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Abstract We present an implementation of a recently devel-
oped noise reduction algorithm for dMRI data, called multi-
shell position orientation adaptive smoothing (msPOAS), as a
toolbox for SPM. The method intrinsically adapts to the
structures of different size and shape in dMRI and hence
avoids blurring typically observed in non-adaptive smoothing.
We give examples for the usage of the toolbox and explain the
determination of experiment-dependent parameters for an op-
timal performance of msPOAS.
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Introduction

Diffusion-weighted magnetic resonance imaging (dMRI) has
developed into an extremely versatile tool for the in-vivo
structural analysis of tissue, for example in the human brain
(Johansen-Berg and Behrens 2009). One reason is that the
diffusion signal obtained with the pulsed gradient spin

sequence echo (PGSE, Stejskal and Tanner 1965) directly
relates, via three-dimensional Fourier transform, to the diffu-
sion propagator which is the probability density of the under-
lying Random Walk the spin particles experience (Mitra and
Sen 1992). Therefore, if we measured the diffusion signal for
all possible diffusion gradient directions, times and strengths,
i.e. cover the whole q-space, we would know the full propa-
gator. Its spatial and directional dependence would allow us to
infer on boundaries for the diffusing particles and hence the
underlying structure. However, in practice, only a limited
coverage of the q-space is feasible. Therefore, a number of
models have been developed in the past, which reveal at least
partial information contained in the diffusion propagator.
Most require dMRI data measured on at least one q-shell, that
is characterized by a single b-value (Basser et al. 1994b)
subsuming diffusion gradient strength and diffusion time.

The most prominent example of a diffusion model gives
rise to Diffusion Tensor Imaging (DTI, Basser et al. 1994a, b).
Surprisingly, although this model actually describes free dif-
fusion in anisotropic media it has proven to relate well to the
underlying tissue geometry in the brain in general, and to the
main fiber directions in the white matter in particular
(Johansen-Berg and Behrens 2009). More sophisticated de-
scriptions of the diffusion signal have been examined to infer
on more complicated sub-voxel structure like multiple fiber
directions. These include HARDI (Frank 2001; Tuch et al.
2002), tensor mixture models (Behrens et al. 2003; Assaf and
Basser 2005; Tabelow et al. 2012), higher order tensor ap-
proximations (Özarslan and Mareci 2003; Liu et al. 2003;
Jensen et al. 2005) and methods to determine the full diffusion
propagator (Özarslan et al. 2006; Cheng et al. 2010), see
Assemlal et al. (2011) for a recent review.

In any case the measures of interest, like fiber directions or
quantitative measures like the fractional anisotropy (FA) in
DTI, are estimated based on the raw diffusion images. Hence,
the accuracy of the estimates depends on the data quality,
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which in turn typically requires retrospective correction of
artifacts due to eddy-currents, motion (Mohammadi et al.
2010), susceptibility-related distortions (Ruthotto et al. 2012,
2013), instrumental (Mohammadi et al. 2012a, b) or physio-
logical noise (Mohammadi et al. 2013a, b). Signal-to-noise
ratio (SNR) is especially low in dMRI because of the addi-
tional exponential dependence in the diffusion-weighted sig-
nal, see, e.g., Stejskal and Tanner (1965). As a result the SNR
in dMRI decreases with increased diffusion weighting, i.e.
higher q-shells have lower SNR. Furthermore, beyond-
tensor models with a larger number of parameters are more
sensitive to data noise, making sophisticated denoising strat-
egies mandatory for cutting-edge dMRI. In order to reduce
noise in dMRI data a number of different approaches have
been developed in recent years starting from Gaussian filter-
ing (Westin et al. 1999), smoothing procedures in tensor space
for DTI (Fletcher 2004), to denoising algorithms based on
partial differential equations (Ding et al. 2005; Parker et al.
2000; Duits and Franken 2011) to name only a few.

