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Abstract
In precision medicine, a common problem is drug sensitivity prediction from
cancer tissue cell lines. These types of problems entail modelling multivariate
drug responses on high-dimensional molecular feature sets in typically > 1000

cell lines. The dimensions of the problem require specialised models and esti-
mation methods. In addition, external information on both the drugs and the
features is often available.We propose tomodel the drug responses through a lin-
ear regression with shrinkage enforced through a normal inverse Gaussian prior.
We let the prior depend on the external information, and estimate themodel and
external information dependence in an empirical-variational Bayes framework.
We demonstrate the usefulness of this model in both a simulated setting and in
the publicly available Genomics of Drug Sensitivity in Cancer data.

KEYWORDS
drug sensitivity, empirical Bayes, Genomics of Drug Sensitivity in Cancer (GDSC), variational
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1 INTRODUCTION

Recently, promising results in precision medicine have sparked an interest in cancer drug sensitivity prediction models
(Iorio et al., 2016). Typically, these models predict the drug sensitivity for new patients from a set of molecular features.
Development of suchmodels is often done inwell-characterised human cancer tissue cell lines. The current paper presents
a novel drug sensitivity prediction model and an application to a real drug sensitivity data set.
Development of such models from cell lines has proven to be difficult (see, e.g. the DREAM 7 challenge in Costello

et al. (2014)). Difficulties arise, among others, from the dimensions of the problem. Typically, the data contain hundreds
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of drugs, thousands of cell lines and thousands of molecular features. An example of a large database of drug responses
and molecular features is the Genomics of Drug Sensitivity in Cancer (GDSC) data (Yang et al., 2013), which we will
further investigate in Section 5. Other examples of such databases include the Cancer Cell Line Encyclopedia (CCLE) (Li
et al., 2019) and the US National Cancer Institute 60 human tumour cell line anticancer drug screen (NCI60) (Shoemaker,
2006). The dimensions of these data prohibit the estimation of standard regression models and typically require some
form of regularisation.
The GDSC database contains additional information on both the drugs and molecular features, such as the target path-

ways and developmental stages of the drugs. Additional online repositories may provide extra information such as the
molecular weight of the compounds or the publication signatures of the molecular features. In some cases, prior knowl-
edge on the drug efficacies may be available, from previous experiments. We propose to include these possibly beneficial
information sources in the estimation of the sensitivity prediction models in a data-driven manner. More specifically, we
estimate a normal inverse Gaussian (NIG) model, where the extent of regularisation is estimated by an adaptive empirical
Bayes procedure, guided by the external information.
We are not the first to work on drug sensitivity prediction models. Reviews on the topic are Azuaje (2017) and Ali and

Aittokallio (2019). Zhao and Zucknick (2019) andMai, Rønneberg, Zhao, Zucknick, and Corander (2019) consider a struc-
tured penalizedmultivariate regression approach. Aben, Vis,Michaut, andWessels (2016) introduce a two-stage penalized
regression model that includes two different types of molecular features. Ammad-ud din et al. (2016) and Costello et al.
(2014) tackle the problem through amultiple kernel learning approach. Our solution allows for the adaptive incorporation
of the external information on drugs and features. This is done by pooling information, both across drugs and features.
Estimation of the model is through computational feasible variational Bayes approximations, while empirical Bayes esti-
mation of tuning parameters pools information across drugs and features in a data-driven manner.
The rest of the paper is structured as follows. In Section 2, we introduce our model, the estimation of which is detailed

in Section 3. Section 4 describes a simulation study that investigates the estimation of hyperparameters by the proposed
method. In Section 5, we analyse the GDSC data, and we end with a discussion in Section 6 on the pros and cons of the
proposed method.

2 MODEL

2.1 Simultaneous equations model

Let 𝑦𝑖𝑑 be the continuous sensitivity measures for cell lines 𝑖 = 1, … , 𝑛, and drug 𝑑 = 1,… , 𝐷. We predict sensitivity from
molecular features 𝑥𝑖𝑗 , 𝑗 = 1,… , 𝑝, collected in 𝐱𝑖 =

[
𝑥𝑖1 … 𝑥𝑖𝑝

]T
. We assume that both covariates and responses have

been centred per drug and regress the drug sensitivities on the molecular features:

𝑦𝑖𝑑 = 𝐱T
𝑖
𝜷𝑑 + 𝜖𝑖𝑑, with 𝜖𝑖𝑑 ∼ 

(
0, 𝜎2

𝑑

)
, (1)

where the 𝑝-dimensional 𝜷𝑑 =
[
𝛽1𝑑 ⋯ 𝛽𝑝𝑑

]T
are the drug-specific omics feature effects. Note that (1) gives rise to a system

of D linear regression equations.
The cell lines used in drug response models are often taken from different tissues. In addition, other clinical covariates

might be available. To obtain unbiased feature effects, one may wish to account for these. We do so by introducing unpe-
nalized covariates, the 𝛽𝑗𝑑 coefficients of which are endowedwith a flat prior. For the sake of clarity, in the following, such
unpenalized covariates are omitted. However, the available software allows for their inclusion.

2.2 Bayesian prior model

We carry out inference by endowing the parameters with the following priors:

𝛽𝑗𝑑|𝛾2𝑗𝑑, 𝜏2𝑑, 𝜎2𝑑 ∼ 𝑝

(
0, 𝛾2

𝑗𝑑
𝜏2
𝑑
𝜎2
𝑑

)
, (2a)

𝛾2
𝑗𝑑

∼ (𝜙𝑗𝑑, 𝜆feat), (2b)
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F IGURE 1 Implied prior densities 𝜋(𝜅𝑗𝑑) for
the (A) NIG, (B) Student’s 𝑡, and (C) lasso priors.
Different line types correspond to different
hyperparameter settings. The hyperparameter
settings (given in Section 3 of the SM) were chosen
to show some possible, distinct shapes that each of
the priors can take

𝜏2
𝑑
∼ (𝜒𝑑, 𝜆drug), (2c)

𝜎2
𝑑
∼ 1∕𝜎3

𝑑
, (2d)

where (𝜙, 𝜆) denotes an inverse Gaussian distribution with mean 𝜙 and shape 𝜆 > 0.
In model (2), 𝛾2

𝑗𝑑
in (2b) denotes a local variance component that is supposed to capture local, feature-specific variation

in the model parameters 𝛽𝑗𝑑 in (2a), while the global variance components 𝜏2𝑑 in (2c) capture the drug-specific, general
trend in 𝜷𝑑. Each drug response is endowed with a random error variance 𝜎2

𝑑
, distributed according to (2d).

