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Multiple sclerosis is themost common autoimmune disease of the central nervous system. It is believed that the increasedmigration
of autoreactive lymphocytes across the blood-brain barrier (BBB) may be responsible for axonal demyelination of neurons. In this
review, we discuss microRNAs participating in the pathological processes of MS, including periphery inflammation, blood-brain
barrier disruption, and CNS lesions, and in its therapeutic response, in order to find biomarkers of disease severity and to predict
the response to therapy of the diseases.

1. Introduction

Multiple sclerosis (MS) is the most common autoimmune
disease of the central nervous system (CNS) among young
adults and it is more common in women than men [1, 2]. It
is widely held that there are different four patterns includ-
ing relapsing-remitting multiple sclerosis (RRMS), primary
progressivemultiple sclerosis (PPMS), secondary progressive
multiple sclerosis (SPMS), and primary-relapsing multiple
sclerosis (PRMS) [3].

Although the etiology and pathogenesis of MS remain
unknown, several lines of evidence support that the increased
migration of autoreactive lymphocytes across the blood-brain
barrier (BBB)may be responsible for axonal demyelination of
neurons. It has been demonstrated that autoreactive T cells
including IFN-𝛾-producing Th1 cells and IL-17-producing
Th17 cellsmaymediate autoimmune inCNS leading to axonal
degeneration, demyelination, and ultimately irreversible tis-
sue damage of patients with MS [4, 5]. Treg cells that prevent
damage to the host by limiting the immune response to
pathogens are impaired in MS [6, 7]. The balance between
Th17 and Treg is crucial to the development ofMS.Moreover,
MS pathology and pathogenesis have been concentrated on
extensive demyelination and formation of sclerosis plaques
in cerebral cortex and spinal cord, which contribute to
irreversible neurological injury. Activated macrophages and

microglia are always engaged in active lesions [8]. Both exten-
sive accumulation of macrophages and activation of micro-
glia are common occurrences following neurological injury
[9–13]. EAE is a mouse model of the human disease multiple
sclerosis, characterized by autoimmune inflammation of the
CNS associated with microglia activation and infiltration of
encephalitogenic T cells and leukocytes from the periphery
[14, 15].

MicroRNAs (miRNAs) are small, usually 19–24 nucleo-
tides in length, noncoding RNAs that regulate gene expres-
sion at the posttranscriptional level [16]. Several recent stud-
ies have detected the involvement of circulating miRNAs
in physiological and pathological processes and identified
them as potential biomarkers, therapeutic agents, or drug
targets. In MS, a number of miRNA species were found to be
differentially expressed in patients with MS compared with
controls and to have the potential to be used as diagnostic
biomarkers or drug-response.

2. miRNAs Involved in
Periphery Inflammation

T cell subsets such as Th1 and Th17 accumulate in periphery
tissues andmediate adaptive immune response. It is generally
believed that Th1 and Th17 cells are key proinflammatory
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Figure 1: Summary of putative mechanisms through which miR-155 could modulate MS. miR-155 could regulate several inflammatory and
anti-inflammatory cytokines through different target genes, participating inMS pathological processes such as periphery inflammation, BBB
dysfunction, and CNS lesion.

mediators of cellular immunity that are responsible for
crucial events during development of EAE. The Th1 lineage
cytokine can helpTh17 cells invade the brain and spinal, thus
triggering EAE [17]. Cytokines produced by DCs may pro-
mote CD4+ T cell activation and synthesize proinflammatory
cytokines.

Several recent studies have examined the involvement of
miR-155 in EAE. Besides sustaining inflammatory response
by promoting the development of inflammatory Th1 and
Th17 cells, miR-155 is critical for the acquisition of pheno-
typic and functional properties of mature DCs (Figure 1).
It is demonstrated that miR-155 modulates IFN𝛾 expression
through a mechanism involving repression of Ship1, which
promotes IFN𝛾 level in Th1 cells [18]. An early research
reported that miR-155 might block c-Maf, a promoter of Th2
cell development, and enhance Th17 cell differentiation [19].
Recently, miR-155 has been implicated in inhibiting the pro-
tein suppressor of cytokine signaling 1 (SOCS1) in activated
CD4+ T cells, which promotes Treg/Th17 cells differentiation
andTh17 function by activating IL-2/STAT5 and IL-6/STAT3
signaling pathways. miR-155−/−mice is associated with a
decrease in IL-17 and IFN-𝛾, contributing to a delayed course,
decreased EAE clinical severity, and less inflammation in
the peripheral lymphoid organs and CNS [20, 21]. Dunand-
Sauthier et al. reported that miR155 is required for DC

