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Cell graph analysis in hepatocellular
carcinoma: predicting local recurrence
and identifying spatial relationship
biomarkers
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A whole pathology section contains approximately 1,000,000 cells of various types, this large-scale
heterogeneity of cells and non-cellular constituents constructs a mutually competitive community.
Conventional pixel-based visual processing techniques are insufficient to accurately capture the
complexities inherent with cell-entity deployment and formation strategy. Here, we conquered
segmentation and classification of all cells on the whole pathology sections from 387 hepatocellular
carcinoma (HCC) patients across six cohorts with 57 pathologists assisted. Further, an Al system called
Hybrid Graph Neural Network-Transformer system (HGTs) was proposed. It precisely predicted local
recurrence of postoperative HCC by analyzing cell interactions across multiple scales, from cell-to-cell,
cell-community, to tissue-level interactions. The proposed HGTs outperformed existing SOTA methods,
with the C-index improving by 23.1% to reach 0.823, by further integrating multimodal data, including
clinical information and immunohistochemical markers. A set of spatial relational biomarkers influencing
tumor prognosis was discovered and quantitatively validated. They include the frequency of tumor-
lymphocyte and tumor-tumor interactions, the distribution and sparsity of key cellular communities, and
the degree of fibrosis in adjacent peritumoral tissues. Utilizing the anti-tumor potential of this marker set,
we’re developing therapies to enhance the immune system’s fight against cancer. All cell semantic
segmentation datasets and code are publicly available: https://github.com/Yuan1z0825/HGTs.

Delving into the tumor microenvironment (TME) can yield significant tumor development, invasion, metastasis, and treatment responses'. Despite
prognostic information in cancer studies. The TME, a complicated eco-  recent breakthroughs illuminating certain interaction mechanisms within
system, integrates a plethora of cellular and non-cellular constituents the TME, such as intratumor tertiary lymphoid structures’, vessels encap-
including cancer cells, immune cells, stromal cells, the extracellular matrix,  sulating tumor clusters™, and tumor immune barrier structures’, the
and signaling molecules’. This assemblage collaboratively orchestrates intricate configurations of the TME and their ramifications on the efficacy of
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immunotherapies and chemoradiation remain largely elusive. Specifically,
regarding HCC, the TME presents itself to be exceptionally complex,
accommodating a wide range of cellular elements which constitute various
functional units or cellular neighborhoods®. This provides motivation delve
deeper into the subtle heterogeneity and spatial distribution of cells within
the TME, to better understand the mechanisms of their interactions.

With the advancement of scanning technologies and the popularity of
whole-slide images (WSIs), digital pathology has become a crucial field,
providing computer-assisted diagnosis’ that delves into the intricacies of the
TME. For WSI, a straightforward analysis can be conducted by having
pathologists visually assess the proportion and morphological distribution
of various cells. Subtle histological features that may strongly correlate with
patient prognosis can be overlooked when relying solely on visual exam-
ination of pathologists. Alternatively, deep learning can be utilized by
treating the pathological slides as images*’, segmenting them into multiple
small patches, and using pixel-based visual methods for analysis'*™'*.
Nevertheless, the spatial relationships between cells also play a crucial role. A
WSI is a hyper-scale community network composed of millions of specific
multi-class cell entities. Quantitatively exploring these spatial relationships
is of significant importance in understanding factors that influence cancer
prognosis, but the researches in this area are still scarce. Based on cells as the
fundamental unit, key attributes of these community networks—such as
homophily, collective behavior, community cohesion, centrality, clustering
coefficient, assortativity, and interconnectedness—can be characterized
through cell-level (Ego) networks, group-level community networks,
community metric networks, clique networks, intergroup networks, coali-
tional networks, and collective intelligence networks'>™. Furthermore,
developing targeted Graph neural network (GNN) and Transformer
architectures can enable cancer subtyping and prognosis prediction based
on WSL The Transformer uses self-attention mechanisms to model con-
nections in a graph-like manner.

To emphasize biological entities, cell graphs have been employed, in
which cells and their interactions are depicted as nodes and edges,
respectively”'. Classical graph learning techniques, such as GNNs, have been
used to decipher the structure-function relationship through cell graphs™.
For instance, the Cell Graph Convolutional Network (CGC-Net) intro-
duced by Zhou et al. * offers an innovative approach for classifying color-
ectal cancer histology images. This entity-based method aims to capture
detailed cell-level information, outperforming traditional patch-based
analysis. Nevertheless, relying on cell sampling in CGC-Net could over-
simplify the rich biological complexity inherent in local tissues. Further-
more, the study by Wu Z et al. * demonstrates the utility of GNNs in
capturing unique cellular interactions using spatial protein profiles. Despite
its success, this method only considers cell type as node features, potentially
neglecting the heterogeneity present within the same cells. A shared lim-
itation across these cell graph methods is the insufficient incorporation of
contextual information from the wider tissue architecture, which is essential
for a comprehensive histopathological representation. To overcome these
limitations, recent methodologies”* have introduced a hierarchical tissue
model that navigates from the cellular level to the tissue landscape, pro-
viding a detailed and integrative perspective. However, these methods do
not adequately consider the diverse cell types within the WSI. This oversight
is crucial because the strong heterogeneity among different cell types is
essential for understanding their roles in the TME. Addressing this gap
could significantly enhance the accuracy of tumor prognosis prediction and
promote the discovery of spatial relational biomarkers.

To make deep-learning-based pathology models clinically useful, they
ought to be interpretable. As a result, researchers are actively exploring
interpretable GNN methods to enhance model transparency at the cell-
graph level””**. These strategies facilitate the construction of interpretable
features that are understandable to pathologists. Recent studies on the
interpretability of attention distributions have introduced concepts of
faithful and plausible explanations for model predictions. Attention dis-
tributions are ‘faithful’ when higher weights directly influence predictions
and ‘plausible’ when they provide an understandable rationale for those

predictions””’. Therefore, it is possible to utilize attention mechanisms to
quantify and interpret the distinct roles of different cell types during cellular
interactions, providing pathologists with intuitive, interpretable features
that incorporate context from the WSI. Such an approach would allow for
multi-level discovery of prognostic biomarkers, marking a significant
advance in the field of computational pathology.

To address these challenges, we focus on cell interactions within the
TME across multiple scales, from cell-to-cell, cell-community, to tissue-level
interactions. To this end, our study involves detailed full-cell segmentation
and classification of each WSI by professional pathologists. Over the course of
two years, the world’s first large-scale dataset has been developed by our
groups, consisting of 387 annotated WSIs, capable of both multi-class full-cell
segmentation and classification. The WSIs were categorized into seven pre-
valent cell types: tumor cells, vascular endothelial cells, lymphocytes, fibro-
blasts, biliary epithelial cells, and hepatocytes with any remaining cell types
grouped together as ‘other’. This dataset will be made publicly available
alongside this project. Furthermore, an Al system called the Hybrid Graph
Neural Network-Transformer system (HGTs) was proposed to acquire
comprehensive insights into the interactions both intra- and inter-cellularly
communities. HGT's seamlessly integrates a GNN, a gated attention module,
and a Transformer encoder into an end-to-end system. Specifically, in the
first stage of HGTs, traditional GNNs are enhanced by introducing a het-
erogeneous message-passing function”. Each cell is assigned a type-specific
message-passing function represented by identity matrices, enriching the
category information beyond simple categorical values. This approach allows
for a richer representation of cell-specific information and interactions. It
enables cells within the cell community to recognize their identities, interact
with distant cells, and better represent their behaviors and interactions within
the TME. The gated attention module quantifies the attention scores of cells
in prognosis prediction, offering a nuanced assessment of their impact on
patient outcomes and enhancing interpretability. In the second stage, inspired
by Vision Transformer™™* (ViT), we incorporated the Transformer encoder
into a weakly supervised MIL framework to integrate the interactions
between cellular communities. This integration leverages self-attention
mechanisms” ™ by treating local cell-constructed graphs as tokens and
effectively captures complex inter-community relationships in WSIs.