Recently, we developed a position-orientation adaptive
smoothing algorithm (POAS, Becker et al. 2012) based on
the propagation-separation (PS) approach (Polzehl and
Spokoiny 2006; Becker and Mathé 2013). The method is
edge-preserving and avoids blurring of the fine anisotropic
structures observed in dMRI. The method has been extended
to be applicable to dMRI measured on multiple shells and
named multi-shell POAS (msPOAS, Becker et al. 2014). It
capitalizes on the additional information on the different shells.
Furthermore, several improvements make msPOAS feasible
from a computational point of view. Finally, msPOAS can also
be applied to single-shell dMRI data. Thus, in this paper we
will only consider the more general msPOAS approach.

Compared to previous diffusion-model-based adaptive
smoothing methods, e.g., Tabelow et al. (2008),
(ms)POAS has the advantage that it directly denoises
dMRI data without requiring any diffusion-model as-
sumptions. Thus, it avoids a bias towards any diffusion
model such as DTI, HARDI, or tensor mixture models
(see Becker et al. (2012) for details).

(Ms)POAS has been originally implemented in the R lan-
guage and environment for statistical computing and graphics
(R Development Core Team 2014). While the corresponding
package dti (Tabelow and Polzehl 2014) is easy to install
(Polzehl and Tabelow 2011) and allows for applyingmsPOAS
to dMRI data using very few code lines, the use of R in the
neuroimaging community is still limited. We therefore imple-
mented msPOAS as a toolbox for Statistical Parametric Map-
ping (SPM) (Friston et al. 2006), the most widely used neu-
roimaging analysis package, tomake the method available to a
broader audience, see www.diffusiontools.com.

In this paper we shortly review the method in a sim-
plified way, present the new toolbox for SPM, describe
the usage of the toolbox, and suggest methods to

determine experiment-dependent measures and to set
method parameters. We present some worked examples
with single- and multi-shell data. For a more in-depth
review of the theory of POAS and msPOAS we refer
the reader to the original work in Becker et al. (2012,
2014).

Methods

MsPOAS is a noise reduction method for dMRI data that is
measured on at least one q-shell, i.e., for at least one b-value
and a sufficiently large number of diffusion gradient direc-
tions. Although msPOAS also works for very few diffusion
gradient directions, it particularly benefits from the informa-
tion from more gradient directions (Becker et al. 2014).
MsPOAS is also suitable for single-shell dMRI data.

Review: Multi-Shell Position-Orientation Adaptive
Smoothing (msPOAS)

The design space in dMRI for a single q-shell forms an

ℝ3 � S2 space that contains a collection of points described

by their voxel positions in ℝ3 and gradient directions in S2
(Duits and Franken 2011). Let Sb(m) denote the observed
signal for the b-value and point m defined as

m ¼ v∈ℝ3; g∈S2
� �

, where v is its voxel location and g is
its gradient direction. The non-diffusion weighted b0-image is
denoted by S0(v,0)=S0(v) and does of course not depend on g.
In case of several b0-images we consider their mean. Interpo-
lation is used to account for discrepancies in gradient direc-
tions across shells, see Becker et al. (2014).

The measured random values Sb(m) are distributed accord-
ing to some probability distribution that is parametrized by a
“true” intensity parameter θ, the noise standard deviation σ
and a number of degrees of freedom 2L where L denote the
effective number of coils for parallel imaging (Aja-Fernández
et al. 2009). Then Sb(m)/σ is assumed to be non-central χ-
distributed with 2L degrees of freedom.

