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A B S T R A C T   

The year 2020 will certainly be remembered for the COVID-19 outbreak. First reported in Wuhan city of China 
back in December 2019, the number of people getting affected by this contagious virus has grown exponentially. 
Given the population density of India, the implementation of the mantra of the test, track, and isolate is not 
obtaining satisfactory results. A shortage of testing kits and an increasing number of fresh cases encouraged us to 
come up with a model that can aid radiologists in detecting COVID19 using chest Xray images. In the proposed 
framework the low level features from the Chest X-ray images are extracted using an ensemble of four pre-trained 
Deep Convolutional Neural Network (DCNN) architectures, namely VGGNet, GoogleNet, DenseNet, and NASNet 
and later on are fed to a fully connected layer for classification. The proposed multi model ensemble architecture 
is validated on two publicly available datasets and one private dataset. We have shown that our multi model 
ensemble architecture performs better than single classifier. On the publicly available dataset we have obtained 
an accuracy of 88.98% for three class classification and for binary class classification we report an accuracy of 
98.58%. Validating the performance on private dataset we obtained an accuracy of 93.48%. The source code and 
the dataset are made available in the github linkhttps://github.com/sagardeepdeb/ensemble-model-for-COVID- 
detection.   

1. Introduction 

The 2019 novel Corona Virus Disease was first observed in the 
Wuhan city of the Hubei province of China in December last year. This 
rare novel virus belongs to the family of “Coronavirus” (CoV) and was 
called Severe Acute Respiratory Syndrome Coronavirus2 (SARS-CoV-2). 
On February 2020 it was named COVID-19 by the World Health Orga-
nization (WHO). As on 20th August during the time of writing this 
manuscript, 22.6 million people have already been infected by this virus 
(according to WHO updates on COVID-19) and 792,000 individuals 
have already scummed to this deadly virus. 

The WHO declared the outbreak of a pandemic in March 2020. Since 
then we have seen the number of fresh cases going up exponentially. The 
virus has engulfed more than 210 countries and among them, the USA, 
Brazil, and India being the worst affected. As of 20th August, the USA 
alone has reported 5.61 million cases while 3.5 and 2.91 million cases 
were reported from Brazil and India respectively. A COVID-19 infected 
patient may develop symptoms like fever, cough, and respiratory illness. 
Some serious patients may experience pneumonia and (or) difficulty in 

breathing, multi-organ failure and death [1]. The radiographic findings 
of established COVID-19 pneumonia are bilateral multi focal, randomly 
scattered ground glass opacity present mainly in the peripheral sub 
pleural region with thickened pulmonary interstitium. The interstitium 
shows Broncho-vascular prominence and consolidation in moderate to 
severe individuals [2]. Many countries’ health systems are on the verge 
of collapsing due to the rapid increase in COVID-19 incidents. Most of 
them are currently experiencing a scarcity of ventilators and testing kits. 
There is enough data to suggest that the R0 value which is a parameter to 
measures how contagious an infectious disease is higher than the deadly 
virus outbreak of 1918. The rapid spread of a disease of this kind de-
mands a highly accurate point-of-care COVID19 screening [3]. 

According to [4], a report published in the Lancet, isolation, testing, 
contact tracing, and physical distancing increases the effect on reducing 
transmission of SARS-CoV-2 to a great extent. But the unavailability of 
testing kits hampers the process of large scale testing and thus contact 
tracing becomes nearly impossible. Moreover, the RT-PCR test, which is 
regarded as the gold standard screening process for detection of COVID- 
19 is not real-time. 
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Given the availability of X-ray machines in all primary health care 
centers, detection of COVID-19 from chest X-ray images will surely boost 
up the testing process, and thus at the end of the day more tests can also 
be performed. According to [5,6], reports published in Radiology 
Journals, Chest X-Rays can be useful in detecting COVID-19. With the 
success of Deep Learning models in classification and detection, we can 
make use of them to help the radiologists in detecting COVID-19 from 
CXR images. And again the deep learning model can also deliver results 
in almost no time, thus making the system fast and robust at the same 
time. 

2. Related works 

Researchers all around the world are working day and night to 
counter this pandemic. Researchers of image processing and biomedical 
engineering fields are also not left behind. Every other day they are 
coming up with models based on deep learning architectures to detect 
COVID-19. Researchers in the image processing field have used either 
CT-Scan or Chest X-ray images for the detection of COVID-19. With the 
success of Deep Learning and more specifically Convolutional Neural 
Networks in the field of Computer Vision, almost all researchers have 
shown more interest in solving the problem using Deep Learning. This 
biasness towards DCNN is primarily because, the Deep Learning, unlike 
other traditional methods, is not dependent on handcrafted features and 
secondly time and again DCNN has proved to be the best algorithm for 
image classification. 