Prior distributions of the form (2) are often referred to as global-local shrinkage rules (Polson and Scott, 2011), due to
the multiplicative separation of the prior variance into a local component 𝛾2

𝑗𝑑
and a global component 𝜏2

𝑑
. For appropriate

local shrinkage in global–local shrinkage models it is important to account for different noise levels 𝜎2
𝑑
by scaling the 𝛽𝑗𝑑

variances accordingly.
The NIG prior model was introduced in Barndorff-Nielsen (1978) and since Barndorff-Nielsen (1997), it is routinely

applied in mathematical finance (see, e.g. Kalemanova, Schmid, and Werner (2007)). Here, we extend it with an addi-
tional global variance component 𝜏2

𝑑
. Supplementary material (SM) Section S2 contains more details on the NIG prior.

To illustrate the effect of the NIG prior on the posterior mean, we consider the prior reparametrised as in Carvalho, Pol-
son, and Scott (2009), that is, in terms of shrinkage weights 𝜅𝑗𝑑 = 1∕(1 + 𝛾2

𝑗𝑑
) ∈ (0, 1). Under the (simplified) normal

means model, that is, 𝐗 =
[
𝐱1 ⋯𝐱𝑛

]T
= 𝐈𝑝, with fixed 𝜏2

𝑑
= 𝜎2

𝑑
= 1, the resulting conditional posterior mean for the 𝛽𝑗𝑑

is 𝔼(𝛽𝑗𝑑|𝑦𝑗𝑑, 𝜅𝑗𝑑) = (1 − 𝜅𝑗𝑑)𝑦𝑗𝑑. Thus, 𝜅𝑗𝑑 = 0 implies no shrinkage of 𝛽𝑗𝑑 and 𝜅𝑗𝑑 = 1 implies full shrinkage towards
zero. Figure 1 depicts the prior on 𝜅𝑗𝑑 implied by several choices of 𝛽𝑗𝑑 prior.
Figure 1 shows that, depending on the choice of hyperparameters, the NIG prior can behave similarly to the Student’s

𝑡 prior (decreasing form zero, with substantial mass close to zero and little mass close to one, like the solid lines in
Figs. 1A,B), but also rather differently (dashed and dotted lines in Figs. 1A,B). Our argumentation to model the 𝛾2

𝑗𝑑
by

an inverse Gaussian distribution, as has been suggested in Fabrizi, Greco, and Trivisano (2016) and Caron and Doucet
(2008), is three-fold: (i) the NIG model is more flexible than the lasso prior (as seen from Fig. 1), (ii) the NIG prior allows
to model themeans of the 𝛾2

𝑗𝑑
(𝜙𝑗𝑑) and 𝜏2𝑗𝑑(𝜒𝑑) as a function of external data more conveniently than the Student’s 𝑡 prior,

as explained in Section 3.2 and (iii) like the horseshoe (Carvalho et al., 2009), the NIG shrinkage weights prior can put
mass both near zero and one, a desirable property of shrinkage priors (Polson and Scott, 2011).
A few remarks on the choice of error variance prior are justified here: many authors endow error variance components

with vague gamma priors. Gelman (2006), among others, advises against this practice. The degree of ‘vagueness’ has a
large influence on the posterior, while degree of ‘vagueness’ is a difficult parameter to set. This influence is especially
pronounced if the likelihood is relatively flat, as may be reasonably expected in the large 𝑝, small 𝑛 setting. We therefore
model the error variancewith Jeffreys objective prior (Jeffreys, 1946) that does not depend on any subjective specification of
hyperparameters. In the derivation of our Jeffreys prior for the error variance, we jointly consider an unknown data mean
and variance (Kass andWasserman, 1996). This joint consideration results in the somewhat unorthodox 1∕𝜎3 Jeffreys prior.

2.3 External information

In drug sensitivity prediction models, external information on both the drugs and features is often available. Here, we
assume this information to be available as external feature ‘covariates’ 𝐜𝑗𝑑𝑔, for 𝑔 = 1,… , 𝐺, and drug ‘covariates’ 𝐳𝑑ℎ, for
ℎ = 1,… ,𝐻. An example of a (binary) feature covariate is target pathway presence, with 𝑐𝑗𝑑𝑔 = 0 if gene 𝑗 is present in the
target pathway of drug 𝑑 and 𝑐𝑗𝑑𝑔 = 1 if it is not. An example of a (ternary) drug covariate is developmental phase, with
levels experimental phase, clinical development and approved by a governing agency.
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F IGURE 2 Hierarchical representation of the drug
sensitivity prediction model. Grey circles represent
observed variables, white circles represent unobserved
variables, tilted squares represent fixed data, and
unenclosed letters are parameters to be estimated. Cell lines
are indexed by 𝑖, features by 𝑗, drugs by 𝑑, drug covariates
by ℎ, and feature covariates by 𝑔. The 𝑦𝑖𝑑 are the drug
sensitivities, 𝑥𝑖𝑗 the molecular features, 𝑐𝑗𝑑𝑔 the external
feature covariates, 𝑧𝑑ℎ the external drug covariates, 𝛽𝑗𝑑 the
regression coefficients, 𝜎2

𝑑
the error variances, 𝜏2

𝑑
and 𝛾2

𝑗𝑑

the drug and feature specific variance components,
respectively, and 𝜙𝑗𝑑 , 𝜆feat, 𝜒𝑑 , and 𝜆drug the
hyperparameters

The external covariates come in through our mean models for the 𝛾2
𝑗𝑑
and 𝜏2

𝑑
hyperpriors: 𝜙𝑗𝑑 = (𝐜T

𝑗𝑑
𝜶feat)

−1 and 𝜒𝑑 =

(𝐳T
𝑑
𝜶drug)

−1, with 𝐜𝑗𝑑 =
[
𝑐𝑗𝑑1 ⋯ 𝑐𝑗𝑑𝐺

]
and 𝐳𝑑 =

[
𝑧𝑑1 ⋯ 𝑧𝑑𝐻

]
, where categorical external covariates are dummy coded.

The model now requires hyperparameters 𝜶feat, 𝜆feat, 𝜶drug and 𝜆drug, which we estimate in a data-driven manner (see
Section 3.2).
A representation of our model as a Bayesian DAG is given in Figure 2. We note that in many settings, the set of features

might be different for different drugs. In that case the covariates are indexed by the drug 𝑑:𝐗𝑑, a trivial extension of model
(1) and (2). This extension is included in the available software, but for clarity it is omitted in the following.

