and delay onset of UV-induced melanoma in mice [191]; furthermore, it can be safely
administered to patients at increased risk for melanoma, since 3 h after ingestion, NAC
attenuated GSH-depletion was induced by UV in nevi, suggesting its possible use prophy-
lactically before acute UV exposure with the ultimate goal to reduce long-term melanoma
risk [192]. However, in an endogenous mouse model of malignant melanoma, NAC did
not impact melanoma cell proliferation but also increased lymph node metastases and
GSH intratumoral levels [193]. In support of the hypothesis that antioxidants may not
have efficacy or even be detrimental in vivo, several clinical trials failed to show anticancer
activity. For example, a meta-analysis of nine randomized controlled trials and prospective
observational studies concluded that the consumption of A, C, and E vitamins, selenium,
and carotenoids as food (fruits and vegetables), supplements, or both did not reduce
the incidence of cutaneous melanoma [194]. Moreover, Piskounova and collaborators
studied the oxidative stress status of several melanoma circulating cells and their ability to
metastasize when xenografted into NOD/SCID IL2Rγnull (NSG) mice [195]. Interestingly,
they found that oxidative stress on circulating melanoma cells inhibited distant metastases,
while antioxidants promoted it.

These observations have led to a radical change of perspective, supporting treatments
that inhibit antioxidants and thus favor the accumulation of lethal ROS levels. Indeed, by
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blocking antioxidant defense in tumors, it is possible to decrease their ability to balance
oxidative insult, eliciting cell death (Figure 2).
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Figure 2. ROS levels and antioxidant threshold. Normal cells (N), cancer cells (C), and chemoresistant
cancer cells (CC) can have different susceptibility to therapeutical approaches with drugs able to
induce ROS production (drug, D). Low levels of ROS are required for cell survival, and medium
levels are tolerated; however, overwhelming levels of ROS trigger cell death. N have low ROS, fully
balanced by a robust antioxidant system. When ROS are increased by drug treatment, normal cells
generally survive, being protected by antioxidants. Conversely, C have increased levels of basal ROS
compared to normal cells. Moreover, C undergo a redox adaptation enhancing their antioxidant
defenses; nevertheless, when ROS are increased by therapeutic approaches, they reach the death
threshold earlier, and tumor cells can be killed more easily. In CC, ROS can be higher than in C;
moreover, a consistent redox adaptation leading to an increased expression of antioxidants can be
observed. In these conditions, ROS-inducing drug treatment may fail to kill cancer cells. The use
of a combination of drugs that simultaneously induce new ROS generation and inhibit antioxidant
defenses seems to be most promising.

Several synthetic and natural compounds can sensitize cancer cells to oxidative
stress induced by chemo- and radiotherapy by blocking their antioxidant defense [196].
L-buthionine [S,R]-sulfoximine (BSO), a synthetic inhibitor of the γ-glutamylcysteine syn-
thetase, a key enzyme in glutathione biosynthesis, can revert chemoresistance to TMZ both
in vitro and in vivo [151]. Among natural compounds, Nrf2 inhibitors have gained the at-
tention of scientists [64]. Cotreatment with the quassinoid brusatol, a plant-derived Nrf2
inhibitor, and low-dose UVA irradiation increased intracellular ROS, inhibited melanoma
cell proliferation, and induced cell apoptosis in vitro and in vivo [197]. Ailanthone, a plant
extract derived from the tree Ailanthus altissima that can downregulate Nrf2 and induce
oxidative stress [198–200], has shown anticancer activity toward a wide range of chemore-
sistant tumor cells [199–203], including melanoma [204]. Resveratrol, a natural polyphenol,
can decrease Nrf2 expression in melanoma cells, eliciting ROS increase and inhibition of
growth and proliferation by downregulating the Bcl-2 protein level and upregulating Bcl-2-
related X protein expression [205]. The flavonoid Nrf2 inhibitor Luteolin, present in various
vegetables and fruits, efficiently inhibited GST, leading to GSH depletion in melanoma
cells [206]. MC3165 and MC3181, two nitrobenzoxadiazole (NBD) analogs that are orally
active and water-soluble, specifically target GSTP1 and can inhibit viability in a panel of
human melanoma cell lines and in several human melanoma xenograft models [207].
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3.3. Lipid Peroxidation in Melanoma