Dibag et al. [7] proposed multi-objective differential evolution 
(MODE) based DCNN structure to identify COVID-19 infected patients 
by looking at their chest CT images. They obtained an accuracy of about 
93%. Maghdid et al. [8] also used CT-Scan images for detection and 
classification of the COVID-19. They have introduced an AI-based mo-
bile application that reads the smartphone sensors signal measurements 
and looks into the CT-Scan images to tell about the severity of pneu-
monia in the patient. In [9] the researchers have used Inception 
migration-learning model to detect COVID19 from 453 CT images and 
achieved an accuracy of 73.1%. Li et. al.[10] have also used Chest CT 
images for the detection of COVID19. An AUC (Area Under the ROC 
Curve) of 0.96 is reported by them. [11] have used an hybrid 3-D and 
full 3-D models, both based on Densenet-121 architecture to detect 
COVID-19 from CT images. They have obtained an accuracy of 90.8%. 
On CT images, it’s worth noting that nearly half of patients with COVID- 
19 infection have a regular CT scan if screened soon after the onset of 
symptoms. [12]. Moreover the radiation dose, which is one of the 
important health concern, is much higher for CT scan in comparison to 
the X ray imaging. This is especially important for pregnant women and 
children who are much susceptible to high radiation dose [13]. Taking 
all these facts into consideration we have used CXR images for our 
experimentation. 

Wang et al. [14] has proposed COVID-Net for classification of Chest 
Radiology images into four classes namely- normal, COVID-19, pneu-
monia (bacterial), and pneumonia (viral). They have proposed a tailored 
network and is one of the first open source designs for COVID-19 
detection from Chest X-ray(CXR) images. They obtained an accuracy 

of almost 83.5%. COVIDX-net [15] was proposed by Hemdan et al. used 
seven DCNN structures to classify CXR images into COVID-19 and 
normal cases. [16] used various pre-trained DCNN structures for feature 
extraction and SVM for classification. ResNet50 model followed by SVM 
gave an accuracy of 95.38%. CoroNet, [17] proposed by Asif et al. used a 
DCNN based on the Xception [18] model for classification of CXR into 
COVID-19, normal and pneumonia classes. They are also the first re-
searchers to consider three different classes for pneumonia. Their 4-class 
classification obtained an accuracy of 89.6%, 3-class classification ob-
tained 95% and the binary class-classification obtained a whooping 99% 
accuracy. 

2.1. Motivation and key contribution 

Developing a fast and accurate testing mechanism, which can assist 
the radiologists in detecting COVID-19 from Chest X-ray images is our 
motivation. The CheXNet [19], proposed by Rajpurkar et. al. for clas-
sification of Chest X-ray images into 14 different diseases also served as a 
motivation. The key contributions are listed below.  

• A multi-model ensemble based DCNN structure is proposed to extract 
the low-level features from the CXR images and concatenate them 
before classification. The DCNNs used for building the proposed 
model namely VGGNet, GoogleNet, DenseNet, and NASNet are the 
most common DCNN architectures in literature. We have proved that 
employing such a scheme enhances performance.  

• Till date most of the work presented in literature uses a very less 
number of test images for COVID-19 class. We aim to use a little large 
number of images for testing. For that the test images of the COVID- 
19 class in Kaggle dataset is added to the original Cohen el. al. 
dataset. More details about this are presented in the next section.  

• The performance of the proposed multi model ensemble architecture 
is validated on a private dataset collected from MGM Medical College 
and hospital.  

• Lastly, to investigate the concept of transfer learning and to provide a 
competitive analysis with the state of the art model for COVID-19 
detection. 

3. Dataset description 

Since the outbreak of COVID19 researchers has uploaded lot of 
clinically proven CXR dataset on Internet. For our experimentation we 
have used three different datasets. 

Cohen et al. [20] The dataset was acquired on 20th April 2020. 
Along with chest X-rays for COVID-19 it also contains examples from 
Community Acquired Pneumonia (CAP) and normal classes. Fig. 1 
shows some of the images from all three classes. The dataset was par-
titioned and compared as given in [14]. 