In the prognosis prediction for HCC across six cohorts, the proposed
HGTSs, which integrated clinical information, the risk score’s C-index yiel-
ded 0.823. This represents a significant enhancement of 23.1% when
compared to these state-of-the-art models: DeepGraphSurv”’, PatchGCN*,
and TEA-graph™. In predicting local recurrence of HCC at 1, 3, and 5 years,
the proposed system shows enhanced sensitivity to the more challenging
1-year recurrence, achieving an AUC of 0.817. Ultimately, a typical marker
set of spatial relationships that influence local recurrence of HCC was
identified at multiple scales, including the frequency of tumor-lymphocyte
and tumor-tumor interactions, the distribution and sparsity of key cellular
communities, immune infiltration, and the degree of fibrosis in adjacent
peritumoral tissues, etc. By leveraging the natural anti-tumor activity of this
marker set, we are working to develop effective cancer treatments that boost
the immune system’s ability to fight cancer.

Our work makes four key contributions:

The world’s first large-scale dataset of 387 annotated WSIs featuring
multi-class full-cell segmentation and classification is presented. This
dataset covers seven prevalent tumor microenvironment cell types and will
be released publicly.

A multi-scale AI model (HGTs) is proposed to enable cross-scale
modeling from single-cell, cell-community to tissue level with interpretable
cell-interaction analysis by integrating graph neural networks with
Transformer.

A C-index of 0.823 in predicting HCC prognosis is achieved by the
HGTs model, which is 23.1% higher than the state-of-the-art vision-based
method.

Multi-scale biomarkers associated with HCC recurrence are identified
by the approach, and these findings could both improve prognosis and
provide potential therapeutic targets for enhancing anti-tumor immunity.
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Results

Collection and preprocessing of the patient cohorts

In this study, multidimensional data, including age, gender, and the degree
of tumor cell differentiation, were collected from 337 hepatocellular carci-
noma patients who underwent surgical treatment across five clinical insti-
tutions. Survival follow-up data were obtained, spanning from December
2012 to October 2017. The dataset delineates tumor differentiation as fol-
lows: 34 patients with well-differentiated (Grade 1) tumors, 214 with
moderately differentiated (Grade 2) tumors, 86 with poorly differentiated
(Grade 3) tumors, and 3 with undifferentiated (Grade 4) tumors. The
patients’ age distribution ranged from 24 to 83 years, with the median age
being 58 years. All of this information can be found in Table S1. Addi-
tionally, to validate the proposed method, an external validation was per-
formed on 50 randomly selected patients from TCGA-LIHC, with relevant
details provided in Table S2.

Workflow overview

As shown in Fig. 1A, the pipeline from data preprocessing to prognostic
prediction and interpretability analysis is outlined. Specifically, H&E-
stained HCC pathology slides from the existing dataset are digitized. This
project involved 57 pathologists with varying levels of experience, including
27 junior doctors, 16 mid-level doctors, and 14 senior doctors. Senior
doctors performed additional annotation and correction on the initial WSI
labels, enhancing the accuracy of full-cell segmentation and classification.
Over more than two years, they used a semi-automated approach to
accurately segment and classify multiple cell types across the WSIs, com-
pleting 387 cases. These cells included tumor cells, vascular endothelial cells,
lymphocytes, fibroblasts, biliary epithelial cells, and hepatocytes. Any
remaining cell types were grouped together as ‘other’. Annotations on the
WSI were made using QuPath software” (for more details, see METHOD
DETAILS). After obtaining the full-cell segmentation and classification
results from the WSI, we selected non-overlapping regions with the greatest
diversity of cell types. These regions, enriched with diverse cell types, were
considered as key cellular communities. In each key cellular community, cell
graphs were constructed based on cell centroids using the Minimum
Spanning Tree algorithm. The edges in the cell graph were considered
indicative of interactions between cells. Furthermore, Transformer-based or
graph-based methods were applied to model interactions between cellular
communities, ultimately yielding a recurrence risk score. The recurrence
risk score was then used to construct Kaplan-Meier curves for recurrence-
free interval analysis, as well as to predict 1-year, 3-year, and 5-year recur-
rence outcomes. A multiscale interpretability analysis was performed to
provide insights at the cellular level, cell community level, and tissue level.

For detailed prognostic prediction and multi-scale interpretability
analysis, as shown in Fig. 1B, the Hybrid Graph Neural Network-
Transformer system (HGTs) uses multiple cell graphs to generate patient-
level features. A fully connected layer calculates a risk score for local
recurrence in HCC. This score is used to generate Kaplan-Meier curves and
perform time-dependent ROC analysis for evaluating disease progression.
By balancing local pathological structures and integrating global signatures
across the WSI, this system facilitates multi-scale biomarker discovery. As
shown in Fig. 1C, HGTs innovatively incorporates a heterogeneous
message-passing function within the GNN, enabling each cell to recognize
its own type during interactions with surrounding cells. An interpretable
gated attention module quantifies the attention scores of cells in prognostic
prediction. While HGTs is applied here to HCC, it can be directly applied to
other organ histology, given organ-specific training data.

Subsequently, a cohort of 337 HCC patients from five clinical insti-
tutions was stratified based on recurrence status, with censored and
uncensored groups handled separately. For both the censored and uncen-
sored patients, the data were randomly divided into three parts: 64% for
training (215 patients), 16% for internal validation (53 patients), and the
remaining 20% (69 patients) served as internal testing and biomarker dis-
covery. Additionally, 50 cases were randomly selected from the TCGA-
LIHC cohort to serve as an independent external validation dataset.

Comprehensive evaluation of external test cohort: model com-
parison and component analysis

HGTs employed a dual-stage, end-to-end approach that first leverages the
local context extraction capabilities of GNNs, and then incorporates the
global contextual insights provided by the Transformer. To quantitatively
assess the performance of HGTs and compare it with other contextual
models, we used the C-index as our primary metric of assessment. Addi-
tionally, to thoroughly validate HGTS’ effectiveness and the contribution of
each component, we conducted studies on model architecture and para-
meter settings. These studies clarified the impact of each component on the
HGTS’ overall performance.

Performance comparison with other contextual models. We con-
ducted comparative analyses with leading models such as
DeepGraphSurv”, Patch-GCN*, and TEA-graph®, each renowned for
their proficiency in enhancing patient-level predictive analytics. In these
models, a CNN first extracts information from image patches. Then, a
graph network is constructed based on spatial relationships to further
explore these local perspectives. As shown in Fig. 2A, the standalone
HGTs demonstrates superior performance, achieving a C-index of 0.672.
This represents a statistically significant improvement of 5.1%
(p <0.0001) over the best-performing alternative, TEA-graph (C-index of
0.621). Compared to other models, the HGTs shows an 11.0% improve-
ment over DeepGraphSurv (C-index of 0.562) and a 7.8% improvement
over Patch-GCN (C-index of 0.594). Overall, the HGT's outperforms these
alternatives by an average of 8.0%, highlighting the limitations of relying
solely on pixel-level features in the initial processing stage.