LPO can be described generally as a process under which oxidants, ROS/RNS, or non-
radical species attack lipids containing carbon–carbon double bond(s), especially of PUFAs,
leading to the formation of lipid radicals (L•). Following this first phase of initiation, the L•

rapidly react with oxygen to form lipid peroxy radicals (LOO•), which can further prop-
agate oxidative degradation by forming new L• (which continue the chain reaction) and
lipid hydroperoxides (LOOH) (propagation step). In the last step, the termination phase,
antioxidants such as vitamin E donate a hydrogen atom to lipid peroxy radicals, forming
nonradical products [44,208]. The highly unstable LOOH can further generate new peroxyl
and alkoxy radicals and decompose to secondary products, which have been considered
“oxidative stress second messengers” because of their ability to diffuse from their site
of formation and prolonged half-life compared to that of free radicals. These secondary
lipid peroxidation products are mainly composed of reactive aldehydes, such as MDA,
HNE, hexanal, and acrolein, and have been extensively studied for their surprising and
sometimes unexpected biological activities [45,51,61,66,209]. HNE, one of the most active
lipid peroxidation products, can easily react with both low-molecular-weight compounds
and macromolecules, such as proteins and DNA. HNE–DNA adducts could contribute to
the mutagenic and carcinogenic effects associated with oxidative stress-induced LPO; not
only are HNE–protein adducts markers of LPO, but the covalent modifications of proteins
can profoundly modify their biological activity, contributing to the complex biological
consequences observed in tissues exposed to ROS [53,55]. MDA, one of the most used
markers of LPO in tissues, and acrolein also have high capabilities to react with many
biomolecules such as proteins or DNA, leading to the formation of adducts [61,210].

Although an increase in oxidative stress has been demonstrated in the majority of
tumor types, the lipid peroxidation product content in cancer cells has been found not only
to increase but to decrease also. Since the results have been contradictory, the role of LPO
and its products in cancer development is a matter of debate.

First investigations in this field demonstrated that the levels of LPO products in hep-
atoma cells were lower than those found in normal liver cells; that they strongly decreased
in mostly highly dedifferentiated hepatoma; and that, in the model of diethylnitrosamine
carcinogenesis, the LPO decline occurred as early as at the stage of reversible nodules and
progressed until the development of clear hepatomas [211–213]. Accordingly, HNE–protein
adducts were found in lower levels, with respect to their correspondent physiological
conditions, in the kidney [213] and in colon cancer, in which this decline paralleled the his-
tological degree of dedifferentiation [214]. On the contrary, other experimental results
demonstrated that HNE and MDA contents were higher than in normal tissues in colorectal
cancer [215], thyroid tumors [216], invasive breast carcinomas [217], and astrocytic and
ependymal cancer, with increasing levels at higher grades of malignancy [218]. Probably,
this discrepancy can be ascribed to different levels of PUFAs, in particular arachidonic and
linoleic acids, the major substrates for lipid peroxidation, in the tumor cell membranes.

In melanoma, the data seem to agree with these latter findings. Indeed, MDA levels
were significantly higher in human melanoma tissues than in control tissues [219]. Several
studies also confirmed increased MDA concentration in the plasma of melanoma-bearing
mice [220] and in human melanoma patients [182]. Interestingly, not only are serum MDA
levels elevated in all stages of melanoma, but stage IV patients showed the highest contents
compared to other stages [182]. In a cohort of 5 simple nevi, 5 dysplastic nevi, 35 primary
malignant melanomas, and 10 metastases, Blendea and collaborators [221] performed
HNE immunostaining of patients’ tissues. Interestingly, they found that HNE content
was significantly increased in dysplastic nevi versus benign nevi. It was maintained at
a level comparable to that in dysplastic lesions in cutaneous malignant melanomas, while
it was lost in metastases. The authors suggested that HNE is involved early in the process
of melanoma tumorigenesis and that the HNE loss in metastases could correlate with
the increased proliferative activity of metastatic cells. Indeed, at micromolar concentrations
similar to those found in human plasma and tissues, HNE has shown antiproliferative,
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proapoptotic, antiangiogenic, and prodifferentiative actions in a wide variety of tumor
cells in vitro by modulating the expression of critical genes for cancer, such as oncogenes,
oncosuppressors, transcription factors, apoptotic genes, and miRNAs [53,56,66,222–224].
Prof. Dianzani and Prof. Esterbauer were pioneering researchers on HNE signaling.
In particular, they were the first to demonstrate that HNE could negatively regulate cell
tumor growth by affecting the expression of oncogenes such as c-myc, c-myb, and c-
fos [225–227], either acting alone or interacting with growth factors present in serum [228].