Kaggle It is observed that in Cohen et. al. dataset the number of 
images in train/COVID-19 and test/COVID-19 is very less as compared 
to CAP and normal classes. So we have used the images from Kaggle’s 
chest-xray-covid19-pneumonia dataset. All the images in the test and 
train section of COVID-19 are added to the original dataset for our 

Fig. 1. (a) CAP (b) Normal and (c) COVID-19 examples as given in Cohen et. al. (d) COVID-19 example as given in Kaggle Dataset.  
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experimentation. This is just done to increase the number of COVID-19 
examples in train and test set. The number of images used for train, test 
and validation are given in Table 1. For train/COVID-19 we have used 
175 images from Cohen et. al. and 460 were used from Kaggle. Test 1 
contains the number of samples from each category used for the first part 
of the experimentation. 

Private Dataset The private dataset is prepared at MGM Medical 
College and hospital, Indore. It was retrospectively collected from 

patients seen at Radiodiagnosis center of MGM Medical College and 
hospital for the period of one week. Each images were reviewed by the 
radiologists and the ground truth was proved with biopsy. This small 
collection of private dataset is collected just to validate the performance 
of ensemble model trained using the datasets explained above. The 
dataset has three classes and the number of images are given in Table 1 
against the column Test 2. 

A re-sampling approach known as under-sampling is used here since 
classifiers are often biased towards the majority class. Under-sampling 
involves randomly deleting instances from majority classes until the 
dataset is equal. This is done to remove the class imbalance present in 
the dataset. 

Table 1 
# of images in dataset.   

CAP Normal COVID19 

Train 4836 7081 175 + 460 
Valid 605 885 20 
Test 1 605 885 20 + 116 
Test 2 28 35 29  

Fig. 2. Schematic illustration of our model.  

Fig. 3. Input lung image before and after pre-processing.  
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4. Methodology 

4.1. Data pre-processing 

For our experimentation we are using two publicly available dataset, 
one given in Cohen et al. and the other in Kaggle and one private dataset. 
Zero mean Normalization is applied to get rid of the difference in 
lighting between them. Zero mean Normalization makes all pixel values 
between 0 and 1. This helps in fastens up the convergence of the model 
to be trained [21]. A sample input lung image before and after zero mean 
normalization is shown in Fig. 3. 

4.2. Transfer learning 

With merely 12,552 images for training (4836 for CAP, 7081 for 
normal and 635 for COVID-19), it will not be judicious to train a network 
from scratch. So we have used a technique called Transfer Learning. 
Transfer Learning is a process of re-using a network which have been 
trained for some other purpose on a dataset which is considerably large 
for our own use. The proposed architecture as shown in Fig. 2 uses four 
pre-trained network for extracting low level features from the input 
images. The four pre-trained networks namely – VGGNet [22], DenseNet 
[23], NASNet [24] and GoogleNet [25] and are trained on Imagenet 
[26] dataset. 

It is proved that the best approach for various image classification 
and detection tasks is to create ensembles of multiple models. In [27], 
the authors have used ensemble models for melanoma classification. In 
[28], the authors proposed a bi-stream network, comprising two 
different sub branches of two network structures, namely ResNet50 and 
VGG16 for object detection and recognition. It is done with an aim to 
take advantage of rich semantic information present in their proposed 
dataset. A novel triple-stream network is proposed by Wang et al. [29] 
for salient object detection. In [30], for solving the problem of object 
detection, the authors have successfully used VGG16 as the backbone 
architecture. Similarly for detection of objects from video sequence [31] 
proposed a novel plug-and-play scheme to weakly retrain a pretrained 
image saliency deep model for video data by using the newly sensed and 
coded temporal information. 

4.3. Ensemble model for features extraction 

Initially individual DCNN structures are used for feature extraction. 
The extracted features are provided to a fully connected layer for final 
classification. Later on, we have used the ensemble of the four most 
common DCNN structures for feature extraction. The ensemble uses 
VGGNet, DenseNet, GoogleNet and NASNet which are the state-of-the- 
art Deep Convolutional Neural Networks and have performed signifi-
cantly in object classification and recognition. As shown in Fig. 2, the 
low-level features from the input images are extracted using an 
ensemble of the four pre-trained DCNNs. The details of the parameters 
and the architecture are given in Table 2.We have observed that 
employing such scheme enhances the classification performance. A brief 

description of all the four DCNNs used in our multi-model ensemble 
structure is given below. 

