SUPPLEMENTARY INFORMATION FOR

Sequential intrahost evolution and onward transmission of SARS-CoV-2 variants

Ana S. Gonzalez-Reiche¹, Hala Alshammary^{2,3}, Sarah Schaefer⁴, Gopi Patel⁴, Jose Polanco^{2,3}, Juan Manuel Carreño ^{2,3}, Angela A. Amoako^{2,3}, Aria Rooker^{2,3}, Christian Cognigni^{2,3}, Daniel Floda¹, Adriana van de Guchte¹, Zain Khalil¹, Keith Farrugia¹, Nima Assad⁵, Jian Zhang¹, Bremy Alburquerque^{1,5}, PARIS/PSP study group^{2,3}, Levy Sominsky^{2,3}, Charles Gleason^{2,3} Komal Srivastava^{2,3}, Robert Sebra^{1,6,7}, Juan David Ramirez^{8,9}, Radhika Banu⁸, Paras Shrestha⁸, Florian Krammer^{2,3,8}, Alberto Paniz-Mondolfi⁸, Emilia Mia Sordillo⁸, Viviana Simon^{2,3,4,8,10,†}, Harm van Bakel^{1,2,6,†}

- 1. Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- 2. Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- 3. Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- 4. Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- 5. Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- 6. Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- 7. Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- 8. Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- 9. Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
- 10. The Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

Corresponding authors/senior authors:

† Dr. Emilia Mia Sordillo (Emilia.Sordillo@mountsinai.org), Dr. Viviana Simon (viviana.simon@mssm.edu), and Dr. Harm van Bakel (harm.vanbakel@mssm.edu)

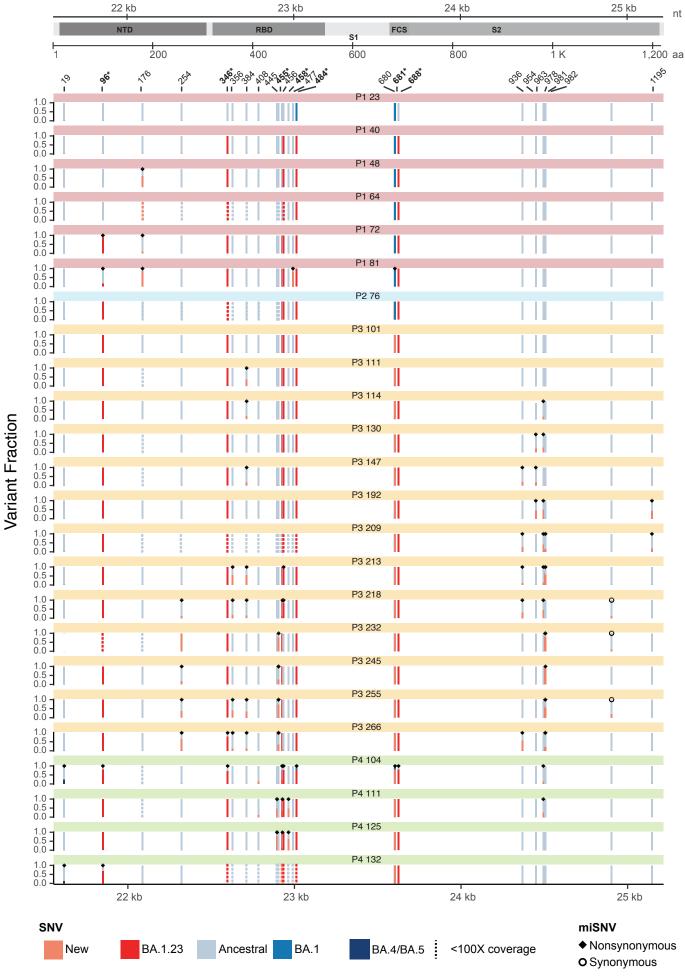
This PDF contains:

Supplementary Figures 1 to 4. Supplementary Tables 1 to 3.