maturation and the ability ofDCs to promote antigen-specific
CD4+ T cell activation by inhibiting c-Fos expression which
could dampen TNF-𝛼, IL-12p70, IL-6, IFN-𝛽, and IL-12p40
secretion bymature BM-DCs [22]. InmiR155−/−mices, over-
expression of Arg2 in DCs resulted in a selective depletion of
arginine which can inhibit T cell responses [23].

miR-146a is highly expressed in Tregs and suppresses
interferon (IFN)𝛾-dependent Th1 responses and inflamma-
tion by inhibition of its gene expression signal transducer
and activator of transcription (STAT-1). The deletion of miR-
146a in Tregs may increase the production of IFN-𝛾 and
develop severe Th1-mediate lesions [24]. Further, miRNA-
146awas reported tomodulate the signaling proteins involved
in the innate immune and inflammatory response, such as
complement factor H (CFH) and IRAK-1, and both of them
were deficient in MS [25–28].

Overexpression of miR-132 in CD4+ T cells from EAE
mice downregulated IL-17, IFN-𝛾, and T cell proliferation
[29]. miR-26a was demonstrated to downregulate Th17 and
to upregulate Treg cell function through targeting IL-6. In
EAE, inhibition of miR26a may result in high level of Th17-
related cytokines and aggravate clinical signs of EAE. On the
contrary, Treg cell specific transcription factor, Foxp3, was
detected to be positively correlated with miR26a expression,
contributing to a milder form of EAE [30].
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A very recent report has shown that miR-21 promoted
Th17 differentiation by decreasing SMAD-7, a negative reg-
ulator of TGF-𝛽 signaling. Treatment of wild type mice with
anti-miR-21 oligonucleotide diminished EAE clinical severity
along with decreasedTh17 cells [31].

Guan et al. have reported that upregulation of let-7e
leads to promote the development of Th1 and Th17 cells and
aggravate EAE. Since, overexpression of let-7e repressed IL-
13 and IL-10 production and augmented IFN-𝛾 production.
Inhibition of let-7e may shift the immune response to a Th2
profile and attenuates the severity of the disease [32].

miR-29ab1 was presented to regulate the Th1 differentia-
tion to affect EAE development by targeting T-bet and IFN-
𝛾 [33]. Steiner et al. also found that miR-29 repressed IFN-
𝛾 production by direct targeting of both T-bet and Eomes,
two transcription factors known to induce IFN-𝛾 production
[34]. These results demonstrate that the level of miR-29
can modulate Th1 cell differentiation and reflect the disease
severity. A very recent study elucidates that interleukin 6 (IL-
6) and RelA (NF-𝜅B subunit) are target genes of miR-291a-
3p. Downregulation of miR-291a-3p may indicate oxidative
stress at the preonset stage of EAE and upregulation of IL-6
and NF-𝜅B activation to induce proinflammatory pathways
by targeting IL-6 and RelA [35].

miR-20b has been reported as a decreased miRNA in
blood cells of MS patients. As a negative regulator of EAE,
miR-20b suppresses Th17 differentiation in vitro and in vivo
and attenuates EAE by targeting ROR𝛾t and STAT3. This
indicates that miR-20b is involved in pathogenesis of EAE
mediated by Th17 [36]. Apart from miR-20b, miR-326 [37],
miR-301a [38], and miR-23b [39] are found to be involved
in Th17-mediated pathogenesis of EAE by targeting Ets-1, a
negative regulator ofTh17 cell differentiation, IL-6/23–STAT3
pathway, and TAB2, TAB3, and IKK-a, respectively.