4.3.1. VGGNet 
With an architecture similar to that of AlexNet [32], Visual Geometry 

Group Network [22] won the ImageNet LSVRC challenge in the year 
2013. It uses 3 x 3 window size filter and 2 x 2 pooling network. The 3 
convolution layer deep network performs better as compared to Alex-
Net, due to its simple architecture [33]. 

4.3.2. DenseNet 
Introduced in the year 2018 by Huang et al. [23] densely connected 

Covolutional Network connects each layer in a network to every other 
layer in a feed-forward style. This revolutionary work made possible to 
design more deeper and more accurate Convolutional Neural Network. 

4.3.3. GoogleNet 
A 22 layer deep network won the 2014 edition of ImageNet LSVRC 

challenge. This network revolutionized the idea of Deep Learning. With 
the introduction of inception model the networks could be more deeper 
and at the same time containing lesser parameter.This network contain 
12 times lesser parameters than AlexNet [32,25]. 

4.3.4. NASNet 
Introduced by Google Brain in the year 2018, the idea of trans-

ferability was first proposed by them [24]. The best convolutional 
layers, dubbed as cells, for solving the classification problem on the 
CIFAR10 dataset were found, and several stacks of those cells were used 
to solve the ImageNet [26] classification problem. 

4.4. Model architecture and development 

The ensemble model used for our experimentation is shown in 2 and 
the details are provided in Table 3. Transfer Learning scheme is 
employed to overcome the problem of overfitting as the training data is 
not sufficient. The experiments were implemented in Python using Keras 
package with Tensor-flow as a backend framework. 

4.5. Implementing and training 

We implemented two scenarios using the proposed model to detect 
COVID-19 from CXR images. 

4.5.1. First scenario 
In the first scenario the model is trained and validated using the 

images given in datasets obtained from Internet. Initially a three class 
multi-model ensemble architecture is trained. It classifies CXR images 
into three classes namely- Community-Acquired Pneumonia (CAP), 
Normal, and COVID-19. The number of images used for training is given 
in the Table 1. For testing the we have used the images from Coehn et al. 
and Kaggle. The numbers are mentioned in the same table against the 
column Test 1. 

Later on the same model is modified for binary classification. In bi-
nary classification the same model is retrained to classify the input CXR 

Table 2 
Architecture of the proposed model.  

Layer(type) Output shape # of parameter 

VGG(model) 512 20,025,923 
GoogLeNet(model) 2048 21,802,784 
DenseNet(model) 1920 18,321,984 
NASNet(model) 1056 4,269,716 
concatenate_6 (Concatenate) 5536 0 
dropout(Dropout) 5536 0 
dense(Dense) 256 1,417,216 
dense_1(Dense) 3 768 

Total Parameters  65,838,400 
Parameters trained  1,417,985  

Table 3 
Table compares the performance of individual model 
with the proposed model (A three class problem).  

Architecture Accuracy 

VGGNet 87.23% 
GoogleNet 86.78% 
DenseNet 85.67% 
NASNet 83.23% 
ResNet 82.64% 
ResNeXT 85.96% 
Ensemble Model 88.98%  
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images into COVID and non-COVID cases. 

4.5.2. Second scenario 
The efficiency of the ensemble model trained is evaluated on a pri-

vate dataset obtained from MGM Medical College and hospital, Indore. 
Both three class and binary classification are performed. The number of 
images used to test the model is given in Table 1 against the column Test 
2. 

Both the scenarios was performed in Google Colaboratory which is 
equipped with a Tesla K80 graphics card. The training progress for the 
first experiment is shown in Fig. 4. Adam optimizer with a learning rate 
of 0.0001 is used for both the cases. Early stopping was applied for fast 
implementation. 

5. Results 

The entire experiment is divided into two scenarios as given below. 

5.1. First scenario 

The ensemble model for three-class classification achieves an accu-
racy of 88.92%. A comparison with the individual DCNNs in terms of 
accuracy is given in Table 3. The performance of the ensemble model is 
also compared with the two recent networks, namely ResNet [34] and 
ResNeXT [35].The performance comparison of the proposed ensemble 
model is also done on dataset with and without the preprocessing steps 
as mentioned in section IV A. The results for the same are shown in 
Table 4. The 95% confidence interval of the proposed model on three- 
class classification is 88.95% ± 1.52%. Similarly, the 95% confidence 
interval of the model on two-class classification is 98.58% ± 0.57%. 

Precision, Recall and F-measure are the top metrics used to measure 

the performance of any classification algorithms. The class wise mea-
sures for the three-class classification are presented in Table 5. Training 
progress for the same is shown in Fig. 4. 