Exploration of HGTs in the first stage. As shown in Fig. 2B, using spatial
coordinates combined with the ratio of nuclear area to cell area achieved the
highest C-index, outperforming other cellular features. Spatial coordinates
alone capture the spatial relationships within the TME, yielding a C-index of
0.599. However, when combined with all morphological features, the C-index
drops to 0.579, indicating potential complexity in feature interaction and the
risk of overfitting, which diminishes the model’s effectiveness. Considering
only the ratio of nuclear area to cell area, which highlights cellular hetero-
geneity but lacks spatial information, the C-index is 0.506. In the TME,
focusing solely on neighboring cells might not fully capture the entire sce-
nario, especially when neighboring cells are predominantly of the same type.
Our studies on the number of layers revealed that increasing the number of
layers can enhance the model’s performance to some extent, as depicted in
Fig. 2C. Nonetheless, considering the limited number of cells within a patch,
excessive layers in the GNN are unnecessary. In our research, we further
integrated PairNorm"' and skip connections® into the GNN. Although these
methods are theoretically effective in deeper GNN architectures, as demon-
strated in Fig. 2D, they did not improve the performance of HGT's and even
resulted in a decline. Additionally, we explored different graph construction
methods like K-Nearest Neighbors, Delaunay triangulation and Minimum
Spanning Tree, analyzing their impact on the model’s performance. As
shown in Fig. 2E, our experimental results indicate that the Minimum
Spanning Tree achieved the best performance, with a 5% improvement over
the second-place Delaunay triangulation method. A preference for sparse
graphs may yield better performance.

The Transformer for interaction among cellular communities
enhances the C-index. As a two-stage model, the HGTs not only
leverages the strengths of end-to-end modeling but also accommodates
flexible integration strategies, such as incorporating Transformer,
HyperGraph***’ and Graph Attention Network* (GAT) for contextual
analysis of WSI. Among the HGTSs variants, the HyperGraph variant,
with a C-index of 0.650, outperforms the GAT variant, which has a
C-index of 0.634, showing a 1.6% improvement, as detailed in Fig. 2F.
Both GAT and HyperGraph strategies are effective in analyzing WSIs
using explicit graph structures. However, they are surpassed by the
Transformer strategy, which achieves the highest C-index of 0.672,
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marking a 2.2% improvement over HyperGraph and a 3.8% improve-
ment over GAT (both p < 0.0001).

Visualizing spatial features and heterogeneous message passing
function in deep GNN layers

As shown in Fig. 2B, cell spatial coordinates are critical for accurately
representing the spatial relationships within the TME. Traditional graphs

inherently possess permutation invariance”’. While they can depict inter-
cellular relationships, cell graphs lacking spatial coordinates may inaccu-
rately represent cellular spatial arrangement, as demonstrated in Fig. 3A.
In various tasks, such as node/graph classification and link prediction,
standard GNN models like Graph Convolutional Network* (GCN), Graph
Isomorphism Network® (GIN), and GAT typically yield strong results with
only 2 to 4 layers. However, increasing the number of layers often leads to
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Fig. 1 | Illustration of the comprehensive pipeline for HCC prognosis prediction
and biomarker discovery. A Overview of cell segmentation and classification, the
construction of cellular networks for intercellular communication, and the sub-
sequent prediction of patient risk scores based on communication between cell
communities, which are then used for downstream tasks. B Initial full-cell seg-
mentation and classification on WSIs are performed by junior pathologists and
refined by senior experts. Cellular communities are then selected based on the
diversity of cell types. The cell graphs are constructed by combining the centroids of
cells with the minimum spanning tree (MST) algorithm. A GNN with a hetero-
geneous message-passing function and an interpretable gated attention module
extracts local features from cell graphs constructed based on cellular communities.

Then, a Transformer encoder processes interactions between cellular communities.
Finally, a fully connected layer calculates the risk score for HCC recurrence, which is
utilized for Kaplan-Meier curve analysis and time-dependent receiver operating
characteristic (ROC) analysis. Spatial biomarker discovery is conducted through the
interpretable gated attention module along with cell graph and cellular community
distribution. C In the innovative HeteroMessage Graph Neural Network module, the
local cell graph is used as input. The heterogeneous message passing function’s
identity matrix explicitly represents cell types to facilitate communication between
cells. The interpretable gated attention module quantifies the attention scores of
each cell.

diminished performance, primarily due to the over-smoothing
phenomenon®. To better illustrate the efficacy of the heterogeneous
message-passing function in deeper GNN layers, a pivotal finding from our
research is shown in Fig. 3B. It demonstrates that our chosen method fosters
diverse spatial distributions for different cell types. In t-SNE visualizations,
the features of different cell types remain somewhat sparse and separated.
Further analysis through a visualization of this function’s parameters, as
seen in Fig. 3C, reveals that the identity matrices of different cell types exhibit
distinct specificity. In each layer, the absolute similarity scores between
different cell types are generally below 0.3, indicating the strong hetero-
geneity among different cell types. This pattern underscores the critical role
of heterogeneous message passing function and the inadequacies of
homogeneous function to fully capture the intricate nuances of cellular
communication. To underscore this, we conducted experiments with a
deep-layered HGTs. In these experiments, the heterogeneous message-
passing function was replaced with a homogeneous variant, and cell types
were represented using either a single numerical value or one-hot encoding.
As detailed in Fig. S1, the model struggled with convergence even on the
training set. In contrast, when using the heterogeneous message passing
function with a 10-layer GNN network on the training set, the loss con-
verged normally, and the C-index improved significantly by more than 20%.

Independent prediction of recurrence

In the analysis of local recurrence among 69 HCC patients from the external
test set, patients were categorized into high-risk and low-risk groups based
on tumor risk scores'”. As shown in Fig. 4A, DeepGraphSurv yielded an HR
of 1.57 (CIL 0.72 to 3.43, p-value: 2.54e—1), while Patch-GCN reported an
HR of 2.40 (CI: 1.18 to 4.88, p-value: 1.35e—2), and TEA-graph had an HR
of 2.63 (CI: 1.27 to 545, p-value: 5.3e—3). The HGTs identified a high-risk
group showing a HR of 3.77 (CI: 1.80 to 7.90) and a significant p-value of
1.8e—4. Comparatively, the GAT variant of HGTs had an HR of 3.21 (CL:
1.24 to 8.30, p-value: 1.11e—2), and its HyperGraph variant recorded an HR
0f3.15 (CL: 0.96 to 10.34, p-value: 4.13e—3). Among these models, the HGT's
demonstrated the highest HR and the lowest p-value, highlighting its
effectiveness in risk stratification for local recurrence of HCC.