Supplementary Figure 1: Overview of genome-wide SARS-CoV-2 mutations found in diagnostic nasal biospecimen. The mutations present across the complete SARS-CoV-2 genome are shown. Nucleotide substitutions observed in sequential specimens obtained from patient 1 (P1) with prolonged infection with BA.1 and forward transmission cases (P2, P3 and P4). There is accumulation and fixation of new SNVs in the spike region in P1. The same constellation of mutations was subsequently detected in three documented transmission cases (P2, P3 and P4) and in two sequences from GISAID (EPI_ISL_11628400 and EPI_ISL_11696379). The only shared synonymous SNV outside of the spike (ORF1a:T6001C) is indicated with an arrow. The number of days since the first positive test in P1 is shown on the left, with the number of days after the first positive test for each patient between brackets. The BA.1 substitutions are shown in blue and novel substitutions are shown in red, relative to the reference genome sequence NC_045512.2. "N" represents ambiguous bases with coverage below the base-calling threshold of 10X. The minimum required sequence read coverage for minor variant calling is 100X.

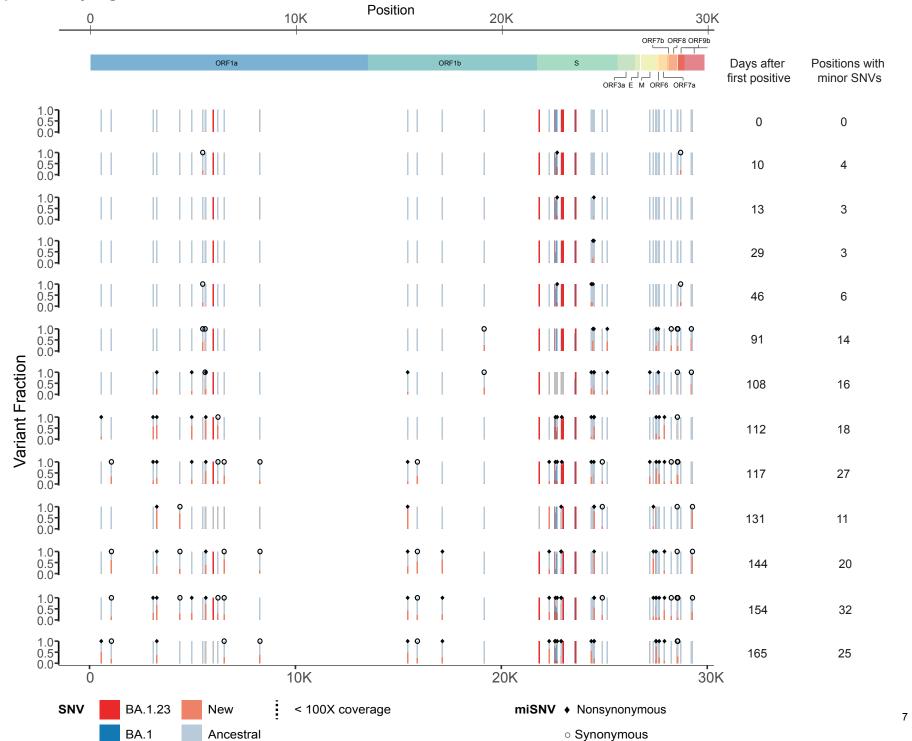
T6001C

♦ Nonsynonymous mSNV o Synonymous miSNV


3

Novel SNV Deletion

Supplementary Figure 2: Summary of SARS-CoV-2 mutations within the spike gene in minority viral populations.


The distribution of minority intrahost single nucleotide variants (miSNVs) for positions that were fixed over the course of infection in the index and transmission cases are shown indicated with asterisks. Single nucleotide variants are colored by strain. The dotted bars indicate positions with coverage below the threshold of 100X coverage for calling miSNVs. The positions with minority variants present at frequencies > 0.1 are indicated with diamonds for their respective samples.

Supplementary Figure 2

Supplementary Figure 3: Summary of genome-wide SARS-CoV-2 mutations in minority viral populations for patient P3

Similar to Supplementary Fig. 2 but showing the distribution of nucleotide variants below the consensus level observed in one or more specimens from P3. Single nucleotide variants (SNVs) are colored by strain. The dotted bars indicate positions with coverage below the threshold of 100X coverage for calling miSNVs. The positions with minority variants at frequencies > 0.1% are indicated with triangles (nonsynonymous) or circles (synonymous) for their respective samples.