In msPOAS we assume that similar signal values in

ℝ3 � S2 extend over sets of neighboring points n=(vn,
gn). This can be used to obtain an improved estimate for

the image value at any point m∈ℝ3 � S2 . If the definition
of the neighborhood is specific for the point (and based
on the data) we call the method adaptive, or non-adaptive
otherwise. The notion of neighborhood typically requires
the definition of a metric in the considered design space,

here ℝ3 � S2 .
MsPOAS is derived from non-adaptive kernel estima-

tors (Nadaraya 1964; Watson 1964), see also (Fan and
Gijbels 1996). Then, for a given distance δ(m,n) between
design points m and n, a non-adaptive kernel estimate
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Sb mð Þ for the expected value at some bandwidth h is
given by a weighted mean

Sb mð Þ ¼
X
n

wmnSb nð Þ=
X
n

wmn ð1Þ

with

wmn ¼ K loc
δ m; nð Þ

h

� �
ð2Þ

where Kloc is some kernel function. Instead of the commonly
used Gaussian kernel function we employ

K loc xð Þ ¼ 1−x2
� �

þ

(with (x)+ denoting the maximum of x and 0), due to its higher
efficiency and computational simplicity, see Fan and Gijbels
(1996).

MsPOAS is based on the propagation-separation approach
(Polzehl and Spokoiny 2006; Becker and Mathé 2013) and
makes the following important extensions to the non-adaptive
estimator:

1. Re-define the weighting schemes given in Eq. (2) by an
additional term that evaluates the distance of the signal in
two measurement points m and n making the weights
adaptive, see Eq. (4), cf. the construction of bilateral
filters.

2. Repeat the estimation step in Eq. (1) using adaptive
weights (4) for an increasing (typically geometric) se-
quence of bandwidths hk for k=1,…,k⋆ instead of a single
bandwidth h, see Eq. (2), in an iterative procedure, see
(Becker et al. 2014). This approach is, therefore, a scale-
space method. The specific choice of the sequence of
bandwidths is described in detail in Appendix B, Becker
et al. (2014).

MsPOAS then calculates at each iteration step k new esti-
mates

eS kð Þ
b mð Þ ¼

X
n

ew kð Þ
mnSb nð Þ=

X
n

ew kð Þ
mn ð3Þ

with adaptive weighting schemes

ew kð Þ
mn ¼ K loc

δ m; nð Þ
hk

� �
Kad

s kð Þ
mn

λ

� �
ð4Þ

employing a second kernel function

Kad xð Þ ¼ 1 for 0≤x < 0:5;
2−2xð Þþ for 0:5 ≥ x :

�

The summation in Eq. (3) is over all signal from the same
q-shell. For b0-images averaging in Eq. (3) is reduced to voxel
space, see Becker et al. (2014) for details.

In msPOAS we use a simple approximate distance in the

design space ℝ3 � S2 :

δκ m; nð Þ ¼ vm−vnk k þ κ−1
k acos gTmg

T
n

�� ��� � ð5Þ

where ||. || denotes the L2-norm inℝ3 and κ steers the influence
of the geodesic distance on the sphere S2 (Hagmann et al.
2006; Becker et al. 2014). Specifically we use a decreasing
sequence κk=κ0/hk to restrict the smoothing on the sphere at
later iteration steps, see Becker et al. (2014).

The statistical penalty smn
(k) evaluates the difference between

the estimators in points m and n in the previous iteration step
and is defined by

s kð Þ
mn :¼

X
b≥0

eN k−1ð Þ
m;b Kℒ

eS k−1ð Þ
b mð Þ

σ
;
eS k−1ð Þ
b nð Þ
σ

 !
eNm;b

kð Þ ¼ max
k 0 ≤ k

X
n

ew k 0ð Þ
mn

where Kℒ denotes the Kullback–Leibler divergence
between two non-central χ-distribution with 2L degrees
of freedom and its expectation given as argument. This
term has no analytic expression, in msPOAS we use the
approximation

s kð Þ
mn ¼

X
b≥0

eN k−1ð Þ
m;b

2
eS k−1ð Þ
b mð Þ

σ
−
eS k−1ð Þ
b nð Þ
σ

0@ 1A2

sd2L
eS k−1ð Þ
b mð Þ

σ

0@ 1Aþ sd2L
eS k−1ð Þ
b nð Þ
σ

0@ 1A; ð6Þ

with sdL(x) denoting the standard deviation of a non-
central χ-distribution with 2L degrees of freedom and
expectation x. The factor eN k−1ð Þ

m;b characterizes the variance
reduction at each shell achieved due to averaging. For all
specific details of msPOAS which are not covered here
necessary for the handling of the b0-images, the modifi-
cation for interpolated signal values and the initialization
of the method, we refer to Becker et al. (2014).
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Toolbox Implementation and Installation

The toolbox POAS4SPM for the neuroimaging software SPM
has been implemented using C and Matlab. It comes as open-
source software with GPL2.