As shown in Fig. 4B, during the critical first year, a period often
recognized as challenging for predictions, the HGTs achieved an impressive
AUC 0f 0.817 (CI: 0.682 to 0.943), compared to DeepGraphSurv (0.677 (CL:
0.507 t0 0.817)), Patch-GCN (0.718 (CI: 0.560 to 0.861)), TEA-graph (0.657
(CL0.437 to 0.873)), HGTs (GAT) (0.729 (CL: 0.576 to 0.865)), and HGTs
(HyperGraph) (0.669 (CI: 0.509 to 0.803)), demonstrating its robustness in
early detection. Moving to the 3-year interval, HGTs exhibited a slight
decrease in performance with an AUC of 0.726 (CI: 0.592 to 0.849), while
surpassing DeepGraphSurv (0.557 (CI: 0.409 to 0.706)), Patch-GCN (0.650
(CI: 0.499 t0 0.794)), TEA-graph (0.659 (CI: 0.481 to 0.820)), HGTs (GAT)
(0.622 (CIL: 0.476 to 0.760)), and HGTs (HyperGraph) (0.596 (CI: 0.450 to
0.726)). This trend continued into the 5-year mark, where HGTs main-
tained a competitive AUC of 0.687 (CIL: 0.552 to 0.820), outperforming
DeepGraphSurv (0.579 (CI: 0.428 to 0.727)), Patch-GCN (0.680 (CI: 0.538
t00.805)), TEA-graph (0.559 (CI: 0.407 to 0.717)), HGTs (GAT) (0.651 (CL:
0.500 to 0.795)), though it was slightly outdone by HGTs (HyperGraph)
(0.724 (CI: 0.591 t0 0.838)). These results collectively underscore the efficacy
of HGTs in delivering accurate prognoses, particularly in the critical first

year, and maintaining a consistent performance over extended periods,
thereby affirming its utility in clinical applications for cancer prognosis.

Integrating risk scores with clinical factors and immunohis-
tochemistry for predicting HCC recurrence

In addition to the recurrence risk scores predicted by HGTs, clinical mul-
timodal information such as age, gender, and tumor differentiation has also
been integrated. In univariate analysis, tumor differentiation alone did not
significantly predict recurrence (C-index=0.502, CI: 0.421 to 0.591,
P =0.76). Multivariate analysis revealed that a combined model incorpor-
ating clinical factors and the recurrence risk score markedly improved
predictive performance (C-index=0.702, CI: 0.618 to 0.782). Furthermore,
the inclusion of the immunohistochemical marker Ki-67* achieved a
C-index of 0.823 (CL 0.752 to 0.886).

Validation of HGTs on TCGA-LIHC

The HGT's underwent independent external testing on a random subset of
the TCGA-LIHC dataset, consisting of 50 cases, with results shown in Fig.
S2. Note that the LIHC cohort does not have information on local recur-
rence time, only on survival time. However, when we directly applied the
model trained on the Qingdao University dataset to the LIHC cohort, it still
showed a certain degree of generalizability, achieving a C-index of 0.649. In
the division of high and low-risk groups, there was a significant risk dif-
ference, with an HR of 3.13 (CI: 1.15 to 8.49, p-value: 1.82e—2). For 1-year,
3-year, and 5-year survival predictions, the time-dependent ROC achieved
AUC values of 0.685 (CI: 0.381 to 0.944), 0.659 (CI: 0.437 to 0.844), and
0.613 (CI: 0.343 to 0.833), respectively. These results indicate that HGT's has
a good generalization capability and can effectively predict survival out-
comes even when applied to an independent cohort.

Multi-scale interpretability analysis at the cellular, cellular com-
munity, and tissue levels

To interpret why HGTs can achieve high-performance prognosis and
explore which features largely contribute to risk scores, we performed multi-
scale interpretability analysis. As shown in Fig. 1C, the HGT's incorporates a
mechanism termed interpretable gated attention module, allowing for
nuanced measurement of the influence of cells on HCC recurrence pre-
diction. Furthermore, by integrating the local cellular community per-
spective and the global WSI perspective, a multi-scale interpretability
analysis can be conducted.

Quantitative analysis of cell-level impact on prognosis. As depicted
in Fig. 5A, the distribution of attention scores for each cell type is
quantified using density-normalized KDE plots, revealing significant
differences in attention score distributions across different cell types.
Using 0.5 as the threshold, cells with attention scores greater than 0.5 are
considered to have a significant impact on HCC prognosis prediction.
Most of the attention scores for tumor cells, lymphocytes, and hepato-
cytes fall within the range of 0.5-1. As shown in Fig. S3A, the mean and
variance of the attention scores for seven cell types are elucidated, with
the mean values being 0.669, 0.482, 0.655, 0.265, 0.144, 0.536, and 0.750,
respectively. Our analysis indicates that tumor cells contribute more
significantly to the patient’s risk score compared to normal hepatocytes,

npj Precision Oncology | (2025)9:261


www.nature.com/npjprecisiononcology

https://doi.org/10.1038/s41698-025-01042-0

Article

A
Fkkk
Sokokok |
0.9 Sokokok !
1
0.8 -
‘ —
T
£
0.5 R M
¢ —_—
0.4 M
.
DeepGraphSurv TEA-graph
B Patch-GCN HGTs
C
ES=33
ook
0.9 )oKk I
f skokokok
1
0.8 I
+ : _‘_
504 —— J T
k=
)
06 —
—
0.5 .
e
I : . :
0.4
Layer2 Layer4d Layerl0
I Layer3 Layer6
E
kkk
Kokokk |
0.9
0.8 I
6 +
<
@)
0.5 .
\ N
0.4 ¢

Delaunay Triangulation
N K-Nearest Neighbors

Minimum Spanning Tree

Fig. 2 | In-depth evaluation and analysis of HGTs: model comparison and

component analysis. A A comparison of HGT's with other state-of-the-art models,

including DeepGraphSurv, Patch-GCN, and TEA-graph. B An analysis of the

impact of various node features within HGTSs, encompassing the Nucleus/Cell area

ratio (Nucleus/Cell), Coordinates (Coord), a combination of Coordinates and

Morphological Features (Coord 4+ Morph Features), and a fusion of Coordinates
with the Nucleus/Cell area ratio (Coord + Nucleus/Cell). C A study exploring the

B
Fkkk
Kokokk 1
0.9 sokskok 1
1
0.8 I
T | ===
[0}
T —
£
Gos T ==
He— 1 -
._
0.4 0
0.3
Nucleus/Cell Coord
B Coord + Morph Features Coord + Nucleus/Cell
D
FRFK
sokkok 1
0.9
0.8 -
x -
© 0.7
£
O
0.5 .
— ’
0.4
HGTs(PairNorm) HGTs
I HGTs(Residual Connection)
F
1.0 FHFE
sokokok 1
1
0.9
0.8 M -
5 -
5
£0.7
° mm e
0.6
0.5 1 I .
+
+
HGTs (GAT) HGTs (Transformer)
I HGTs (HyperGraph)

effects of varying the number of GNN layers in HGTs and their impact on model
performance. D Comparison of the effects of incorporating PairNorm and Residual
Connections into HGTs, evaluating their impact on model performance. E An
analysis of different graph construction methods used in HGT's and their respective
impacts on the model’s effectiveness. F Experiments evaluating different feature
fusion strategies in the second stage, specifically comparing GAT, HyperGraph, and
Transformer.

npj Precision Oncology | (2025)9:261


www.nature.com/npjprecisiononcology

https://doi.org/10.1038/s41698-025-01042-0

Article

A

Layer 1 Layer 2

Layer 6

*

0 hd .
el w
v. L [ >

LX)