This anticancer activity has also been widely demonstrated in melanoma cells. Early
studies demonstrated that HNE treatment inhibited B16-F10 melanoma cells both in vitro
and in vivo [229]. Moreover, it has been demonstrated that the treatment of pigmented
murine melanoma B16-F10 cells and amelanotic murine melanoma B16BL6 cells with
toxic doses of HNE rendered surviving cells more resistant to oxidative stress, possibly by
forming a bioactive conjugate with an extracellular peptide/protein present in the serum
media. This conjugate was supposed to be responsible for the suppression of cancer
growth exerted by HNE and was observed only in the presence of serum [230]. Later,
in an attempt to exploit the antitumoral HNE properties in vivo, strategies based on the use
of nanovehicles able to favor the delivery of this extremely reactive and poorly soluble
aldehyde have been proposed. Both β-cyclodextrin-poly(4-acryloylmorpholine) conjugate
and β-cyclodextrin-based lipid nanocapsules loaded with HNE were shown to potentiate
its antitumor effects, including in melanoma cells. Interestingly, successful topical adminis-
tration of these HNE-loaded nanovehicles on a three-dimensional human reconstructed
model of skin melanoma encouraged a possible clinical application [231,232].

On the basis of these results, which have demonstrated the role of LPO products
in the control of cancer growth, some strategies have been developed to target enzymes
involved in LPO product detoxification.

3.4. Enzymatic Systems Detoxifying LPO Products in Melanoma

Aldehyde dehydrogenases (ALDHs) are a superfamily of NAD+- or NADP+-dependent
enzymes responsible for most of the metabolism of aliphatic and aromatic, exogenous,
and endogenous aldehydes. In humans, ALDHs have been divided into 19 different
families that, in turn, include various numbers of subfamilies. Members of families show
different tissue and subcellular localization and specific functions. In light of the differences
in substrates metabolized, ALDHs can play the role of detoxifying enzymes towards toxic
aldehydes, contribute to the synthesis of molecules requiring the metabolism of an aldehy-
dic intermediate, or modulate crucial cellular functions such as proliferation, differentiation,
and survival. Interestingly, all ALDH isoenzymes, and in particular cytoplasmatic ALDH1
and ALDH3, are involved in the catabolism of aldehyde derived from lipid peroxidation of
PUFAs [233].

Based on the above-cited activities, changes in ALDH expression in several types of
tumors have been deeply investigated in experimental models of carcinogenesis, cancer
cell lines, and neoplastic patients. A direct correlation between increased ALDH expression
and malignancy degree has been reported in diethyl-nitrosamine-induced hepatocarcino-
genesis in rats and in rat hepatoma cell lines [234,235]. In human cancers, ALDH1A1
and ALDH1A3 have been found to be increased and correlated with some parameters of
cancer staging, the ability of cancer cells to form metastases, and the onset of resistance to
chemotherapeutic drugs [236–239].

With regard to the latter aspect, the enhancement of ALDH expression is important
mainly in favoring the resistance of cancer cells to drugs acting through the production of
ROS, such as oxazaphosphorines, doxorubicin, and TMZ, the metabolic intermediates of
which are catabolized by ALDHs [240–242].

More recently, ALDHs have also been included in the markers of cancer staminal cells
(CSCs) and ALDH+ subpopulations, showing that other CSC characteristics, including self-
renewal and differentiation, have been isolated from different types of tumors, including
melanoma [243–246].
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High expression of ALDHs was observed in xenografted melanoma from human
cancers and in xenografted human MM, even if, in the latter study, no differences in tu-
morigenicity and drug resistance between ALDH+ and ALDH- subpopulations were
reported [247,248]. The possibility that ALDH+ cells can be considered as a marker of
melanoma initiating cells (MICs) has been suggested.