The toolbox is part of the ACID toolbox for “Artefact
correction in diffusion MRI” and can be downloaded from
its homepage at http://www.diffusiontools.com/. It is listed on
the SPM extension homepage http://www.fil.ion.ucl.ac.uk/
spm/ext/, too. Installation is done by extracting the toolbox
into the toolbox folder of SPM, and compiling all mex-files
in the Preprocessing/POAS subfolder. Running the
make_ACID.m utility in the cfiles folder of the ACID
toolbox will automatically compile all necessary c-files.

Usage of the Toolbox

As part of the ACID-Toolbox, the msPOAS module runs in
the batch editor of SPM. In the menu of the batch editor
msPOAS can be found at SPM -> ACID Toolbox ->
Pre-Processing -> Choose POAS options ->
POAS. One may load/save a batch file to use standard toolbox
settings as usual. The toolbox options are defined as follows:

Diffusion weighted images: Choose the N images includ-
ing Ng diffusion weighted and N0 non-diffusion weighted
data files. Data should be given in separate 3D volumes.
Diffusion directions: Add a 3×N–array consisting of the
diffusion gradient directions with normalized vectors that
appear in the same order as the DTI images were entered.
Choose a vector with three zeros for each b0-image. If a
name of a variable is entered here, e.g., with gradient
direction data read from a file, its value is automatically
evaluated.
b-values: Add a 1×N–array with b-values. They should
appear in the same order as the DTI images were entered.
The b-value is given in units of s/mm2. b0-images should
have b=0. If the data contains images with a small b-
value (b<100s/mm2), which serve as reference image
without directional information, mark them by using b=
0 as well. The diffusion-weighted images corresponding
to different shells will be identified by their b-value. Also
here, a variable name can be entered.
k star: This is the parameter k⋆ of msPOAS that defines
the number of iterations and thus the maximal location
bandwidth hk⋆ .
kappa: This is the parameter κ0 of msPOAS that
defines the initial ratio of the spatial and spherical
distance in Eq. (5).
lambda: This is the adaptation parameter λ of msPOAS,
see Becker et al. (2012, 2014) for more details.
sigma: The value σ is the noise level in the data and must
be obtained from the data, see option Estimate sigma

in the toolbox. Although the value of σmay vary spatially
due to effects of parallel imaging, the current implemen-
tation of msPOAS assumes a homogeneous variance.
The effect of a misspecified σ can be partly compensated
by the choice of λ (Becker et al. 2014).
ncoils: This parameter specifies the parallel imaging fac-
tor L, i.e., the number of different receiver coils that
contributed to the measured signal value. It may also vary
with spatial location, but the current implementation of
msPOAS assumes a global value for L. msPOAS
has been shown to be relatively robust against mis-
specifications of L (Becker et al. 2014).

After running the batch script, the smoothed diffusion
weighted volumes are written to disk using “poas” as a
prefix. Only one b0-image, obtained as smoothed average
of all original b0-images, is written to disk, see Becker
et al. (2012). For further processing the corresponding
gradient orientations and b-values are written to disk as
a .mat-file. The input directory is used as the target
directory for the script’s output.

Choice of the Method Parameters k⋆, κ0, λ

The number of iteration steps k⋆ defines the maximum
variance reduction in homogenous image regions, but
also the numerical complexity of the method and thus
the computation time, see Fig. 1. Large values of k⋆ may
also lead to a step function approximation with a small
step size. We therefore suggest a value between 10 and
12 for k⋆.