3 ESTIMATION

3.1 Variational Bayes

The posterior corresponding to the model described in (1) and (2) is not available in closed form. To avoid com-
putationally intensive Markov chain Monte Carlo (MCMC) algorithms, we approximate the joint posterior by varia-
tional Bayes (see Blei, Kucukelbir, & McAuliffe, 2017, for a review), where the approximate posterior density factorises

as: 𝑝(𝜷𝑑, 𝜸2
𝑑
, 𝜏2

𝑑
, 𝜎2

𝑑
|𝐲𝑑) ≈ 𝑄𝑑(⋅) = 𝑞(𝜷𝑑) ⋅ 𝑞(𝜸

2
𝑑
) ⋅ 𝑞(𝜏2

𝑑
) ⋅ 𝑞(𝜎2

𝑑
), where 𝜸2

𝑑
=
[
𝛾2
1𝑑

⋯ 𝛾2
𝑝𝑑

]T
. For notational convenience, we

slightly abuse notation and let 𝑞(⋅) denote different densities for different inputs. Under such a factorisation, the marginal
variational posteriors that minimise the Kullback–Leibler divergence of the true posterior to the variational Bayes approx-
imation (Neal and Hinton, 1998) are given by:

𝑞(𝜷𝑑)
𝐷
= 𝑝(𝝁𝑑, 𝚺𝑑),

𝑞
(
𝜸2
𝑑

) 𝐷
=

𝑝∏
𝑗=1


(
−1, 𝜆feat∕𝜙

2
𝑗𝑑
, 𝛿𝑗𝑑

)
,

𝑞
(
𝜏2
𝑑

) 𝐷
= 

(
−
𝑝 + 1

2
, 𝜆drug∕𝜒

2
𝑑
, 𝜂𝑑

)
,

𝑞
(
𝜎2
𝑑

) 𝐷
= Γ−1

(
𝑛 + 𝑝 + 1

2
, 𝜁𝑑

)
,

where (𝑝, 𝜈, 𝜂) denotes the generalized inverse Gaussian distribution with index 𝑝 ∈ ℝ, and scales 𝜈 > 0 and 𝜂 > 0

(Jørgensen, 1982). See SM Section S5 for the derivations. The variational parameters 𝝁𝑑, 𝚺𝑑, 𝛿𝑗𝑑, 𝜂𝑑 and 𝜁𝑑 contain cyclic
dependencies and are iteratively updated by:

𝚺
(ℎ+1)

𝑑
=

(
𝑎
(ℎ)

𝑑

)−1[
𝐗T𝐗 + 𝑔

(ℎ)

𝑑
diag

(
𝑏
(ℎ)

𝑗𝑑

)]−1
, (3a)

𝝁
(ℎ+1)

𝑑
=

[
𝐗T𝐗 + 𝑔

(ℎ)

𝑑
diag

(
𝑏
(ℎ)

𝑗𝑑

)]−1
𝐗T𝐲𝑑, (3b)
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𝛿
(ℎ+1)

𝑗𝑑
= 𝑎

(ℎ)

𝑑
𝑔
(ℎ)

𝑑

[(
𝝁
(ℎ+1)

𝑗𝑑

)2

+
(
𝚺
(ℎ+1)

𝑑

)
𝑗𝑗

]
+ 𝜆feat, (3c)

𝜂
(ℎ+1)

𝑑
= 𝑎

(ℎ)

𝑑

𝑝∑
𝑗=1

𝑏
(ℎ+1)

𝑗𝑑

[(
𝝁
(ℎ+1)

𝑗𝑑

)2

+
(
𝚺
(ℎ+1)

𝑑

)
𝑗𝑗

]
+ 𝜆drug, (3d)

𝜁
(ℎ+1)

𝑑
=

1

2

[
𝐲T
𝑑
𝐲𝑑 − 2𝐲T

𝑑
𝐗𝝁

(ℎ+1)

𝑑
+ tr

(
𝐗T𝐗𝚺

(ℎ+1)

𝑑

)
+
(
𝝁
(ℎ+1)

𝑑

)T
𝐗T𝐗𝝁

(ℎ+1)

𝑑
(3e)

+𝑔
(ℎ+1)

𝑑
tr
[
diag

(
𝑏
(ℎ+1)

𝑗𝑑

)
𝚺
(ℎ+1)

𝑑

]
+ 𝑔

(ℎ+1)

𝑑

(
𝝁
(ℎ+1)

𝑑

)T
diag

(
𝑏
(ℎ+1)

𝑗𝑑

)
𝝁
(ℎ+1)

𝑑

]
, (3f)

until convergence, where 𝐲𝑑 =
[
𝑦1𝑑 ⋯ 𝑦𝑛𝑑

]T
. Here, we set

𝑎
(ℎ)

𝑑
= 𝔼𝑄(ℎ)

(
𝜎−2
𝑑

)
= (𝑛 + 𝑝 + 1)∕

(
2𝜁

(ℎ)

𝑑

)
,

𝑏
(ℎ)

𝑗𝑑
= 𝔼𝑄(ℎ)

(
𝛾−2
𝑗𝑑

)
=

√√√√ 𝜆feat

𝜙2
𝑗𝑑
𝛿
(ℎ)

𝑗𝑑

𝐾0

(√
𝛿
(ℎ)

𝑗𝑑
𝜆feat∕𝜙

2
𝑗𝑑

)
𝐾1

(√
𝛿
(ℎ)

𝑗𝑑
𝜆feat∕𝜙

2
𝑗𝑑

) +
2

𝛿
(ℎ)

𝑗𝑑

, (4)

𝑔
(ℎ)

𝑑
= 𝔼𝑄(ℎ)

(
𝜏−2
𝑑

)
=

√√√√ 𝜆drug

𝜒2
𝑑
𝜂
(ℎ)

𝑑

𝐾(𝑝−1)∕2

(√
𝜂
(ℎ)

𝑑
𝜆drug∕𝜒

2
𝑑

)
𝐾(𝑝+1)∕2

(√
𝜂
(ℎ)

𝑑
𝜆drug∕𝜒

2
𝑑

) +
𝑝 + 1

𝜂
(ℎ)

𝑑

,

where𝐾𝜈(𝑥) denotes themodified Bessel function of the second kind. Amethod for fast and numerically stable calculation
of ratios of modified Bessel functions of the second kind, as in (4), is given in SM Section S8.