In conclusion, these evidences strongly suggest that circu-
latingmiRNAs can be utilized as potential clinical biomarkers
that reflect the disease activity and severity in MS (Figure
2).

3. miRNAs Involved in Blood-Brain
Barrier Dysfunction

Disruption and immune activation of the blood-brain barrier
(BBB) are central and early features of MS [40–42], with the
characteristic of the increased BBB permeability. Previous
studies have shown that BBB breakdown is a fundamental
event during the course of MS and that the level of the
neurovascular dysfunction in EAE may play an important
role in the neurological severity of the disease [43].

In recent years, there are increasing evidences to support
that miRNAs may play an important role in neuroinflamma-
tory disorders. Several reports have demonstrated that the
interendothelial junctional complex (IJC) and integrin focal
adhesion (FA) complexes [44–46] are probably associated
with altered expression of tight junction (TJ) proteins in
response to proinflammatory cytokines, such as TNF-𝛼 and
IFN-𝛾. These cytokines may contribute to increase of brain
endothelial cell (BEC) permeability bymodulation of its gene
expression.

miR-155 is reported as a novel negative regulator of BBB
function by modulating BEC cell-to-cell and cell-to-matrix
interactions, which contributes to BBB dysfunction in MS.
Lopez-Ramirez et al. reported that the putative target genes of
miR-155 modulate the alterations in FA and IJC organization
that might change the permeability of BEC. There are 4
target genes for miR-155 that have been verified, including 2
components of FAs, DOCK-1 and SDCBP, and 2 components
of IJCs, ANXA-2 and CLDN-1, which may modulate BEC
permeability and potentially mediate miR-155-induced BBB
breakdown during inflammation [47].

During MS, increased permeability and expression of
cell-adhesion molecules on the brain endothelium facilitate
encephalitogenic T cells and circulating leukocytes infiltrat-
ing into the CNS, leading to demyelination and axonal loss
[8, 48].

It was recently found that miR-125a-5p may significantly
increase BEC barrier function by forming thicker and more
continuous junctional complexes of VE-cadherin and zona
occludens-1. Overexpression of miR-125a-5p in the brain
endothelial cells downregulates TNF-𝛼-mediated ICAM-1
expression, a cell-adhesion molecule involved in vascular
permeability and leukocyte infiltration, and reduces the
transmigration of monocyte through the brain endothelial
cell barrier. Therefore, upregulation of miR-125a-5p could
reestablish normal function of the brain vasculature in
endothelial cell-based neurological diseases, particularly in
MS. miR-101 has been shown to downregulate claudin-
5 expression by targeting of VE-cadherin, which demon-
strates a new mechanism for the regulation of barrier per-
meability though posttranscriptional regulation of VE-cad-
herin [49]. Wu et al. investigated that an increasing level of
miR-146a expressed on hCMEC/D3 cells diminished cyto-
kine-stimulated adhesion of T cells to endothelial cells,
nuclear translocation of NF-𝜅B, and expression of adhesion
molecules [50].

In summary, the mechanism of action of miRNA in the
inflamed BBB has still not been systematically studied. It is
believed that miRNAs such as miR-125a-5p, miR-155, miR-
101, and miR-146a can potentially be regarded as novel bio-
markers or therapeutic targets for effective treatment of MS
(Figure 2).

4. miRNA Involved in CNS Lesions

Several recent studies have examined the involvement of cir-
culating miRNAs in microglia activation and demyelination.

miR-873 induced by IL-17 is reported to facilitate the pro-
duction of inflammatory cytokine and aggravate demyeli-
nation in EAE through the A20/NF-𝜅B pathway. Inhibiting
miR-873 or A20, respectively, decreased or increased the
production of inflammatory cytokines and attenuated or
aggravated the CNS damage of EAE mice, both in vitro and
in vivo [51].