The value for κ0 defines the amount of initial smooth-
ing on the sphere of diffusion weighting directions in the
first step k=0. This spherical smoothing stabilizes the
initial estimates of msPOAS for a better noise reduction
especially at very low SNR. On the other hand spherical
smoothing comes with a cost of potential bias and loss of
spherical resolution. In successive steps msPOAS there-
fore restricts the amount of spherical smoothing by the
specific choice of the sequence κk. Due to the decreasing
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Fig. 1 Computation time in hours as a function of the number of iteration
steps k⋆ for the single-shell dataset used in this paper and a typical set of
parameters κ0=0.5,λ=12. The highlighted k⋆=12 provides a good bal-
ance between achieved variance reduction, variance controlled bias and
computation time
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variance of the estimates in the iteration process the
statistical penalty in Eq. (6) generally increases. This
leads to more restrictive adaptive weights and thus to
reduced smoothing on the sphere. We recommend a value
for κ0 such that in the initialization step k=0 for
msPOAS an average number of 5 to 10 signal values
on the sphere for neighboring gradient directions are
included in the smoothing. This is equivalent to a choice

cos−1 1−5=bN� 	
< κ0< cos−1 1−10=bN� 	

; where bN denotes

the mean number of measured gradient directions per
shell (Becker et al. 2014). Larger values of κ0, are
appropriate in case of small SNR or large number Ng

of gradient directions. For a graphical visualization of
this choice and the specific values for the datasets
used in this paper, see Fig. 2.

λ is the adaptation bandwidth of the procedure that
steers the amount of adaptation of msPOAS. For λ=0
the adaptive weights in Eq. (4) vanish for all m≠n. As
a consequence, all estimates at any iteration step will
coincide with the original data. In contrast, for λ=∞ the
adaptive weights coincide with the non-adaptive

weights, i.e. ew kð Þ
mn ¼ wmn for all m,n, see Eq. (4), and

msPOAS finally generates a non-adaptive kernel esti-

mate in the space ℝ3 � S2 with kernel Kloc, bandwidth
hk⋆ and κk⋆ ¼ κ0=hk⋆ .

Basically, λ can be chosen to satisfy a propagation
condition using simulation independent from the proc-
essed data (Becker et al. 2012) but for the specific noise
distribution. In case of dMRI data, the distribution can
be assumed to be a non-central χ-distribution with 2L
degrees of freedom and non-centrality parameter θ. We
suggest a value of λ=12 for all datasets. Depending on
the quality of the estimates for the data-dependent pa-
rameters σ,L slight adjustments may be required, as
discussed below. The propagation condition ensures with
high probability that in homogenous image regions the
msPOAS estimator basically coincides with the non-
adaptive in Eq. (1).

How to Estimate σ and L?

MsPOAS requires two data-dependent input parameters σ and
L, that fix the properties of the noise distribution and enter the
definition of the statistical penalty smn

(k) , see Eq. (6).
A suitable estimate for the standard deviation σ of the noise

can be obtained by any method available to the user, see (Aja-
Fernández et al. 2009) for a review. The methods typically
determine σ from the Rayleigh L=1 or central χ-distribution
L>1 in the image background.

We implemented the method described in (Constantinides
et al. 1997) in the toolbox. It can be accessed in the batch
editor via SPM -> ACID Toolbox -> Pre-Processing
-> Choose POAS options -> Sigma estimation and
requires as input the diffusion weighted images from the data,
a binary mask file defining background voxel only and the
specification of L, see below. Running the estimation returns a
mean value over all diffusion weighted images. It also writes a
.txt-file into the data directory with individual values for each
diffusion weighted volume. b0-image typically lead to larger
estimates for σ, than the diffusion weighted volumes. Note,
that the method of Constantinides et al. (1997) does not
account for noise correlation due to multi-channel receiver
coils (Hutton et al. 2012). Furthermore, non-background
structure like ghosts within the defined background mask also
leads to overestimates of σ. For msPOAS it is advisable to use
a conservative small estimate for σ and potentially correct a
misspecification by adjusting λ.