3.2 Empirical Bayes

We parametrised the prior mean of the 𝛾2
𝑗𝑑
as 𝜙𝑗𝑑 = (𝐜T

𝑗𝑑
𝜶feat)

−1 and the prior mean of 𝜏2
𝑑
as 𝜒𝑑 = (𝐳T

𝑑
𝜶drug)

−1. This
parametrisation allows us to include feature and drug covariates, both continuous and discrete, into the model. Addi-
tionally, it reduces the number of hyperparameters from 𝑝𝐷 to |𝜶feat| + |𝜶drug| + 2. The Bayesian model then requires the

specification of the hyperparameters 𝜶 =
[
𝜶Tfeat 𝜶

T
drug

]T
and 𝝀 =

[
𝜆feat 𝜆drug

]T
. These are abstract and hard to interpret

parameters for which we generally lack expert knowledge. They do, however, have a significant influence on the shape of
the posterior distribution. We therefore propose to estimate these hyperparameters by empirical Bayes. In our case, this
results in an objective and data-driven inclusion of the external feature and drug covariates.
The canonical method for empirical Bayes is to maximise the marginal likelihood with respect to the hyperparameters.

In Casella (2001), the marginal likelihood is maximised by an EM algorithm:

𝜶(𝑙+1), 𝝀(𝑙+1) = argmax
𝜶,𝝀>0

𝔼⋅|𝐘[log 𝑝(𝐘, 𝐁, 𝚪2, 𝝉2, 𝚺2)|𝜶(𝑙), 𝝀(𝑙)]

= argmax
𝜶,𝝀>0

𝔼⋅|𝐘 [
log 𝜋(𝚪2)|𝜶(𝑙)

feat, 𝝀
(𝑙)

feat

]
+ 𝔼⋅|𝐘 [

log 𝜋(𝝉2)|𝜶(𝑙)

drug, 𝝀
(𝑙)

drug

]
,

where 𝐘 =
[
𝐲1 ⋯ 𝐲𝐷

]
, 𝐁 =

[
𝜷1, … , 𝜷𝐷

]
, 𝝉2 =

[
𝜏2
1
⋯ 𝜏2𝐷

]T
, 𝚺2 =

[
𝜎2
1
⋯ 𝜎2𝐷

]T
and 𝚪2 =

[
𝚪2
1 ⋯ 𝚪2

𝐷

]
, and the expectation is

with respect to the joint posterior. In our case, this posterior is not available in closed form, which renders the expectation
difficult. While Casella (2001) suggests to approximate the expectation by a Monte Carlo sample, we propose to use the
variational Bayes approximation developed in Section 3.1:

𝜶(𝑙+1), 𝝀(𝑙+1) = argmax
𝜶,𝝀>0

𝔼𝑄(𝑙)

[
log 𝜋(𝚪2)|𝜶(𝑙)

feat, 𝝀
(𝑙)

feat

]
+ 𝔼𝑄(𝑙)

[
log 𝜋(𝝉2)|𝜶(𝑙)

drug, 𝝀
(𝑙)

drug

]
,
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where now the expectation is with respect to the converged variational posterior 𝑄(𝑙) =
∏𝐷

𝑑=1
𝑄
(𝑙)

𝑑
. Note that the prior 𝚪2

𝑑

and 𝜏2
𝑑
independence assumption results in separate optimisation problems for the feature hyperparameters (𝜶feat and

𝝀feat), and the drug hyperparameters (𝜶drug and 𝝀drug). If we stack the drug and feature covariates:

𝐂 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐜T
11

⋮

𝐜T
𝑝1

⋮

𝐜T
1𝐷

⋮

𝐜T𝑝𝐷

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and 𝐙 =

⎡⎢⎢⎣
𝐳T
1

⋮

𝐳T𝐷

⎤⎥⎥⎦ ,

the empirical Bayes updates are given by:

𝜶
(𝑙+1)

feat =
[
𝐂Tdiag

(
𝑒
(𝑙)

𝑗𝑑

)
𝐂
]−1

𝐂T𝟏𝑝𝐷×1,

𝜆
(𝑙+1)

feat = 𝑝𝐷

[
𝐷∑

𝑑=1

𝑝∑
𝑗=1

𝑏
(𝑙)

𝑗𝑑
+
(
𝜶
(𝑙+1)

feat

)T
𝐂Tdiag

(
𝑒
(𝑙)

𝑗𝑑

)
𝐂𝜶

(𝑙+1)

feat − 2
(
𝜶
(𝑙+1)

feat

)T
𝐂T𝟏𝑝𝐷×1

]−1

,

𝜶
(𝑙+1)

drug =
[
𝐙Tdiag

(
𝑓
(𝑙)

𝑑

)
𝐙
]−1

𝐙T𝟏𝐷×1,

𝜆
(𝑙+1)

drug = 𝐷

[
𝐷∑

𝑑=1

𝑔
(𝑙)

𝑑
+
(
𝜶
(𝑙+1)

drug

)T
𝐙Tdiag

(
𝑓
(𝑙)

𝑑

)
𝐙𝜶

(𝑙+1)

drug − 2
(
𝜶
(𝑙+1)

drug

)T
𝐙T𝟏𝐷×1

]−1

,

where SM Section S9 shows that 𝝀(𝑙+1) > 0 and

𝑒
(𝑙)

𝑗𝑑
= 𝔼𝑄(𝑙)

(
𝛾2
𝑗𝑑
|𝜶(𝑙)

feat, 𝜆
(𝑙)

feat

)
=
(
𝑏
(𝑙)

𝑗𝑑
− 2∕𝛿

(𝑙)

𝑗𝑑

)
⋅ 𝛿

(𝑙)

𝑗𝑑

(
𝜙
(𝑙)

𝑗𝑑

)2

∕𝜆
(𝑙)

feat,

𝑓
(𝑙)

𝑑
= 𝔼𝑄(𝑙)

(
𝜏2
𝑑
|𝜶(𝑙)

drug, 𝜆
(𝑙)

drug

)
=
(
𝑔
(𝑙)

𝑑
− (𝑝 + 1)∕𝜂

(𝑙)

𝑑

)
⋅ 𝜂

(𝑙)

𝑑

(
𝜒
(𝑙)

𝑑

)2

∕𝜆
(𝑙)

drug.