A recent study has shown that miR-572 are increased in
MS patients [52]. The expression level of miR-572 was varied
between patients with different patterns of MS. The serum
concentration of miR-572 was lowest in PPMS and it was
significantly increased in SPMS. Since a putative target for
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Figure 2: Different miRNA expression in the pathological processes of MS. The changed level of miRNAs is associated with several
pathological processes such as periphery inflammation, BBB dysfunction, and CNS lesion. Dysfunction of immune cells including astrocytes
and oligodendrocytes in the CNS and Th1, Th17, and Treg cells in the immune system is characterized by different miRNA expressions that
are up- (red) and downregulated (green).

miR-572 is the neuronal cell-adhesion molecule (NCAM), a
protein involved in thematuration of the nervous system [53],
the decreased level of miR-572 can promote remyelination in
CNS.

It has been generally accepted that the capacity of micro-
glia to phagocytose degenerated myelin can be altered by
environmental inflammatorymediators, such as IFN-𝛾, TNF-
𝛼, IL-4, and IL-10. TNF-𝛼 was shown to increase the phago-
cytic activity of microglia. IL-4 and IL-10 exerted a role of
upregulating phagocytosis in macrophages/microglia, while
accompanied by a reduction of inflammatory response [54].

miR-155 is widely considered as a proinflammatory
miRNA. It can target anti-inflammatory proteins in micro-
glia, such as the suppressor of SOCS-1, leading to the upre-
gulation of several inflammatory cytokines, including the
inducible nitrogen synthase (iNOS), IL-6, and TNF-𝛼 related
to the M1 phenotype [55]. As a feedback mechanism to con-
trol the immune response, it can also upregulate IFN-𝛽which
increase the expression of SOCS-1 and IL-10, two import-
ant anti-inflammatory mediators [56, 57]. In addition, miR-
155 can also target M2-associated genes, such as SMAD2, a
protein involved in the TGF-𝛽 pathway [58] and CEBP𝛽, a
transcription factor critical for the expression of IL-10, argi-
nase-1, and CD206 [59]. Therefore, miR-155 has a positive
effect in promoting inflammatory response and upregulating
phagocytosis in microglia.

ARK1C1 andARK1C2 are different isoforms of an enzyme
encoding a 3-𝛼-hydroxysteroid dehydrogenase activity that is
necessary to the synthesis of neurosteroids in the brain.These
genes are experimentally validated to be downregulated by
miR-155 and miR-338, which can reduce the production of
neurosteroids synthesis [60, 61].

Miller and Streit recently demonstrated that decreasing
CD47which is regarded as a protein that inhibitsmacrophage
phagocytosis may promote phagocytosis of myelin in a SIRP-
𝛼-dependent mechanism [62]. Besides, miR-155-mediated
downregulation of CD47 is thought to release macrophages
inhibition and thereby promote myelin breakdown [63].

The overexpression of MiR-101 responses to several TLR
ligands in macrophages will downregulate MAPK phos-
phatase 1 (MPK-1), promoting the activation of MAPK and
the level of M1-associated proinflammatory cytokines, such
as IL-6, TNF-𝛼, and IL-1 [64]. Chaudhuri and colleagues
reported an increased miR-125b in M1 macrophage activa-
tion, with upregulation of MHC class II, CD40, CD80, and
CD86. The potential reason is that interferon regulatory fac-
tor 4 (IRF4) is targeted by miR-125b and makes macrophages
polarize to M1 cytotoxic phenotype [65].

Cui et al. reported that miR-146a-mediated downregula-
tion of IRAK1 is associated with the reinforcement of IRAK2-
induced activation of NF-𝜅𝛽 and a sustained inflammatory
response in human astroglial cells [26]. Interestingly, sig-
nificant amounts of miRNA-146a that have been found in
glial cells are responsible for axonal myelination [66–68]. In
inactive MS lesions, miR-219 are the most downregulated
miRNAs [63]. The enzyme ELOVL7 regulated by miR-219 is
essential for myelin maintenance and axonal integrity in the
adult mouse CNS [69].