Among ALDH isoenzymes, ALDH1A1 and ALDH1A3 were more associated with CSC
phenotype, even if the results present in the literature have been contradictory. Lou and
colleagues [235] reported that both members of the ALDH1 family are increased in human
melanoma cell lines, whereas more recently, Pérez-Alea and colleagues [249] indicated
ALDH1A3 as the enzyme majorly expressed in cultured melanoma cells. The same authors
also evidenced that ALDH1A inhibition and ALDH1A3 depletion both caused apoptosis
induction in melanoma cells.

Though full understanding of ALDH expression in melanoma and in melanoma cells
would require yet further investigations, the importance of these enzymes, mainly in mod-
ulating cell resistance to anticancer drugs, has aroused great scientific interest. With the aim
of exploiting these properties, several direct or indirect approaches have been used, in-
cluding silencing and specific inhibitors. siRNA against ALDH1A1 or ALDH1A3 has been
shown to revert resistance to TMZ and paclitaxel [247]. In a similar way, the direct blocking
of ALDH by the specific inhibitors dacarbazine, disulfiram, and diethylaminobenzalde-
hyde reduced the number of residual tumorigenic melanoma cells after chemotherapeutic
treatment [250]. It has been suggested that the beneficial effect of ALDH1 inhibition on
drug resistance could be due to the negative modulation of the Hedgehog signaling path-
way involved in maintaining MIC [251], of drug pump ABCB1, and of proteins showing
antiapoptotic effects [252].

Other than canonical ALDH inhibitors, new potential molecules have been synthe-
sized. Dinavahi and colleagues prepared multi-ALDH inhibitors showing an isatin back-
bone able to cause toxic intracellular aldehyde accumulation, cell cycle arrest, and apopto-
sis [253].

Notably, in the case of some types of anticancer drugs, high ALDH expression can
represent a favorable condition. For example, 5-nitrofuran, an antibiotic prodrug show-
ing anticancer potential, is activated to cytotoxic metabolite by ALDH1 isoforms, thus
rendering melanoma cells highly expressing ALDHs more susceptible to eradication [254].

Other than as a marker of CSC, ALDH1A1 and ALDH1A3 expression has been
indicated as a marker of responsivity to BRAF/MEK inhibitors in BRAF-mutant MM
patients [255]. This recent finding further amplifies the clinical implications of ALDH
evaluation and modulation in patients bearing melanoma.

4. Oxidative Stress in Resistance to Targeted Therapies in Melanoma

The presence of the BRAFV600E mutation has been associated with regulating redox
homeostasis by enhancing glycolytic metabolism and lowering mitochondrial oxidative
phosphorylation (OXPHOS); however, after the initial cancer regression with BRAFi/MEKi
therapies, a subclone of melanoma cells can acquire a drug-resistance phenotype charac-
terized by the enhancement of mitochondrial biogenesis, activity, and content, leading to
a further increase in mitochondrial ROS production [256,257]. This metabolic rewiring,
from glycolysis toward OXPHOS, can be considered an adaptative response that allows
melanoma cells to produce sufficient ATP levels to survive despite the inhibition of glycol-
ysis induced by BRAFi/MEKi treatment [258].

Consistently with these observations, several in vitro or in vivo studies reproducing
the induction of BRAFi or BRAFi/MEKi resistance successfully demonstrated an increase
in mitochondrial respiration and subsequent ROS enhancement. In vemurafenib-resistant
subclones of A375, SKMel28, and WM9 melanoma cells obtained both through in vitro
treatment and in vivo treatment in xenografts in SCID mice, Corazao-Rosas and collabo-
rators [259] demonstrated an increase in mitochondrial respiration and ROS production.
Moreover, the elevated ROS level rendered vemurafenib-resistant melanoma cells both
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in vitro and in vivo more prone to cell death induced by a pro-oxidant drug, such as elesclo-
mol. Similar results were obtained by Khamari and collaborators [260], who characterized
the oxidative-stress-related metabolic adaptations in a preclinical murine model that accu-
rately recapitulated in vivo the acquisition of resistance to BRAF or MEK inhibitors alone
and in combination [260]. The resistance was obtained by treating SCID mice engrafted
with A375 melanoma cells with vemurafenib. At first, the drug treatment drastically re-
duced tumors in all animals, but after a while, in some mice, melanoma cells were able to
escape to anti-BRAF therapy and reinitiate growth. Then, melanoma cells were isolated
from these relapsed mice. The vemurafenib-resistant A375 cell lines were also resistant to
other BRAFi (dabrafenib) and MEKi (trametinib and cobimetinib) alone or in combination.
As previously reported, these authors found out that these MAPK-resistant melanomas
exhibited an enhancement of ROS production due to mitochondrial oxygen consumption
increase. Interestingly, besides the enhancement of oxidative stress, they also reported
an antioxidant adaptative response characterized by GSH accumulation. In particular,
these authors showed that the increase in GSH was due to the increase in the availability of
glutamate and cysteine, the two molecules that, together with glycine, form GSH. The cys-
teine increase can be ascribed to the observed upregulation of Nrf2, which in turn elicited
an enhanced xCT expression, while the enhancement of glucose-derived glutamate was
due to a reprogrammed mitochondrial metabolism [260].