To ensure proper and unbiased shrinkage, intercepts are included in 𝜶feat and 𝜶drug. This is achieved by appending both
𝐂 and𝐙with a column of ones. These intercepts are roughly interpreted as the expected prior precisions𝔼(𝛾−2

𝑗𝑑
) and𝔼(𝜏−2

𝑑
)

if the feature and drug covariates are all zero. Likewise, an 𝛼 corresponding to an external covariate may be interpreted as
an additive effect of the external covariate on the prior expected precision. So an 𝛼 = 1 translates to an increase in expected
prior precision of 1 for every increase in the external covariate of 1, keeping all the other external covariates fixed.
Variational Bayes approximations are known to underestimate posterior variances (Rue, Martino, and Chopin, 2009;

Consonni andMarin, 2007; Bishop, 2006; Wang and Titterington, 2005). In simulation Scenario 5 in Section S11 of the SM,
we compare the variational posterior to MCMC samples from the posterior with fixed hyperparameters estimates (after
the procedure described in Section 3.2 has converged). In this simulation scenario and other settings (not shown), the
variational approximation to the posterior is accurate. If however, the user is reluctant to trust the variational posterior
variances, samples from the posterior may be generated with the Gibbs sampler in SM Section S10. Alternatively, we
provide an implementation of the proposed model in stan using the R package rstan (Guo et al., 2018) at https://github.
com/magnusmunch/NIG.

4 SIMULATIONS

4.1 Setup

This section investigates the empirical Bayes estimation properties of the model in a simulated setting; its main aim is
to assess hyperparameter estimation. It is a data-based simulation, wherein the responses are simulated from a synthetic

https://github.com/magnusmunch/NIG
https://github.com/magnusmunch/NIG
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F IGURE 3 Simulation results for
Scenario 1 (𝜏2

𝑑
fixed): estimated and true values

for (A) 𝛼feat and (B) prior means 𝜙𝑗𝑑

model, but the features are taken from the real GDSC expression data introduced in Section 5. The real GDSC features
contain strong collinearities. Such strong collinearities in the design matrix impede correct parameter estimation with
small sample sizes. We therefore replace the ambition of correctly estimating the 𝛽𝑗𝑑 with themoremodest aim of approx-
imately correct estimation of the hyperparameters.
A pre-processing step selects 100 features with largest variance, while 251 drug sensitivities for 507 cell lines (half of the

total number of cell lines) are simulated frommodels (1) and (2). We draw the error variances as ∀𝑑 ∶ 𝜎2
𝑑
∼ Γ−1(3, 2), such

that the prior 𝜎2
𝑑
mean and variance are both one. We consider the following four scenarios for the simulation of the drug

and feature variance components:

∙ Scenario 1 fixes ∀𝑑 ∶ 𝜏2
𝑑
= 1 and draws the 𝛾2

𝑗𝑑
according tomodel (2).We create four external dummy feature covariates

that code for four approximately equally sized groups of features. We set 𝜶feat such that the 𝛾2𝑗𝑑 of the four groups of

features have prior means 𝜙𝑗𝑑 ∈ {1, 1∕2, 1∕4, 1∕8} (𝜶feat =
[
1 1 3 7

]T
). The prior scale parameter is set to 𝜆feat = 1.

∙ Scenario 2 fixes ∀𝑗, 𝑑 ∶ 𝛾2
𝑗𝑑

= 1 and draws the 𝜏2
𝑑
according to model (2), following a procedure similar to the procedure

for the 𝛾2
𝑗𝑑
in Scenario 1: we create four groups of drugs with corresponding external drug dummy variables and set

𝜶drug =
[
1 1 3 7

]T
, such that we have 𝜒𝑑 ∈ {1, 1∕2, 1∕4, 1∕8}. The scale is set to 𝜆drug = 1.

∙ Scenario 3 combines the procedures from Scenarios 1 and 2 to draw both the 𝛾2
𝑗𝑑
and 𝜏2

𝑑
according to (2).

∙ Scenario 4 is equal to Scenario 3, except that we add noise to the external covariates. Noise is supposed to mimic a low
external covariate signal and is constructed by permutation of fractions 𝑞 ∈ {0.1, 0.2, 0.33, 0.5, 0.67, 0.8, 1} of the rows of
the external covariates.

We estimate two models: (i) the NIG model that only includes an intercept in the external covariates, called NIG−
f , NIG

−
d

or NIG−
f+d, depending onwhich variance components are estimated (feature, drug or both in Scenarios 1, 2 and 3/4, respec-

tively), and (ii) the NIGmodel estimated as in Section 3 that includes all external covariates, called NIGf, NIGd or NIGf+d,
again depending on which variance components are estimated. Exclusion of the external covariates as in the NIG−

f , NIG
−
d

and NIG−
f+d models amounts to direct estimation of common expected prior means 𝜙 and/or 𝜒, instead of regression

estimates for the 𝜙𝑗𝑑 and/or 𝜒𝑑 as in the NIGf, NIGd and NIGf+d models. In the language of Polson and Scott (2011) as
introduced in Section 1, models NIGf and NIGd may be described as local and global shrinkage rules, respectively, as
opposed to the global–local shrinkage models NIGf+d and NIG−

f+d. We repeat every simulation Scenario 100 times.
SM Section S11 containsmore simulation results for Scenarios 1–4 for theNIGmodel and the (i) frequentist lasso and (ii)

ridge models. Additionally, SM Section S11 contains a comparison of MCMC and VB posteriors in simulation Scenario 3.

4.2 Results

Figure 3 shows the estimated 𝜶feat together with its true value for NIGf in Scenario 1 of the simulation study (fixed 𝜏2
𝑑
).

Figure 3A shows that estimation of 𝜶feat is accurate. This results in accurate estimates on the 𝜙𝑗𝑑 scale as well (Fig. 3B).
Model NIG−

f (that excludes the external covariates) gives a mean 𝜙 estimate of 0.457 (0.007) (standard deviation between
parentheses), about equal to the true mean of the 𝜙𝑗𝑑, 0.469. Scale 𝜆feat = 1 is overestimated by NIGf at 1.321 (0.08), while
NIG−

f underestimates at 0.404 (0.013).
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and true values (triangles) for (A) 𝛼feat and
(B) prior means 𝜙𝑗𝑑

αfeat,0 αfeat,1 αfeat,2 αfeat,3

1
2

3
4

5
6

7

A
α̂

φ1 φ2 φ3 φ4

0.
5

1.
0

1.
5

2.
0

2.
5

B

φ̂

αdrug,0 αdrug,1 αdrug,2 αdrug,3

5
10

15
20

C

α̂

χ1 χ2 χ3 χ4

0.
2

0.
4

0.
6

0.
8

1.
0

D

χ̂

F IGURE 5 Simulation results for
Scenario 3: estimated (boxplots) and true
values (triangles) for (A) 𝛼feat, (B) prior means
𝜙𝑗𝑑 , (C) 𝛼drug, and (D) prior means 𝜒𝑑