-13?,_\.‘ .
o o T
~e @) T 8 oy @

‘::;‘s‘h"‘f?\\

Layer 2 10
00 00 00 01 -01

Layer 1 10
00 01 00 00 00

00 00 00 00 -0.0 00 00 0.0 01 0.1

00

Cell Type

01 o4

Cell Type

00

00 00 01 00 00
00 -0.0 0.0 -00 01 oo 201 01 00 00 01 01
Cell Type Cell Type

Layer 7 10

Layer 6 10
00 00 -0.0 -01 -00

00

00 01 -00 0.0 00

01 00 01 -0.0 01 01 01 00 00

01 01 00 02 MM,

00 0.0

Cell Type

similarity Score
Cell Type

Cell Type
°

00 0.0 00

01 01 00 01 00 02 200 01 01

00 00 02 01 01 00 0.0 00 00 0.0 00 0.0 00

Cell Type Cell Type

Fig. 3 | Visualizing spatial features and heterogeneous message passing in deep
GNN layers. A The sequence of images includes: (1) a patch image from a WSI
depicting a cellular community; (2) a cell graph constructed based on cellular
coordinates; (3) a cell graph with randomly altered cellular coordinates; and (4) a cell

Layer 3
01 0.0 00 0.0 0.0 0.0

00 00 01 00 0.0

00 0.0 00 00 00 01 0

Cell Type

Layer 8
00 00 00 0.0 -00

00 00 0.0 01 0.0

00 00 01 00 M

01 00

0.0 0.0 0.0 0.0 0.1 -

Cell Type

Layer 4 Layer 5
o . & / L 2
P:“ g « Y 2‘- L)
.f‘.‘,‘\\ LR Il XY
v dlg o LT T
YN xS "‘w‘}"‘“ .
:\N‘.JZ’!.Q) S ol 2Ty

‘:)' y s e
b
Layer 9 Layer 10
.
Y“ . .'.-‘5'

‘)':..," 5 ./’l: g&/
o ." g PR o ‘o’ -
SHSERY L, 4 Moy Le W,

“ pt 3’7) LTI
2 " \".« N A Y (X AN
e [ LI
P * v e S ¥ -
T S A
\an R
. \-f' ° h ‘s WF e N
c . \° .. h.‘
. s e g .
. \
Layer 4 10 Layer 5 10

200 00 01 00 00 00 00 00 0.0 00

00 01 -00 00 02 01 00 -00 01 00

S

Similarity Score

o

00

Similarity Score

°
Cell Type
Cell Type
°
s

Similarity Score

01 00 00 00

01 00 00 02 00

00 00 02 00 00 01 -01 0.0 00 00 01 00 00 0.0

Cell Type Cell Type

Layer 9 10 Layer 10 10

01 00 00 -01 01 02 01 00 01 -0.1

01 01 02 00 00 0.1 0.0 01 0.1

01 01 -01 00

Similarity Score
Cell Type
5

Similarity Score

Cell Type
s
kS
similarity Score

°

00 02 00 00

01 00 00 00 01 01 01 03 02
0.0 01 0.0 02 01 -0.0 -0.0 -01 01 00 0.1 -0.0

Cell Type Cell Type

graph without cellular coordinates. B Depiction of node feature transformations at
each layer of GNN processing, visualized using t-SNE. C Similarity matrices of cell
identity matrices across seven cell types, illustrating changes through GNN layers,
were computed using cosine similarity.

as a previous study has reported™. Although cells categorized as ‘Other’
also receive significant attention from the model, we do not consider
them due to the inability to pinpoint exact cell types. The experimental
results reveal that the model actively focuses on tumor cells and lym-
phocytes, attributing substantial attention scores to these cell types,
which reflects their critical roles in HCC local recurrence prediction.
Further quantification of the proportion of each cell type in the WSIs of
patients from both risk groups reveals that patients in the high-risk group
tend to have more tumor cells (p<0.05) and fewer lymphocytes
(p <0.05), as illustrated in Fig. 5B and Fig. S3B. This suggests the

increased presence of tumor cells and reduced immune response in
contributing to higher recurrence risks’".

Key cellular communities and interaction patterns. Building on the
previous observation, it becomes clear that numerical quantification or
viewing individual cells without their contextual environment may offer an
incomplete perspective. Based on the established cell graphs, it is hypothe-
sized that interconnected cells engage in intercellular communication, as
illustrated in Fig. 3A. By analyzing the interaction frequencies between tumor
cells and lymphocytes, as shown in Fig. 5C, it was observed that in the low-risk
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group, tumor cells exhibited closer interactions with lymphocytes
(p <0.0001) and lower frequencies of interaction with other tumor cells of the
same type (p <0.0001). This indicates that in cellular communities with
diverse cell types, higher interaction frequencies between tumor cells and
lymphocytes may contribute to a better prognosis. As shown in Fig. 5D,

analysis of key cellular communities revealed that the HGTs specifically
focused on tumor cells exhibiting a high nucleus-to-cytoplasm (N/C) ratio,
nuclear division, and stronger heterogeneity—traits commonly associated
with poor differentiation®. In addition, the spatial distribution of key cellular
communities in high- and low-risk patients was quantified using two-
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dimensional entropy, as shown in Fig. 5E. The higher entropy observed in the
high-risk group (p = 0.0103) indicates a more dispersed distribution of key
cellular communities, in contrast to the low-risk group, where communities
display localized clustering. This reflects greater spatial heterogeneity and
more complex cellular interaction patterns within the TME, which are
associated with poorer prognosis.

The tissue-level analysis of immune infiltration and fibrosis in
adjacent peritumoral tissues. By embedding the interpretable gated
attention module that accounts for diverse cell types and complex
interaction patterns within local cell graph networks, this approach can
be generalized to all cell graphs in WSI. This enables comprehensive
interpretative analysis of WSI, revealing key tissue structure features.
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Combined with the explainable heatmaps from HGTs, expert patholo-
gists can explore tissue-level biomarkers. As shown in Fig. 5F, from a
global interpretability perspective, patients in the low-risk group exhibit
more extensive immune infiltration in tumor tissues, while in the high-
risk group, immune cells are primarily clustered around the periphery of
the tumor tissues. Furthermore, analysis of local cell communities reveals
that, in low-risk patients, there is a higher degree of intermingling
between lymphocytes and tumor cells. In contrast, in high-risk patients,
fibrous tissue isolates lymphocytes from tumor cells, supporting the
conclusion shown in Fig. 5C. To further validate the impact of immune
infiltration on local recurrence of HCC, we grouped 337 patients from
five clinical institutions based on the presence of significant immune
infiltration—177 patients with and 160 without. The analysis revealed a
significant difference (p=0.003) with an HR of 1.60 (1.17-2.18), as
shown in Fig. S5. Moreover, as shown in Fig. 5G, in patients with either
mild or severe pseudolobules, the HGTs consistently focuses on the
fibrous septa within the adjacent peritumoral tissues. From a global
perspective, fibrosis in this region is often more severe in high-risk
patients, suggesting that the extent of fibrosis in adjacent peritumoral
tissues may influence the risk of local recurrence in HCC.