The parameter L depends on the reconstruction algorithm,
see, e.g., Aja-Fernández et al. (2011). It is very difficult to
estimate from the data. For some reconstruction methods it
can be shown that L=1 (Sotiropoulos et al. 2013). Generally L
equals the total number of receiver coils for a Sum-of-Squares
reconstruction and is spatially varying for GRAPPA (Aja-
Fernández et al. 2011). Fortunately, msPOAS has been shown
to be relatively robust against misspecification of L (Becker
et al. 2014). We therefore suggest to use a value of L=1
consistently in the estimation of σ and for msPOAS, if no
other estimate is available.

Experimental Data

Two healthy volunteers (male) participated in the study
approved by the local ethics committee after giving writ-
ten informed consent. The example data used in this paper
has been acquired as follows: Experiments were per-
formed on a MAGNETOM Trio, a Tim System 3T scan-
ner (Siemens AG, Healthcare Sector, Erlangen, Germany).
Two high-resolution diffusion magnetic resonance imag-
ing (dMRI) data sets were acquired using a reduced field-
of-view (FoV) technique (Heidemann et al. 2010), one
multi-shell, and one single-shell data set.
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Fig. 2 The choice of κ0 depends on the mean number bN of diffusion
gradient directions per shell and a balance between achieved noise
reduction and bias on the sphere. Choices for the datasets in this paper
are indicated
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For the multi-shell data, the 161×58mm FoV was centered
on the motor cortex. It had 1.2mm isotropic resolution, and
10 % slice gap, resulting in an effective slice thickness of
1.3mm. The images were acquired at 3 different b-values:
21 at b=20s/mm2, 100 at b=800s/mm2, and 100 at b=
2000s/mm2 using the directions suggested by Caruyer et al.
(2011). The total scan timewas about 22min. This dataset was
also used in Becker et al. (2014).

The 156×56mm FoVof the single-shell data set was cen-
tered on the thalamus with 1mm isotropic resolution, and
10 % slice gap, resulting in an effective slice thickness of
1.1mm. The images were acquired at 2 different b-values: 5 at
b=0s/mm2 and 64 at b=1000s/mm2 using the directions pro-
vided by Siemens. This dataset was acquired three times,
giving a total scan time of about 20 min.

Prior to POAS the data were corrected for motion and eddy
current artifacts using the method detailed in Mohammadi
et al. (2010), which is implemented as part of the ACID
toolbox pipeline. For the analysis in this paper we then esti-
mated the diffusion tensor and FA.

Parameter Choices for the Multi-Shell Dataset

We repeatedly defined an arbitrary region within the back-
ground of the data and used the method implemented in the
toolbox and described in the “Methods” section to estimate
the noise standard deviation σ. We consistently found a value
of σ=30. We used L=1 for all calculations as in (Becker et al.
2014).

We used msPOAS parameter values κ0=0.3 and λ=12 to
match the choice in Becker et al. (2014). The number of
iteration steps was fixed at k⋆=12 that provided a good

balance between computational costs and achieved noise
reduction.

Parameter Choices for the Single-Shell Dataset

Estimation of the noise level in the image background for the
single-shell dataset consistently provided a value of σ=45.We
used L=1, k⋆=12, and λ=12 for all calculations. This dataset
was measured with three repetitions. First, we smoothed the
data for a one-repetition dataset (using the first repetition),
here the κ0 value was used to be κ0=0.5. Then, we smoothed
the data for all three repetitions, with κ0=0.3.

Finally, to demonstrate the dependence of the msPOAS
outcome on the different method parameters, we consecutive-
ly changed one of the three parameters κ0, λ, and k⋆, while
leaving the others constant. To this end, we used the one-
repetition dataset and varied κ0 = 0.3, 0.5, 0.8, λ =1, 5, 10, 12,
50, 100, 500, ∞, k⋆ = 4, 8, 12, 16, 20, 24, 28.

Hardware

We performed the example analysis on a HP Workstation
XW4600 with Intel® Core™2 Duo CPU E6850@3.00GHz
and 8GB RAM running with OpenSuSE 12.3 and Matlab
2012b with SPM8.