Figure 4A shows the accurately estimated 𝜶drug together with the true value for NIGd in Scenario 2 of the simulation
study (fixed 𝛾2

𝑗𝑑
). Likewise, the estimates are accurate on the 𝜒𝑑 scale (Fig. 4B). The mean 𝜒 estimate in the NIG−

d model
is 0.471 (0.012), which is about equal to the true mean 0.469. Scale 𝜆drug = 1 is overestimated by NIGd at 12.944 (2.325) and
underestimated by NIG−

d at 0.592 (0.023).
In Figure 5 the 𝜶feat and 𝜶drug estimated by NIGf+d are displayed together with their true values for simulation

Scenario 3. 𝜶feat are underestimated (Fig. 5A), while 𝜶drug (Fig. 5C) are overestimated, resulting in overestimated 𝜙𝑗𝑑
(Fig. 5B) and underestimated 𝜒𝑑 (Fig. 5D), respectively. The biases seem to be consistent though. The mean ratios 𝜙1 to
𝜙2, 𝜙3, 𝜙4 are 0.514 (0.017), 0.26 (0.009), 0.131 (0.005), while themean ratios 𝜒1 to 𝜒2, 𝜒3, 𝜒4 are 0.507 (0.078), 0.253 (0.036),
0.128 (0.017). In both cases the true values are 0.5, 0.25, 0.125, so in a relative sense, the 𝜶feat and 𝜶drug estimates are about
correct. Moreover, overestimation of the 𝜙𝑗𝑑 is compensated for by the underestimation of the 𝜒𝑑: the estimated mean
prior variances𝕍(𝛽𝑗𝑑) = 𝜙𝑗𝑑 ⋅ 𝜒𝑑 (ignoring the error variance) are unbiased (Fig. 6). The NIG−

f+d model is also consistently
over- and underestimating 𝜙 and 𝜒 withmean estimates 0.971 (0.018) and 0.207 (0.013), respectively (compared to the true
mean 0.469). Again, on the𝕍(𝛽𝑗𝑑) level, this bias almost vanishes; themean estimated𝕍(𝛽𝑗𝑑) (ignoring error variance) are
0.201 (0.014)while their truemean is 0.22. In Scenario 3, NIGf+d overestimates 𝜆feat = 1 at 7.098 (0.621) and underestimates
𝜆drug = 1 at 0.437 (0.047). Similar results hold for NIG−

f+d with 𝜆feat estimate 1.5 (0.066) and 𝜆drug estimate 0.195 (0.014).
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F IGURE 7 Simulation results for
Scenario 3: mean estimated prior means
(A) 𝜙𝑗𝑑 , and (B) 𝜒𝑑 for different levels of noise
in the external covariates

Figure 7 displays themean𝜙𝑗𝑑 and𝜒𝑑 estimates for different noise levels in simulation Scenario 4. The simulation shows
that with increasing noise level, the estimated prior means 𝜙𝑗𝑑 and 𝜒𝑑 for the four groups of external covariates become
more and more alike. In other words, noise in the external covariates impedes estimation of 𝜶feat and 𝜶drug, as expected.
To summarise, estimation of only 𝜶feat or 𝜶drug (and consequently 𝜙𝑗𝑑 and 𝜒𝑑) by NIGf and NIGd, respectively is rel-

atively unbiased, as evident from simulation Scenarios 1 and 2 (Figs. 3 and 4). In contrast, simultaneous estimation in
Scenario 3 results in overestimated 𝜙𝑗𝑑 and underestimated 𝜒𝑑 by NIGf+d (Fig. 5). We conjecture that this interplay of
drug and feature variance components is due to near-unidentifiability. In any case, the consequences are limited, since
the variances on the 𝛽𝑗𝑑 level are left unbiased (Fig. 6). If separately estimated, scale parameters 𝜆feat and 𝜆drug are over-
estimated by NIGf and NIGd, respectively. If estimated simultaneously NIGf+d overestimates 𝜆feat and underestimated
𝜆drug. On the 𝛽𝑗𝑑 level, 𝝀 influences kurtoses(𝛽𝑗𝑑). Figure 8 shows themean estimated kurtoses versus their true values.
Kurtoses seem to be underestimated by NIGf+d. In contrast, NIG−1

f+d overestimates the true mean of the(𝛽𝑗𝑑), 6.4716797,
at 10.234 (3.696). Lastly, the results from Scenario 3 in SM Section S11 show that the VB approximation is quite good as
compared to standard MCMC.

5 GDSC DATA

5.1 Primary data

TheGDSC project’s (Yang et al., 2013) aim is ‘to improve cancer treatments by discovering therapeutic biomarkers that can
be used to identify patients most likely to respond to anticancer drug’. Part of the project is to screen> 1000 human cancer
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F IGURE 8 Simulation results for Scenario 3: mean
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cell lines for drug sensitivities. The cell lines have been genetically characterised and several drug sensitivity measures are
recorded. The data is freely available from Garnett et al. (2012) and consist of: (i) the sensitivity measures of the cell lines
to the drugs, (ii) annotation of the screened compounds and (iii) the cell lines’ genomic profile (mutations, copy numbers,
methylation profiles and gene expression). We will attempt to predict drug sensitivities of the cell lines, as quantified
by half maximal inhibitory concentration (IC50), using the gene expression and gene mutation data. Other choices of
sensitivity measures than IC50 are possible, but a discussion on the pros and cons of different sensitivity measures is
beyond the aim of this paper. We have used the version of the data that is presented in Iorio et al. (2016). We averaged
repeated measures over cell line-drug combinations and model the logarithm of the IC50 values. In the following, IC50
refers to these log-transformed values. After removing all cell lines with missing values, we end up with 388 to 1043 IC50
estimates for 251 drugs. Differences in the number of cell lines between drugs occur, because not all drug and cell line
combinations are available. The pre-processed expression and mutation data consist of 17,737 and 300 genes, respectively.

5.2 External data

Two ternary drug covariates are available: the developmental stage (experimental, in clinical development or clinically
approved) of the drugs and the action (unknown, cytotoxic or targeted) of the drugs. These drug covariates are taken
directly from the GDSC database’s annotation file and dummy coded with reference categories clinically approved drugs
and cytotoxic drugs. We expect that drugs that have been clinically approved are easiest to predict and hence yield the
largest prior 𝛽𝑗𝑑 variances, followed by the drugs in clinical development, and the experimental drugs. Likewise, we expect
the targeted drugs to yield the largest prior 𝛽𝑗𝑑 variances, followed by the cytotoxic drugs, and the unknown target drugs.
Note that large 𝛽𝑗𝑑 variances translate to large prior 𝛾2𝑗𝑑 and 𝜏

2
𝑑
means.