Discussion

Considering the definite cell types within the TME and their interactions is
crucial for improving prognosis prediction, risk stratification, and the dis-
covery of spatial relational biomarkers. Our study accomplishes a pio-
neering dataset of 387 annotated WSIs for full-cell segmentation and
classification, created by professional pathologists over two years. Based on
this, we present an interpretable, weakly supervised system called HGTs,
designed to predict local recurrence of HCC. HGT' consists of two gradual
stages: first, a GNN with heterogeneous message passing extracts detailed
information from local cellular communities, enriching cell-specific inter-
actions within the TME. The gated attention module quantifies the prog-
nostic impact of cells, enabling multi-scale interpretability by integrating
both local cellular community and global WSI perspectives. In the second
stage, a Transformer encoder integrates contextual information across the
WSI, capturing complex inter-community relationships. HGTs sig-
nificantly improves the accuracy of HCC prognosis prediction. Ultimately, a
set of spatial relationship markers that influence local recurrence of HCC
was discovered at multiple scales.

Against renowned models such as DeepGraphSurv”’, Patch-GCN*,
and TEA-graph”, the HGTs demonstrates superior performance. It
achieves a C-index of 0.672, which represents an 8% improvement over the
other leading methods on the same dataset. While pixel-based image
methods efficiently process all pixel points within an image patch, theylack a
refined concept of entities (cells or cellular communities), often failing to
discern relevant from irrelevant information. Moreover, these methods
heavily rely on the ability of pre-trained models to extract local features,
making it difficult to effectively optimize feature extraction in an end-to-end
manner. The HGTs leverages the GNN’s ability to effectively capture inter-
cellular communication, combined with the Transformer’s capability to
model inter-community interactions. This combination allows for end-to-
end training, setting HGT's apart from the aforementioned approaches.

In the first stage of the HGTs, we integrated spatial coordinates as
essential node features to counteract potential misrepresentation of cellular
spatial arrangements. By further incorporating a heterogeneous message-
passing function within the GNN, HGTs ensure that each cell and its sur-
rounding cells are aware of the cell’s type during their interactions. This is
tailored to holistically scrutinize both spatial relationships and cellular
heterogeneity. In shallow GNN methods, information propagation and
aggregation are typically limited to adjacent cells, which may result in
overlooking interactions between distant cells. In contrast, HGTs, with its
unique heterogeneous message passing, propagates and integrates infor-
mation through deep layers. This approach captures dependencies between
distant cells more effectively, leading to a more precise understanding of
their complex interactions and relationships. Additionally, exploring cell

graph construction reveals that using the MST effectively eliminates
redundant edges and reduces data noise. This approach highlights critical
cell interactions and preserves essential structural information. In the sec-
ond stage of the HGTs, in the WSI, we compared three different methods:
HyperGraph, GAT, and Transformer (ours). The experimental results
demonstrate that utilizing the self-attention mechanism in Transformers
can achieve higher performance, with the C-index being 2.2% higher than
the HyperGraph. The utilization of the self-attention mechanism in
Transformers enabled the unsupervised and adaptive extraction of rela-
tionships among arbitrary cell communities.

Additionally, HGTs can more distinctly stratify patients into low- and
high-risk groups, yielding a higher hazard ratio. This stratification facilitates
the exploration of interpretable feature differences between the groups,
potentially uncovering key biomarkers associated with local recurrence of
HCC. In predicting local recurrence of HCC at 1, 3, and 5 years, the pro-
posed system shows enhanced sensitivity to the more challenging 1-year
recurrence. The integration of risk scores with clinical factors and immu-
nohistochemical markers significantly improves the prediction of HCC
recurrence, thereby supporting more personalized and effective post-
treatment surveillance strategies. Furthermore, the external validation on
the TCGA-LIHC dataset confirmed the robust generalizability of the
HGTs model.

To address the challenge of limited interpretability of DL-based risk
scores, different methods like post-hoc interpretability are employed. The
HGTs, with its interpretable gated attention module, combines the local
cellular community perspective with the global WSI perspective, offering
multi-scale interpretability that spans from cells, through cellular commu-
nities, to the tissue level. Specially, high-risk patients exhibit a higher
number of tumor cells and fewer lymphocytes, suggesting that increased
tumor cell density and a reduced immune response are associated with
elevated recurrence risks™. Analysis of localized key cell communities shows
that higher interaction frequencies between tumor cells and lymphocytes
suggest a better prognosis, whereas higher interaction frequencies between
tumor cells themselves are associated with poorer outcomes. This indicates
that patients with a rich infiltration of tumor-infiltrating lymphocytes
(TILs) tend to have a more favorable outcome. TILs have already been
applied as biomarkers in clinical practice™. Additionally, it shows that tumor
cells with high nucleus-to-cytoplasm ratios, nuclear division, and stronger
heterogeneity are particularly critical in influencing prognosis. These fea-
tures are associated with poorly differentiated cancer cells. Furthermore,
high-risk patients exhibit more dispersed distributions of key cellular
communities. This complexity may render the thorough removal of the
tumor’s potential impacts more challenging and cause worse postoperative
outcomes, thereby exacerbating the risk of local recurrence of the HCC. In
addition, analysis at the tissue level revealed that the patients with abundant
immune infiltration tend to have better prognoses. The fibrous septa
between the pseudolobules in the cirrhotic regions are key areas™, possibly
because the degree of cirrhosis affects the recurrence of HCC. Cirrhosis is
clinically recognized as a risk factor for HCC™. The mortality of HCC
associated with cirrhosis is increasing in some developed countries™. For
patients with sparse lymphocyte infiltration around tumor cells and pro-
nounced immune evasion features, immunotherapeutic approaches, such as
immune checkpoint inhibitors, may be more effective treatment options.
More frequent imaging and tumor marker monitoring may be required for
these high-risk patients. Additionally, for patients with significant fibrous
septa impact in cirrhotic areas on recurrence risk, antifibrotic treatment can
be considered, and liver function should be closely monitored to prevent
liver failure.

In summary, the HGTs approaches the biological entity from the
cellular perspective, effectively extracting prognostically relevant, inter-
pretable, high-resolution features from WSIs through end-to-end training
ofboth local and global models. It supports cell-type awareness and provides
multi-level interpretability across the cellular, cellular community, and tis-
sue levels. To facilitate further research, we plan to gradually release the
largest dataset to date, comprising precise seg-mentation and classification
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of up to seven primary cell types. This will enable more researchers to focus
on exploring the relationship between relational features in digital pathology
and patient prognosis. However, our current work focuses on H&E-stained
slides, which provides a foundational benchmark for single-modal analysis.
H&E staining provides only basic morphological features (nuclear/plasmic
staining, tissue structure) and fails to capture key molecular markers (e.g.
PD-L1, HER2, Ki-67) in the tumor microenvironment. This leads to the
omission of biological pathway information relevant to the response to
targeted therapy. In addition, current methods lack interpretable quanti-
tative intercellular as well as intercellular community interactions on
prognosis. Future research hinges on integrating multi-center, large-scale,
multi-dimensional patient datasets. Specifically, incorporating spatial
transcriptomics data will enhance the model’s ability to characterize
molecular-morphological associations and develop a quantifiable, inter-
pretable framework for cellular interactions.