Results

The calculations on the described hardware using the optimal
parameters given above took approximately 1200sec=20min

Fig. 3 One slice of a diffusion
weighted image w/o msPOAS for
multi-shell data at all measured b-
values. (a) Original data b0 -
image. (b) msPOAS result. (c)
Original data b = 800s/mm2. (d)
msPOAS result. (e) Original data
b = 2000s/mm2. (f) msPOAS
result
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for the multi-shell dataset, 700sec≈12min for the one-
repetition single-shell dataset, and 1900sec≈30min for the
three repetition single-shell dataset.

In Fig. 3 we compare an axial slice of the multi-shell data
for the three used b-values 0,800,2000s/mm2 before and after
application of msPOAS. The gray scale has been adjusted
such that the b0-image uses the full range of the scale. For
the diffusion weighted images the scale is comparable among
them but augmented in comparison with the b0-image for
better contrast.

In Fig. 4 we show one (randomly selected) diffusion
weighted image before and after applying msPOAS, see
Fig. 4a and b. For comparison we show an average of all three
repetitions of the measurement in Fig. 4c along with the
smoothed version in Fig. 4d. The quality of the msPOAS result
on the one repetition data outperformed the average of the three
repetitions. In Fig. 4e an R1-image of the same slice is shown.

In Fig. 5 we show the corresponding results evaluated in
the diffusion tensor model by means of color-coded FA maps.

In Figs. 6, 7, and 8 we show the dependence of the resulting
color-coded FA map on the number of iteration steps k⋆ (k⋆=
4,12,20,28 only), the adaptation bandwidth λ (λ=1,5,12,
100,∞ only), and κ0, respectively. The amount of noise re-
duction increases with the number of iteration steps. In homo-
geneous regions the propagation condition ensures a non-

adaptive behavior of msPOAS. Then, with k⋆ the achieved
variance reduction is increasing. If a region is small compared
to the final bandwidth hk⋆ the achievable variance reduction is
proportional to the number of voxel in the region, see Eq. (3).
λ controls the amount of adaptation from full adaptation for
very small λ, i.e. no smoothing at all, to non-adaptive smooth-
ing for very large values. κ0 has an influence on the achieved
noise reduction via construction, smaller values lead to less
noise reduction.

Discussion

We implemented a method for adaptive denoising diffusion
weighted MRI called msPOAS as a toolbox for SPM. The
program is part of a general toolbox for artefact correction in
diffusion MRI data named ACID.

Dependence of the Results on the Method Parameters and its
Interaction

MsPOAS requires the specification of data-dependent quanti-
ties σ and L and method parameters h⋆, λ, and κ0. In this
paper, we analyzed the dependence of the outcome of
msPOAS on the choice of the method parameters.

Fig. 4 One slice of a diffusion
weighted image w/o msPOAS for
the one repetition single-shell data
(a and b), compared with the
mean of the three-repetition data
(c and d). For the same slice a
high-resolution quantitative R1-
image was depicted in (e) for
anatomical reference. The R1
image was acquired with a multi-
parameter protocol (Dick et al.
2012; Lutti et al. 2014; Sereno
et al. 2013)

Fig. 5 Color coded FA maps for
the single shell data w/o
msPOAS. (a) Original one
repetition data. (b) msPOAS
result on the one repetition data.
(c) Mean of the three repetition
data. (d) msPOAS on the mean
data
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As shown in Fig. 6 the effect of noise reduction in-
creases with the number of iteration steps k⋆. In homoge-
neous compartments of the image, the smoothness in-
creases with k⋆. On the other hand, the adaptivity of the
procedure obviously avoids blurring at the borders. Thus

in principle increasing k⋆ improves the noise reduction
effect of msPOAS without blurring structural border. This
can be interpreted as an intrinsic local stopping criterion
for the method. However, the computational cost in-
creases exponentially with k⋆, see Fig. 1. For very large