Furthermore, we have a binary feature covariate available that indicates whether a gene belongs to the drug target path-
way. The feature covariate was created by comparing the target pathways in the GDSC annotation to the KEGG (Kanehisa
and Goto, 2000) and reactome (Fabregat et al., 2018) repositories. The reference category here is features that are not in
the target pathway. For this external covariate, we expect that genes that are in the pathway of the drug aremore predictive
than genes that are not, that is, they have larger prior 𝛽𝑗𝑑 variances than drugs that are not in the pathway.
The type of molecular marker may be included as external covariate, that is, whether the feature is a gene expression or

gene mutation. As an alternative to direct inclusion of the mutation data, we use 𝑝-values from the mutations as external
covariate. These were obtained from a 𝑡-test comparing IC50 values of mutated and unmutated genes. We expect that
lower mutation 𝑝-values result in a larger prior 𝛽𝑗𝑑 variances.
Lastly, 𝑝-values from an analysis of the CCLE data (Li et al., 2019), a database similar to the GDSC, are included as

external covariate. These𝑝-values are obtained froma simple correlation between the IC50 values and the gene expressions
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TABLE 1 𝜶 estimates from analysis 1

Feature intercept 𝒑-value Drug intercept
NIG−

f+d 2.616 280.408
NIGf+d 2.551 0.179 282.068

Note. Empty cells correspond to fixed zero parameters.

TABLE 2 𝜶 estimates from analysis 2

Feature intercept Mutation Drug intercept
NIG−

f+d 3.025 171.623
NIGf+d 3.884 −1.781 153.217

Note. Empty cells correspond to fixed zero parameters.

from the CCLE data. The harmonic mean per gene is then used as external covariate for the GDSC data analysis. Again,
we expect a positive relation between these external 𝑝-values and the larger prior 𝛽𝑗𝑑 variances.

5.3 Analyses

Four analyses were conducted:

∙ Analysis 1 includes gene expressions as predictors and𝑝-values from the genemutation data as external covariate (𝐺=1,
𝐻 = 0). A pre-processing step selects between 221 and 280 genes per drug for which both the expression as well as a
mutation 𝑝-value is available.

∙ Analysis 2 includes both gene expressions and mutations as predictors with the feature type as external covariate, that
is, wether the feature is a expression or mutation (𝐺 = 1, 𝐻 = 0). For this analysis, we pre-select 300 gene expressions
with maximum variance and 295 gene mutations for which there are both mutated and wild-type cell lines available.

∙ Analysis 3 uses 500 gene expressions as features, selected based onmaximumvariance. The CCLE𝑝-values are included
as external covariates (𝐺 = 1,𝐻 = 0).

∙ Analysis 4 includes the gene expressions as features and both the annoted drug variables and pathway status of the genes
as external covariates (𝐺 = 1, 𝐻 = 2, before dummy coding). We pre-select 500 genes expressions based on maximum
variance.

In all analyseswe estimated the samemodels as in the simulations (Section 4 and SMSection S11): (i) NIG−
f+d, (ii) NIGf+d

and (iii) frequentist lasso and (iv) ridge models.
In all analyses we use all cell lines to estimate the hyperparameters presented in Section 5.4. Mean predic-

tion mean squared errors (PMSE) and its standard error are estimated by 10-fold cross validation, where PMSE =

𝐷−1𝑛−1
∑𝐷

𝑑=1

∑𝑛

𝑖=1
(𝐲𝑑 − 𝐱T

𝑖
𝜷𝑑)

2, with 𝜷𝑑 the estimator for 𝜷𝑑. In the NIG model, that provides full posteriors, the pos-
terior mean 𝔼(𝜷𝑑|𝐲𝑑) is used as point estimate.
5.4 Results

The non-zero NIGf+d 𝜶 estimates in Tables 1–5 show that there is an effect of the external covariates.

∙ Analysis 1 results in a positive additive effect of themutation𝑝-values on the prior 𝜷𝑑 precisions (Table 1). This translates
to more 𝜷𝑑 shrinkage towards zero with increasing 𝑝-value, as expected.

∙ Analysis 2 shows that gene mutations are more predictive than gene expressions, as observed from the negative effect
of mutation dummy on prior precisions (Table 2): mutations are shrunken less than expressions.

∙ Analysis 3 indicates that CCLE 𝑝-values are positively related to prior precision (Table 3), that is, higher CCLE 𝑝-values
results in more shrinkage of 𝜷𝑑, as expected.
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TABLE 3 𝜶 estimates from analysis 3

Feature intercept 𝒑-value Drug intercept
NIG−

f+d 2.84 330.614
NIGf+d 2.55 0.658 337.086

Note. Empty cells correspond to fixed zero parameters.

TABLE 4 𝜶 estimates from analysis 4

Feature intercept Pathway
NIG−

f+d 2.841
NIGf+d 2.845 −0.261

Note. Empty cells correspond to fixed zero parameters.

∙ Analysis 4 gives a negative effect for the pathway dummy (Table 4), indicating less shrinkage for genes that are in the
drugs’ target pathway, as expected.According to expectation, experimental and developmental drugs prior precisions are
shrunken more than the reference category, approved drugs (Table 5). Somewhat surprisingly, targeted and unknown
drugs are shrunken more than the reference, cytotoxic drugs (Table 5), although the differences on the 𝜷𝑑 variance
scale are small: 𝔼̂(𝜏2

𝑑
) = {0.0035, 0.0034, 0.0031} for cytotoxic, targeted, and unknowndrugs, respectively (ignoring other

variance components).

The mean PMSE, calculated on the test data, are displayed in Table 6. Note that due to standardisation, an empty ref-
erence model has a PMSE of one. In terms of PMSE, ridge outperforms the other models in all Analyses 1, 3 and 4, while
NIGf+d 𝜶 performs best in Analysis 2. In general however, all models perform very similarly. The ranges of mean PMSE
over all methods are 0.0146, 0.0179, 0.0163 and 0.0163, for Analyses 1–4, respectively, indicating that the differences in
predictive performance are very small. Furthermore, the difference between NIGf+d, that includes external covariates,
and NIG−

f+d, that excludes the external covariates is small; an indication that the external covariates are not very informa-
tive here.
Part of the differences in performance between NIG and ridge may be explained with the different levels of sparsity in

the solution. Although NIG does not automatically select features, as opposed to the lasso, its 𝜷𝑑 prior has larger kurtosis
than the ridge prior (see SM Section S2). The resulting heavy-tailedness as compared to the ridge prior facilitates fea-
tures selection. Selection of features from a sparse prior may be achieved through the decoupling shrinkage and selection
approach (DSS) introduced in Hahn and Carvalho (2015). We have applied DSS in our analyses, where we select either
(approximately) the same number of features as lasso (about 50 in all analyses), 25 or 100 features. Table 7 compares the
resulting mean PMSE values. The table shows that NIGf+d plus DSS outperforms lasso, for all three numbers of selected
features, in all analyses.
To assess model fit, Section S12 in the SM displays the conditional predictive ordinates (CPO) for the NIGf+d model for

the four analyses. A visual inspection of the CPOs learns that no extreme outliers occur.