ROS increase and oxidative DNA damage were observed in melanoma cellular models
of double resistance to trametinib and dabrafenib both in in vitro and in vivo. Moreover,
these double-resistant melanoma cells showed an increase in SOD2 levels. Inhibition of
the antioxidant SOD2 or the use of an ROS scavenger such as NAC inhibited cellular
growth in these MAPKi double-resistant cells [261].

4.1. Therapeutic Strategies to Overcome MAPKi Resistance

To overcome BRAFi resistance in melanoma, three main therapeutical strategies able
to modulate oxidative stress can be considered (Figure 3): (i) decrease in mitochondrial ac-
tivation; (ii) inhibition of antioxidant defenses; and (iii) further increase in ROS production.

Targeting the metabolic rewiring from glycolysis toward OXPHOS represents an ap-
pealing therapeutical strategy in BRAFi/MEKi-resistant melanoma cells [127]. Several
drugs have been used to target OXPHOS directly, such as phenformin and metformin, two
biguanides used for treating type 2 diabetes; these two compounds enhanced the antitumor
activities of BRAFi through the inhibition of the mitochondrial respiratory chain (MRC)
complex I and the triggering of ROS production, which in combination with OXPHOS
inhibition can be toxic for the cells [262,263]. Other inhibitors of the MRC complex I that
can also induce ROS production, such as the small molecule inhibitor BAY 87-2243 and
the plant extract deguelin, in association with the BRAFi vemurafenib can significantly
reduce melanoma tumor growth when compared with their use as single agents [264–267].

Paralleling the increase in mitochondrial activation, which elicits higher ROS produc-
tion, BRAFi/MEKi-resistant melanoma cells enhance their antioxidant systems to survive
under oxidative stress. Therefore, targeting antioxidant defenses can be a therapeutical
strategy to overcome BRAFi/MEKi resistance. Several shreds of evidence can sustain this
hypothesis. Wang and collaborators demonstrated that the histone deacetylase inhibitor
vorinostat also elicited a further, lethal increase in ROS by suppressing xCT expression [268].
Sulfasalazine, another xCT inhibitor, could delay the growth of BRAFi-resistant melanoma
cells in vitro [260]. Phenethyl isothiocyanate (PEITC), an inhibitor of GST, could resensitize
BRAFi-resistant melanoma cells to vemurafenib [269].

Finally, given the ROS overproduction in BRAFi/MEKi-resistant melanoma cells, an-
other therapeutic strategy consists in further increasing ROS production with a pro-oxidant
drug in combination with a MAPKi. This approach can then reconsider the old pro-oxidant
chemotherapeutic drugs as an effective strategy to fight melanoma. In a recent phase 2
trial, BRAF V600 patients resistant to vemurafenib received a combined vemurafenib and
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fotemustine treatment that demonstrated clinical activity and an acceptable safety profile
in BRAF-refractory patients [270].
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5. Microbiota, Oxidative Stress, and Melanoma