Methods

Data description

This clinical dataset of HCC patients collected from five clinical institutions,
and covered the period from December 2012 to October 2017. Relevant
information is detailed in Table SI1. This dataset includes patients who
underwent curative hepatectomy for HCC and presented no distant
metastasis at surgery. Post exclusion of cases lost to follow-up, the dataset
was refined to 337 HCC patients who were then thoroughly analyzed. The
cohort consisted of 285 male and 52 female patients. A total of 166 patients
experienced recurrence, whereas 171 did not. Recurrence rates at 1 year, 3
years, and 5 years were observed to be 17.5%, 37.7%, and 64.4%, respectively.
Informed consent was obtained from all participants. The tumor samples
were consistently processed, entailing fixation in 4 neutral-buffered for-
malin, paraffin embedding, sectioning at 3 pm thickness, and hematoxylin-
eosin (H&E) staining. For detailed histological examination, all 337 slides
were converted into high-resolution WSIs using the NanoZoomer-XR
C12000 system from Hamamatsu. We randomly selected 50 cases from
TCGA-LIHC as an additional independent external validation, with the
specific cases detailed in Table S2. A total of 17 patients died, while 33
remained alive. The mortality rates were 40% at 1 year, 30.77% at 3 years,
and 30% at 5 years.

Full-cell segmentation and classification
These slides of tissues were digitized using NanoZoomer-XRC12000,
Hamamatsu. The digitization process was carefully monitored for con-
sistency. Following digitization, the images underwent a standardized pre-
processing routine to correct any artifacts, adjust for brightness and contrast
discrepancies, and ensure optimal clarity. All digitized images were further
subjected to a quality control protocol, wherein any images with blur, arti-
facts, or staining inconsistencies were flagged for re-scanning. employed a
semi-automated approach for multi-type cell segmentation and classification
The project involved 57 pathologists with varying levels of experience,
including 27 junior doctors and 16 mid-level doctors who performed the
initial annotations. Their work was then reviewed and corrected by 14 senior
doctors, resulting in a highly accurate dataset for full-cell segmentation and
classification. Over more than two years, they employed a semi-automated
approach to precisely segment and classify multiple cell types across the WSIs,
ultimately completing 387 cases. These cells included: tumor cells, vascular
endothelial cells, lymphocytes, fibroblasts, biliary epithelial cells, and hepa-
tocytes. Any remaining cell types were grouped together as ‘other’.
Automated algorithms initially identified cell boundaries and classified
them according to predefined morphological characteristics. However, due
to the inherent heterogeneity of cellular structures, certain segments
required manual intervention by specialized pathologists. Pathologists
underwent training sessions that emphasized annotation consistency, par-
ticularly focusing on the unique challenges posed by heterogeneous cells.
This dual approach, which combined automated precision with human
expertise, ensured a thorough and accurate representation of cell types and
their boundaries. A select elite group of pathologists reviewed the initial

annotations. Their criteria followed a predefined set of guidelines that
emphasized accuracy, consistency, and the clinical relevance of each
annotation. A continuous feedback loop was established between the initial
annotators and the review team. Any discrepancies were flagged, discussed,
and reconciled, ensuring the final annotations met the highest standards of
accuracy.

QuPath* was chosen due to its robustness, user-friendly interface, and
extensible scripting capabilities. Its ability to handle large-scale annotations
and provide real-time feedback made it particularly suitable for our study.
Cells that couldn’t be classified with a confidence level above a certain
threshold were flagged for manual review by the pathologists. Following the
annotation process, QuPath’s extensive data extraction tools were utilized.
We extracted both optical and morphological characteristics of the cells.
Optical features, like intensity and texture, and morphological features, such
as cell size, shape, and boundary irregularities, were recorded. However,
variations in staining across different WSIs were observed, and the optical
features extracted using QuPath introduced noise into the cell feature
analysis. As a result, these optical features were excluded, and only mor-
phological information was considered. Extracted data was then subjected
to normalization processes to account for variances across different slides or
scanning sessions. The resulting CSV files contained detailed records for
each cell, facilitating subsequent deep learning analysis, with node features
detailed in Table S3.

Patch sampling based on cell diversity

The direct analysis of data from WSIs presents significant challenges due to
the vast amount of cellular information they encompass. To address this
challenge, our initial step is to determine the patch size for the curation
process. We selected a target region size of 1024x1024 pixels at the max-
imum magnification for its computational efficiency and effectiveness. With
these parameters established, we employ a sliding window approach to
partition the WSI into non-overlapping regions. Let W represent patches
extracted from the WSI, and C donate the number of distinct cell types
within each region. We then selected the top k patches with the highest
number of cell types, a process donated as S = Top, (C(W)). In this
experiment, k = 32 is chosen to balance computational feasibility and the
need to capturing representative cell communities S, thereby reducing the
likelihood of missing critical cellular heterogeneities.

Cell-graph construction

When constructing the graph structure, we adopt a method based on the
MST. The MST is typically used to connect all nodes V in a graph G(V, E)
where V is the set of vertices (nodes) and E is the set of edges, while ensuring
the total weight W is minimized and that there are no cycles in the graph.
Mathematically, the problem can be defined as:

min Z w(u, v) 1)

(u,v)€E

where w(u, v) represents the weight of the edge between nodes u and v. In
our application, the weight w(u, v) is determined by the Euclidean distance
between cell centroids. The initial step involves calculating the Euclidean
distance between each pair of cell centroids, resulting in a complete graph.
The Euclidean distance between two points p(x;, y,) and g(x,, y,) ina 2D
space is calculated as:

d(u,v) = \/(xz —x0) + 0 -n) @

In this context, the edge weight w(u, v) for each pair of nodes u and v in
the graph corresponds to their Euclidean distance. Applying the MST
algorithm to this weighted graph connects all nodes with the minimum
possible total weight, effectively capturing the spatial relationships among
the cell centroids.
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In addition to the MST approach, other graph construction strategies
include:

1. KNN Graph Construction: In the KNN method, each cell is treated as
a node, and edges are established based on the Euclidean distance
between cells. For each node, the 5 nearest neighbors (K=5) are
selected, and edges are created to connect these neighboring nodes,
effectively capturing local cell interactions.

2. Delaunay Triangulation Graph Construction: Delaunay triangula-
tion is a spatial geometric method that connects cells by forming a set of
non-overlapping triangles. This method ensures that the circumcircle
of any triangle does not contain any other cells.

Calculation of 2D entropy
To quantify the spatial distribution of 2D coordinates, we compute the
entropy of the distribution using the following approach:

1. Coordinate Data Preparation: Begin with a set of 2D coordinates,
organized as an Nx2 array, where N represents the number of data
points.

2. Histogram Calculation: Compute a 2D histogram of the coordinates
using 4 bins in each dimension. This histogram captures the spatial
distribution of the coordinates.

3. Normalization: Normalize the histogram by dividing each bin count
by the total number of points, converting the histogram into a
probability distribution where the sum of all bin probabilities
equals 1.

4. Entropy Computation: Calculate the entropy H of the 2D distribution
using the formula:

H == P(i.j)log(P(i.j) +¢) 3)

where P(i,j) denotes the normalized probability of each histogram
bin, and € is a small constant (le-10) to avoid taking the logarithm
of zero.

Hybrid Graph Neural Network-Transformer system
The HGTs is an end-to-end system consisting of two stages. In the first stage,
the GNN with heterogeneous message passing function was proposed to
gain insights into the information exchange between cells. The interpretable
gated attention module quantifies the attention scores of each cell. In the
second stage, the Transformer was employed to integrate the interactions
between cellular communities.

HeteroMessage Graph Neural Network. Specifically, as illustrated in
Fig. 1B, each cell type is associated with a distinct message-passing function,
denoted as MP,, which allows cells to transmit information to
neighboring cells.