Fig. 6 Dependence of FA after
msPOAS on k⋆ for the one
repetition single-shell data. (a) k⋆

= 0 (Original data). (b) k⋆ = 4. (c)
k⋆ = 12. (d) k⋆ = 20. (e) k⋆ = 28

Fig. 7 Dependence of FA after
msPOAS on λ for the one
repetition single-shell data. (a) λ
= 1, (b) λ = 5. (c) λ = 12. (d) λ =
100. (e) λ = ∞

26 Neuroinform (2015) 13:19–29



k⋆ deviations in the diffusion weighted images from the
structural assumption of local constant image intensities,
e.g., by smooth and gradual changes, lead to a step-
function approximation of the image intensities, see
Becker and Mathé (2013), Becker et al. (2012). Best
results are achieved for intermediate k⋆, such that a suit-
able compromise between computation time, variance-
controlled bias and required noise reduction has to be
made, e.g. k⋆=12.

The adaptation bandwidth λ controls the adaptivity of
the method, ranging from complete adaptation at λ=0,
where the original is not changed at all by msPOAS, to
a non-adaptive estimate at λ=∞, where the adaptivity of
msPOAS is turned off, see Fig. 7. Best results can be
achieved at λ=12.

Different choices of λ have a similar effect on the results of
msPOAS as the estimates for σ. Generally, if σ is
underestimated, msPOAS will be to restrictive and only little
smoothing effect will appear in the result. If σ is
overestimated, this may lead to blurring in the result. This
also means that the effect a misspecification of σ can be
compensated (to some extent) by adjusting λ accordingly.

The choice of κ0 influences the amount of smoothing
on the sphere. For relatively good SNR κ0 can be chosen
smaller then the recommended value to reduce an estima-
tion bias due to the violation of the a local constant signal
function on the sphere. For lower SNR the initial esti-
mates benefit from larger values of κ0 through stabiliza-
tion. Our construction of the sequences of bandwidths hk
and κk, see Eq. (5) and its discussion, automatically lead
to increased noise reduction by larger values of κ0 (with
higher computational costs).

The choice of L has only a minor effect on the result of
msPOAS, see Becker et al. (2014). Nevertheless, msPOAS
may benefit from precise specification of L, if available. If L is
unknown, we recommend to use L=1.

Suggestions for Parameter Choices

We suggest the following procedure for the parameter choices
for msPOAS:

1. L=1, if L is unknown.
2. Determine σ by some suitable method (e.g. the method

given in the toolbox) using L as previously chosen.
3. λ=12.
4. Choose κ0 such that 5≤ bN 1−cos κ0ð Þð Þ≤10 , depending

on the mean number bN of diffusion gradients per shell,
see Fig. 2 for a graphical tool for this choice.

5. k⋆=12.
6. Run msPOAS.
7. Adjust parameters: slightly decrease λ if oversmoothing

at borders occurs, which looks like Fig. 7d or e. Slightly
increase λ if the noise reduction in homogeneous regions
is less then expected for the utilized k⋆: In this case
increasing k⋆ does not increase noise reduction in homo-
geneous regions.

8. Adjust k⋆ if more or less noise reduction for homogeneous
regions is required.

9. Re-run msPOAS if adjustments are necessary.

The evaluation of the msPOAS result can be done at the
level of diffusion weighted images or for diffusion model
parameters, like FA maps.

Conclusion

MsPOAS is a powerful method for adaptive noise reduction in
diffusionMRI data that is now available as a toolbox for SPM.
We demonstrated and discussed the effect of different method

Fig. 8 Dependence of FA after
msPOAS on κ0 for the one
repetition single-shell data. (a) κ0
= 0.3, (b) κ0 = 0.5, (c) κ0 = 0.8
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parameters and data-dependent quantities on the results of
msPOAS and gave recommendations for their choice and
determination, respectively.

Information Sharing Statement

POAS4SPM is part of the ACID-toolbox available at http://
www.diffusiontools.com.

SPM is a MATLAB toolbox that is freely available from
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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