After carefully analyzing the results and after discussion with the 
experts we conclude that there is a confusion between the CAP and 
COVID-19 class. So in the second part of the experiment the proposed 
multi model ensemble structure is retrained for binary classification. In 
case of binary classification the input CXR images are classified either 
into COVID-19 or non COVID-19 class. For that the normal and CAP class 
are merged together to form non-COVID19 class. An accuracy of 98.58% 
is obtained. Class wise precision, recall and F-score measures are pre-
sented in Table 6. 

The results obtained by our model are superior to other models as 
most of the models are tested on a very less number of COVID-19 ex-
amples. A comparison with other models is given in Table 9. Narin et al. 
[36] used ResNet50 architecture for the detection of COVID-19. Though 
they have obtained an accuracy of 98% in binary classification but only 
10 COVID data were used for testing their model. Similarly, Asif et al. 
[17], proposed Xception based CoroNet, used only 29 images both for 
binary and three class classification. Ozturk et al. [37] proposed a dar-
knet based COVID-19 detector but used only 127 images in total. They 
performed a 5-fold cross-validation procedure. Sethy and Behra [16] 
performed binary classification using a DCNN based on ResNet50. They 
have obtained an accuracy of 95.38%. The COVID examples used for 
testing the model is only 25. Ioannis et al. [38] used the VGG network 
and achieved better accuracy. They have used only a total of 224 Covid- 
19 images for training, testing, and validation. They have performed 5- 
fold cross-validation. And most importantly their dataset has images 
from Kaggle only. 

Whereas the ensemble model proposed by us is tested on 136 COVID- 
19 examples from two publicly available datasets, 20 images from 
Coehn et al. [20] and rest 116 from Kaggle. The model proposed is more 
robust as it is tested on two publicly available dataset and one private 
dataset. 

5.2. Second scenario 

The second scenario is about classifying the dataset we have acquired 
from MGM Medical College, Indore. As the dataset is small so we have 
avoided retraining the model. Rather we have used the model trained in 

Fig. 4. (a) training Progress (b) Model Loss.  

Table 4 
Table compares the performance of proposed ensemble model on dataset with 
and without preprocessing.  

Architecture (With/Without Pre-processing) Accuracy 

Proposed Ensemble Model (Without Pre-processing) 85.72% 
Proposed Ensemble Model (With Pre-processing) 88.98%  

Table 5 
Results obtained for three class classification.  

Class Precision (%) Recall(%) F-measure(%) 

CAP 88 86 87 
COVID-19 98 62 75 
Normal 89 95 92  

Table 6 
Results obtained for binary classification.  

Class Precision (%) Recall(%) F-measure(%) 

COVID-19 87.41 97.05 91.97 
NonCOVID-19 99.72 98.74 99.23  
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first scenario to test the private dataset. As far as three class classifica-
tion is concerned we have obtained an accuracy of 93.48%. The 95% 
confidence interval of the proposed model on three-class classification is 
93.48% ± 5.04%. Similarly, the 95% confidence interval of our model 
on two-class classification is 95.65% ± 4.16%. Precision, Recall, and F- 
measure is given in Table 7. As shown in Table 7, the precision for 
COVID-19 is 100%. This signifies that no patient is mis-classified into 
COVID-19 class. This is very important as this model has guaranteed that 
patients having pneumonia or are completely healthy is not mis- 
classified as COVID-19. Recall for normal class is also reported to be 
100%. Significance of having cent percent recall of normal class is that 
no healthy patients are classified as COVID-19 or CAP. For classifying 
the input CXR images into COVID-19 and non COVID-19 class, we have 
merged the images from CAP and normal class into non COVID-19 class. 
An accuracy of 95.65% is obtained. 

6. Conclusions 

With the increasing number of cases, it is important to ensure that no 
single COVID-19 patient goes undetected. To make this possible we need 
to have a testing mechanism which is not only accurate but also real- 
time. The proposed method,which is based on four pre-trained DCNN 
structures can assist the radiologists to have a deeper understanding of 
the critical aspects related to COVID-19. The model achieved promising 
results on the prepared dataset and we strongly believe that once more 
training data becomes available, the accuracy will go up. (see Table 8). 

7. Source code and dataset 

The source code, dataset can be obtained from the following github 
linkhttps://github.com/sagardeepdeb/ensemble-model-for-COVID-de 
tection 
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