Supplementary Figure 4: Summary of SARS-CoV-2 mutations within the Spike gene in minority viral populations for patient P3

Similar to Supplementary Fig. 3 but showing minority mutations in the Spike gene region. Single nucleotide variants (SNVs) are colored by strain. The dotted bars indicate positions with coverage below the threshold of 100X coverage for calling minor SNVs (miSNVs). The positions with minority variants at frequencies > 0.1 are indicated with triangles for their respective samples.

Supplementary Figure 4 Position in SARS-CoV-2 genome (Spike) 22 kb 25 kb nt NTD FSR S2 200 400 1,000 1,200 600 800 aa P3 101 1.0 0.5 0.0 P3 111 1.0 0.5 0.0 P3 114 1.0 0.5 0.0 P3 130 1.0 0.5 **-**P3 147 1.0 0.5 **-**P3 192 1.0 **-** 0.5 **-** 0.0 **-**Variant Fraction P3 209 1.0 **-**0.5 **-**0.0 **-**P3 213 1.0 0.5 0.0 P3 218 1.0 0.5 0.0 P3 232 1.0 0.5 **-**P3 245 1.0 0.5 0.0 P3 255 1.0 0.5 0.0 P3 266 1.0 0.5 0.0 22 kb 23 kb 24 kb 25 kb SNV miSNV type

New

Ancestral

BA.1.23

< 100X coverage

BA.1

Nonsynonymous

o Synonymous

Supplementary Table 1. Overview of the two serum panels used in this study

Panel 1 (Three mRNA vaccine doses)	Total # of participants selected	9		
	Age average (min-max)	59.7 (50-69 years)		
	Sex	Female		8
		Male		1
	Total # Sera	18		
	Days between sample collection and vaccine — dose	Before	Average	19
			Range	0-38
		After	Average	31
			Range	14-59
Panel 2 (Omicron BA.1 Breakthroughs)	Total # of participants selected	11		
	Age average (min-max)	43.6 (18-69 years)		
	Sex	Female		7
		Male		4
	Total # Sera	22		
	Days between sample collection and infection	Before	Average	11
			Range	0-27
		After	Average	27
			Range	15-37

Supplementary Table 2. Detailed characteristics of the two serum panels used in this study

Participant ID	Age Bracket	Sex	Time points included in this study
BO-1	60-69		Pre-Booster
	00 05	Male	Post Booster
BO-2	50-59		Pre-Booster
DU-Z	30-39	Female	Post Booster
BO-3	50-59		Pre-Booster
		Female	Post Booster
BO-4	60-69		Pre-Booster
	00-03	Female	Post Booster
BO-5	60-69		Pre-Booster
		Female	Post Booster
DO 6	50.50		Pre-Booster
BO-6	50-59	Female	Post Booster
DO 7	50.50		Pre-Booster
BO-7	50-59	Female	Post Booster
DO 0	60.60		Pre-Booster
BO-8	60-69	Female	Post Booster
DO 0	50.50		Pre-Booster
BO-9	60-69	Female	Post Booster
			Pre-infection, Boosted
BABI-1	30-39	Female	Post-infection, Boosted
			Pre-infection, Boosted
BABI-2	40-49	Male	Post-infection, Boosted
		Water	Pre-infection, Unboosted
BABI-3	40-49	Male	Post-infection, Unboosted
		Water	Pre-infection, Unboosted
BABI-4	40-49	Female	Post-infection, Unboosted
		remare	Pre-infection, Unboosted
BABI-5	30-39	Female	Post-infection, Unboosted
		remaie	Pre-infection, Boosted
BABI-6	30-39	Female	Post-infection, Boosted
		remale	Pre-infection, Boosted
BABI-7	60-69	Female	·
		remaie	Post-infection, Boosted
BABI-8	18-29	Mala	Pre-infection, Boosted
		Male	Post-infection, Boosted
BABI-9	60-69	N 4 - 1 -	Pre-infection, Boosted
		Male	Post-infection, Boosted
BABI-10	40-49	- 1	Pre-infection, Boosted
		Female	Post-infection, Boosted
BABI-11	40-49		Pre-infection, Boosted
		Female	Post-infection, Boosted
Patient 2 described in this paper	60-69		Pre-infection, Unboosted
		Female	Pre-infection, Boosted
			Post-infection, Boosted
			Post-infection, Boosted