The message-passing process involves three key steps:

1. Message Passing: For each cell 4, a message is generated and sent to its
neighboring cells v through the message-passing function MP, , which
is specific to the cell type ¢,. The message passed from cell u to its
neighbors is formulatedas m,,_,, = MP, (h,),where h,, is the current
feature representation of cell u.

2. Aggregation: Each cell v aggregates the incoming messages from its
neighbors ©# € N(v) by summation, which has a higher expressive
power compared to methods like mean or max aggrega-
tion: a, = ZueN(v) M,y

3. Update: The cell v then updates its state by combining its original
features with the aggregated messages:

h, = o(a, + W_h,) (4)

where W is the weight matrix corresponding to the class ¢, of node v. o is
the activation function. N (v) is the set of neighbor nodes of node v. After
extensive cellular information exchange, we further explore the relation-
ships between directly and indirectly interacting cells through the

interpretable gated attention module, defined as:

AtteScore,; = (W, ((tanh (W, h g + b,) © 6(Wyhey + b)) + b,))
©)

Here, h,,;, € RV*P is the input matrix of cell features, where N is the
number of cells and D is the feature dimension. W, W, and W are weight
matrices of the linear layers. b,, b,, and b, are bias terms. tanh is the
hyperbolic tangent activation function. This method allows for obtaining
the importance scores of cells: AtteScore,y; € RN*!. Subsequently,
R CettCommunity Tefers to the features representing local cellular interactions are
obtained through the Global Mean Pooling method, represented as:

1
hCeHCOmmunity = m Z(hcellsQAtteScorecens) (6)

veV

where | V| is the total number of cells in the cellular community.

Integrating cellular community interactions with the Transformer. To
capture interactions among key cellular communities in WSIs, we use a
Transformer architecture. The core is utilizes multi-head self-attention
mechanisms to process sequences of embedded cellular community
features extracted from the first stage of HGTs. Unlike approaches that
construct explicit graph-based representations to model interactions
between patches, it leverages self-attention mechanisms to implicitly
capture cellular community interactions. The attention mechanism is
formalized as follows:

T
SLS NN

i
\/ dCellcommunity

where Q; (query) is a projection that represents the focus or intent of the
model when processing interactions between cell communities. K; (key) is
another projection that works with the query to measure the relevance of
different cell communities. V; (value) contains the actual cellular commu-
nity features which are weighted according to the attention scores, derived
from the query-key interaction to generate the final output. dceycommuniy
represents the feature dimension of f ¢, copmuniy,- Additionally, multi-head
attention allows the model to jointly attend to information from different
representation subspaces.

Attention,(Q;,K;, V;) = softmax

Multi — Head(Q, K, V) = Concat (At‘cention17 ... 7At’[entionh)WO
(®)

where W© is a weight matrix used to combine the outputs from each
attention head. By leveraging the Transformer, our model effectively inte-
grates and processes the spatial context of cell communities across the WSI.
This enables accurate and comprehensive pathological analysis.

Interpretable analysis and visualization

In our analysis, we investigated the interpretable gated attention module
within HGTs, which provides attention scores for each cell. These scores are
normalized to a range of 0-1, with higher values indicating greater attention
and impact on prognostic predictions, establishing cell-level interpretability.
The importance of each cell can be visualized using a jet color bar, where
colors closer to red signifies higher importance. By combining this with the
pathological images of key cell communities and the spatial positions of
cells, we can further identify significant cells from the local context. Addi-
tionally, leveraging the graph networks constructed from cell communities
and their spatial distribution, we can uncover community-level interpret-
ability, providing deeper insights into the prognostic predictions. Since each
cell community can serve as the input for the first stage of HGTs to obtain
attention scores, we used all local cell communities within the WSI as inputs
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for a global interpretability analysis. This approach allows us to identify
significant tissue-level interpretability across the entire WSI.

The training configuration of HGTs

In our study, we employed a two-stage architecture comprising a GNN and
a Transformer Encoder Network. Graph Neural Network Configuration:
The GNN was structured with 1 pre-message passing layer, 10 message
passing layers, and 1 post-message passing layer. Batch normalization was
enabled to stabilize and accelerate the learning process. The aggregation
method used was addition, and L2 normalizations were applied to ensure
consistent and stable training. Transformer Encoder Network Configura-
tion: The Transformer encoder was configured with 2 layers and utilized a
multi-head self-attention mechanism with 4 heads. The feedforward net-
work size was set to 512, and a dropout rate of 0.1 was applied to mitigate
overfitting. All other parameters were set to the default values provided by
PyTorch’s Transformer encoder implementation. Hardware Configuration:
Our experiments were conducted on a hardware setup equipped with two
NVIDIA V100 GPUs, boasting 32GB of memory. The loss function can be
expressed as:

L(®) = — % Z (ei — log <Z ee'Ri]) ) 8 ©)
1 j=1

i=

where # is the number of samples in a batch. 6 is the predicted hazard value
from the model. ¢ is censoring indicator, represented by censor. It is 1 if the
event has occurred, 0 otherwise. R is risk set matrix. Each element R;; is 1 if
the recurrence time of the j sample is greater than or equal to that of the i*"
sample, and 0 otherwise. The Adam optimizer was employed with a base
learning rate of 0.001. The maximum number of training epochs was set to
1000 to ensure convergence.

Quantification and statistical analysis

To plot the Kaplan-Meier curves, we aggregated out-of-sample risk pre-
dictions from the external test dataset and plotted them. In Kaplan-Meier
analysis, we use the log-rank test to determine if the differences in survival
time and recurrence time between two distributions are statistically sig-
nificant (P-value < 0.05). One of our evaluation metrics is the C-index,
which assesses the accuracy of the predicted risk scores’ ordering. A perfect
C-index of 1.0 signifies that all predicted risk values align correctly with the
recurrence or survival times, whereas a score of 0.5 indicates randomness in
predictions. Based on the external independent test set, we performed 1000
bootstraps to calculate the median and confidence interval of the C-index. In
addition to C-Index, we also report Cumulative/Dynamic AUC, a time-
dependent measure of model performance that evaluates how well the
model stratifies patient risk across various time points, and additionally
corrects for optimistic bias from censorship via computing an inverse
probability of censoring weighting. To assess differences in cell counts
between high and low-risk groups, differences in intercellular interaction
frequency, and variations in cellular community distribution, use the Mann-
Whitney U test. Significance levels in this figure are denoted as follows: ****
(p < 0.0001) indicates highly significant, *** (p < 0.001) indicates very sig-
nificant, ** (p < 0.01) indicates significant, * (p < 0.05) indicates marginally
significant, and ns indicates not significant. For all boxplots, boxes indicate
the 1st, median, and 3rd quartile values of the data distribution, and whis-
kers extend to data points within 1.5 x the interquartile range. To further
illustrate the true distribution of the data, we use a KDE plot to display the
density-normalized distribution.

Data availability

The TCGA diagnostic whole-slide images and corresponding clinical data
used in this study are publicly available from the NIH Genomic Data
Commons (GDC) portal at https://portal.gdc.cancer.gov/projects/ TCGA-
LIHC. Our comprehensive full-cell segmentation and classification dataset
for WSIs is accessible at https://github.com/Yuan1z0825/HGTs.

Code availability

The source code for the HGTs algorithm is openly available on GitHub
under the GNU General Public License at https://github.com/Yuan1z0825/
HGTs. All analysis scripts and implementation details are maintained in this
repository.
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