In this complex scenario, the microbiota, the unique combination of microorganisms
that is found within a specific environment, has emerged as another important protag-
onist. The gut microbiome (GM), the collection of genomes of all the microorganisms
found in the gut, has been implicated in a wide range of human pathologies, including
cancer [271]. Melanoma is not an exception. For instance, it was demonstrated that the in-
testinal microbial dysbiosis induced by antibiotics can increase the incidence of malignant
melanoma in an animal model, and that treatment with probiotics, by restoring the mi-
crobiota diversity, significantly reduced tumor incidence [272]. Moreover, Jenkins and
collaborators demonstrated that antibiotic-induced dysbiosis enhanced distal melanoma
progression in B16-F10 tumor-bearing animals by altering the host cytokine profile; these
changes were able in turn to inhibit the expression of vascular adhesion molecules and
decrease the number of activated and effector CD8+ T-cells in tumors, highlighting the im-
portance of commensal bacteria in supporting anticancer immune surveillance [273].

The GM has also been shown to affect response to melanoma therapies. Significant
progress has been made by identifying the microbiome as a major player in the sensitivity
to anti-PD1/PD-L1 and anti-CTLA4 immunotherapies in melanoma [274,275]. However,
few studies have been conducted with the purpose of dissecting the role of microbiota
in sensitivity to BRAFi/MEKi treatments or in modulating the onset of resistance to these
targeted therapies. Among these few, it was demonstrated that the addition of inulin or
mucin prebiotics to the diet of C57BL/6 mice induced different changes in gut microbiota
taxa, followed by antitumor immune responses and inhibition of BRAF-mutant melanoma
growth in a subcutaneously implanted syngeneic mouse model. Moreover, they observed
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that inulin, but not mucin, limited tumor growth in syngeneic mouse models of NRAS
mutant melanoma and enhanced the efficacy of a MEKi with a delay in the development of
drug resistance [276].

Interestingly, not only the GM but the intratumoral microbiome has gained atten-
tion in studies on microbiota’s impacts in response to several anticancer treatments (im-
munotherapy, chemotherapy, radiotherapy) [277,278]. In melanoma cells, the presence of
Fusobacterium nucleatum (F. nucleatum), a Gram-negative anaerobic periodontal pathogen
involved in systemic diseases, inhibited the natural killer cytotoxicity towards tumor
cells [279]; moreover, the highest amount of F. nucleatum in animal skins was found to be
associated with a more aggressive melanoma disease [280].

It is well known that dysbiosis can be associated with oxidative stress; together
with proinflammatory cytokines, it contributes to form a favorable milieu for the onset or
the progression of several pathologies, such as metabolic syndrome, neurological disease,
inflammatory bowel disease, and cancer [281]. Thus, in these conditions, innovative thera-
peutical strategies can be represented by the direct modulation of the microbiota, such as
through the employment of polyphenolic nutraceuticals, to minimize oxidative stress and
slow down inflammation [282]. In this regard, it has been shown that the administration of
pomegranate aqueous extract, which is particularly rich in bioactive phytochemicals, inhib-
ited tumor growth and showed with anti-inflammatory and antioxidant effects in a model of
dimethylbenz(a)anthracene (DMBA)-initiated rat mammary tumorigenesis [283]. The con-
nection among gut microbiota, oxidative, stress and melanoma is a largely unexplored area;
however, some evidence has suggested their possible interplay. For instance, the genus
Lactobacillus, with well-known anti-inflammatory and antioxidative effects [284], when
administered in B16 melanoma-bearing animals, showed antimetastatic effects, reduced
the incidence of melanoma and significantly prolonged survival [285–287].

6. Conclusions

There is no doubt that oxidative stress plays a role in melanoma initiation, progression,
metastatic spread, and onset of chemoresistance to classical pro-oxidant drugs and MAPK-
targeting therapies. However, controversial and opposite results on the role of ROS, LPO
products, and their specific antioxidant or detoxifying systems in regulating cancer growth
make it important to pay attention to the type of strategy to fight melanoma.

The decrease in ROS by using antioxidants may be detrimental in some cases, given
the role of these substances in supporting tumor progression. On the contrary, inducing
high ROS levels in melanoma cells, provided that high, lethal levels are surely reached,
seems to have no contraindications. Probably the most promising strategies rely on the use
of a combination of drugs that can affect multiple pathways at the same time.

Furthermore, new strategies of affecting redox balance by manipulating of the micro-
biota can be pursued.

A more complete understanding of the role of oxidative stress in melanoma disease
will ensure the development of increasingly effective therapies.
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