In recent years, there are increasing evidences to sup-
port that some miRNAs are engaged in building beneficial
environment for remyelination and axon regeneration. For
instance, two studies described that miR-214 is upregu-
lated in oligodendrocytes during differentiation andmiR-23a
overexpression promotes oligodendrocyte differentiation by
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downregulating lamin B. The increased level of miR-214 and
miR-23a in MS lesions may reflect ongoing remyelination
[70, 71].Themicroglia in CNS are themainmacrophages par-
ticipating in phagocytosis in the early stage of demyelination,
while in the late stage, a number of infiltrated blood-borne
macrophages contribute to axon debris clearance.

miR-124 is reported as a key regulator of microglia
quiescence in the CNS and as a new modulator of monocyte
and macrophage activation in the periphery during EAE.
miR-124 has been reported to contribute to theM2phenotype
of macrophages andmicroglia, since its overexpression led to
the downregulation of M1-associated markers, such as IL-6,
TNF-𝛼, and iNOS, and an increase of proteins associatedwith
theM2phenotype, such asTGF-𝛽, arginase-1, and FIZZ1 [72],
which are crucial for the suppression of EAE. In EAE, Zhu
et al. have experimentally validated TAB2, TAB3, and IKK-𝛼
as miR-23b targets. These genes are upregulated during EAE
and modulate IL-17, TNF-𝛼, and IL-1𝛽 induced activation of
NF-𝜅𝛽. These findings indicate that miR-23b overexpression
can delay the onset of EAE and alleviates disease severity [39]
(Figure 2).

5. miRNA Involved in MS
Therapeutic Response

Natalizumab is a recombinant humanized monoclonal anti-
body which binds to 𝛼4𝛽1 and 𝛼4𝛽7 integrins and suppresses
their interaction with vascular cell-adhesion molecules-1
(VCAM-1) so as to impair leucocyte adhesion and transmi-
grate across the BBB into the central nervous system, with a
reduction of proinflammatory cytokines [73].

Ingwersen et al. reported that five miRNAs (miR-18a,
miR-20b, miR-29a, miR-103, and miR-326) were regulated by
natalizumab, which were the opposite of the miRNA results
in MS patients prior to natalizumab therapy compared to
healthy controls. Four of them (miR-18a, miR-20b, miR-29a,
and miR-103) were upregulated, while miR-326b is downreg-
ulated after natalizumab treatment [74]. Asmentioned above,
the targets of miR-20b and miR-326, including ROR𝛾t, stat3,
vegfa, and Ets-1 [37, 74–76], play an important role in regu-
lating Th17 immune responses and BBB breakdown [77, 78].
Further, miR-29a was shown to modulate the differentiation
of proinflammatoryTh1 immune responses [33].

Petrocca et al. demonstrated that natalizumabmay down-
regulate miR-17 expression and upregulate the level of miR-
106b. Both miR-106b and miR-17 have been identified as
important modulators of TGF-𝛽 signaling [79] and have
been found to regulate CD4+ T cell immune responses by
targeting TGFBR2 [80]. The TGF-𝛽 pathway is necessary for
maintaining peripheral Foxp3-expressing regulatory T cells
[81]. Inhibition of TGFBR2 resulted in severe inflammatory
responses associated with T cell activation and differentiation
in mice [82].

In line with decreased miR-17 in natalizumab treated
patients, we found an increase in PTEN mRNA, which plays
an important role in the regulation of T cell homeostasis
and self-tolerance [83, 84]. In addition, downregulation of
miR-17 was associated with upregulation of a proapoptotic
member of the Bcl-2 family, BIM, the cyclin-dependent

kinase inhibitor 1, p21, and a transcription factor controlling
the G1-S transition, E2F1 [85].

These targets reverted by natalizumab therapy may alter
peripheral immune cells during EAE and negatively associate
with disease severity. So the influences of natalizumab on the
expression of miRNA can help us to understand long-term
effects of natalizumab and functions in the process of MS
pathogenesis.

Interferon-beta (IFN-𝛽) therapy is widely used in patients
with MS. Besides its effects on immunomodulatory system
and metalloproteinase 9 [29], it has been shown to have
an effect on neuroprotection against the toxicity induced
by activated microglia and inhibiting the production of
glutamate and superoxide by activated microglia [86, 87]. It
has been reported that the expression level of miR-26a-5p
was significantly changed in response to INF-𝛽 treatment
in MS patients during different stages. It was much higher
in IFN-𝛽 treated RRMS patients at 3 months’ treatment
and kept stable at 6 months’ treatments in all patients. In
contrast, postsynaptic density protein 95 (DLG4), a key player
in neuronal signaling, decreased after 3 months’ treatment,
showing an inverse relation to miR-26a-5p expression [88].

Moreover, it has been reported that 20 miRNAs may play
an important role in the mechanisms of therapy of IFN-
𝛽. Interestingly, seven of them, including miR-16-5p, miR-
342-5p, miR-346, miR-518b, miR-760, let-7a-5p, and let-7b-
5p, were increased, whereas 13 miRNAs, including miR-27a-
5p, miR-29a-3p, miR-29b-1-5p, miR-29c-3p, miR-95, miR-
149-5p, miR-181c-3p, miR-193a-3p, miR-193-5p, miR-423-5p,
miR-532-5p, miR-708-5p, and miR-874, were decreased in
PBMCs from MS patients in response to IFN-𝛽 treatment.
Particularly, some of the 20 miRNAs, such as members of the
mir-29 family, are associated with apoptosis and are involved
in IFN signaling feedback loops and others like hsa-miR-
532-5p and hsa-miR-16-5p are demonstrated to have relations
with IFN-responsive genes [89]. This information can be
served as a novel biomarker to predict the effects of IFN-
beta therapy and be applied to develop a novel therapy for
MS patients.

Glatiramer acetate (GA), an immunomodulation drug,
was approved as a first-line therapy inMS [90]. GA treatment
may downregulate miR-146a and miR-142-3p level in the
PBMCs of MS patients. The mechanisms by which GA
influences the expression of miR-142-3p may attribute to
an expansion of T regulatory cells and changes in the
composition of the T cell compartment [76]. Downregulation
of miR-146a in the glatiramer acetate treatment group may
improve disease status of MS patients by inducing a Th1 to
Th2 shift and inhibiting monocyte reactivity [91–93].

The GSK3𝛽 inhibitors were shown as beneficial drugs in
preclinical trials in stroke and Huntington’s and amyotrophic
lateral sclerosis, with functions of increasing BBB tightness
under physiologic conditions, decreasing inflammatory fac-
tors secreted in brain microvascular endothelial cells and
protecting against BBB disruption by reducing monocyte
adhesion to/migration across the BBB [94, 95]. Rom et al.
discovered that the GSK3𝛽 inhibitor may upregulate miR-98
and let-7g∗ so as to attenuate leukocyte adhesion/migration
into the BBB and diminished BBB permeability in both in
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Table 1: MiRNA biomarkers of therapeutic response in multiple
sclerosis (MS).

Drug
treatment Increased miRNA Decreased miRNA

NatalizumAb miR-18a, 20b, 29a, 103 miR-326, 17

INF-𝛽
miR-26-5p, 16-5p,
342-5p, 346, 518b,
760, let-7a-5p, 7b-5p

miR-27a-5p, 29a-3p,
29b-1-5p, 29c-3p, -95,
149-5p, 181c-3p, 193a-3p,
-193-5p, 423-5p, 532-5p,
708-5p, 874

GA miR-146a, miR-142-3p
GSK3𝛽
inhibitors miR-98 and let-7g∗

vitro and in vivo models. Overexpression of miR-98 and let-
7g∗ in brain endothelium may also contribute to inhibiting
expression of proinflammatory mediators, such as CCL2 and
CCL5 [96]. Table 1 summarizedmiRNA biomarkers involved
in the therapeutic response in multiple sclerosis.

6. Conclusion

MS is a chronic and systemic autoimmune disease with
different disease stages. Different patterns of patients with
MS undergo several disease processes including periph-
ery inflammation and blood-brain barrier damage and
CNS lesions. Without timely and adequate treatment, these
patients will suffer chronic demyelination and axonal loss,
for unclear reasons, leading to irreversible disability. The
discovery of MS biomarkers may extremely improve the
diagnosis and management of MS. The current miRNA
profiles offer an opportunity to indicate disease progression
and the therapeutic effect. Some of the biomarkers are related
to an altered biological process and a treatment targeting this
process. Understanding the complexity of miRNA network
may open up a new vista to find individual biomarkers in
clinical diagnosis and monitor the efficacy of therapy.
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