TABLE 5 𝜶 estimates from analysis 4

Drug intercept Experimental Development Targeted Unknown
NIG−

f+d 331.403
NIGf+d 289.290 43.985 53.864 2.845 34.964

Note. Empty cells correspond to fixed zero parameters (continued).

TABLE 6 Mean (standard deviation) of cross-validated PMSE for GDSC data

Analysis 1 Analysis 2 Analysis 3 Analysis 4
NIG−

f+d 0.796 (0.006) 0.805 (0.007) 0.783 (0.005) 0.785 (0.006)
NIGf+d 0.796 (0.006) 0.803 (0.007) 0.783 (0.005) 0.785 (0.006)
ridge 0.795 (0.005) 0.807 (0.005) 0.782 (0.005) 0.783 (0.005)
lasso 0.809 (0.005) 0.821 (0.005) 0.798 (0.005) 0.799 (0.006)

Note. Best performing model (per analysis) in bold.
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TABLE 7 Mean (standard deviation) of cross-validated PMSE for selection methods (number of selected features between parentheses)
on GDSC data

Analysis 1 Analysis 2 Analysis 3 Analysis 4
lasso (25) 0.828 (0.004) 0.823 (0.005) 0.812 (0.005) 0.812 (0.005)
lasso𝜆CV (∼50)a 0.809 (0.005) 0.821 (0.005) 0.798 (0.005) 0.799 (0.006)
lasso (100) 0.826 (0.008) 0.841 (0.007) 0.809 (0.006) 0.81 (0.007)
NIGf+d+DSS (25) 0.826 (0.004) 0.814 (0.005) 0.809 (0.005) 0.811 (0.005)
NIGf+d+DSS (∼50)a 0.806 (0.004) 0.808 (0.006) 0.792 (0.005) 0.794 (0.006)
NIGf+d+DSS (100) 0.798 (0.006) 0.799 (0.006) 0.786 (0.005) 0.787 (0.006)

Note. Best performing model (per analysis) in bold.
aLasso with cross validated 𝜆 selects, on average, 42–56 features in all analyses (indicated with ∼50).

6 DISCUSSION

The preceding presents a novel model for drug sensitivity prediction from a set of high-dimensional molecular features.
Themodel allows for the inclusion of discrete and continuous external covariates on both the drugs and features. Inclusion
of the external information is through data-driven and adaptive empirical Bayes estimation of the hyperparameters in the
NIG prior model (2). Variational Bayes estimation is efficient and scales well with the number of features and samples.
Estimation of NIGf+d in the GDSC data analayses in Section 5 took 20, 24, 17 and 125 min on a 2016 MacBook Pro with 2
GHz Dual-Core Intel Core i5 processor and 8 GB of memory, running macOS 10.15.1.
Simulation Scenarios 1 and 2 in Section 4 show that estimation of drug- and feature-specific hyperparameters is, in

principle, fairly accurate. However, when estimated jointly, biases may occur due to the interplay between the two sources
of information. Fortunately, these biases cancel out on the 𝛽𝑗𝑑 level, such that the prior variance estimates 𝕍(𝛽𝑗𝑑) are
accurate. Ultimately, predictive performance benefits from the inclusion of external covariates, according to the results in
Section 11 of the SM.
The model is put into practice on the GDSC data in Section 5. The comparison of NIGf+d to NIG−

f+d (that excludes the
external covariates) shows that although the inclusion of external covariates substantially modifies the hyperparameters,
predictive performance as measured by PMSE is only slightly better in one of four analyses. The NIGmodel is competitive
with convential, penalized methods like lasso and ridge, but all three methods achieve PMSE of only 0.80 in all analyses,
a 20% reduction compared to the empty model. In three of the four analyses, ridge slightly outperforms NIG, which in
turn outperforms lasso. In Analysis 2, NIG slightly outperforms ridge and lasso. The indications of the above are two-fold:
(i) the GDSC data do not contain a lot of signal overall and (ii) the external covariates are not very informative for the
GDSC data. We note however, that NIG seems to have a small advantage in terms of feature selection. If we follow the
DSS approach in Hahn and Carvalho (2015) for feature selection, PMSE after selection is slightly better than lasso in all
four analyses.
The penalized regressionmethods estimate penalty parameters by cross-validation. Cross-validation directly minimises

the (approximate) PMSE, as opposed to empirical Bayes in theNIG thatmaximises the (approximate)marginal likelihood,
a measure of model fit. To achieve maximal predictive accuracy, direct prediction error optimsation by cross-validation
is preferred. However, direct prediction error optimisation by cross-validation is not feasible in the external covariates
setting, due to the large number of hyperparameters. A caveat with penalized regression methods is that they do not give
measures of parameter uncertainty. NIG, on the other hand, gives the full posterior of the parameters, either through a
variational Bayes approximation or with the Gibbs sampler from SM Section S10. The full posterior gives direct access to
the parameter uncertainties for a better interpretable model. In addition, given that the linear predictor is a linear combi-
nation of 𝛽𝑗𝑑, and we have access to the approximate multivariate posterior of 𝜷𝑑, NIG also allows to assess uncertainty of
the predictions.
An alternative strategy to include external covariates is the varying coefficient (VC)model (Hastie and Tibshirani, 1993).

The VCmodel treats the mean of the regression coefficients as a deterministic function of external covariates, as opposed
to our probabilistic model for the variance of the regression coefficients. Ni, Stingo, Ha, Akbani, and Baladandayuthapani
(2019) introduces a Bayesian VC model where the relation between the regression coefficients and external covariates is
no longer deterministic, but still based on the mean of the coefficients. Besides our computationally more feasible VB-EM
estimation, we advocate for a more indirect model for the relation between external covariates and regression coefficients,
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that is, through their random variance components. This indirectmodel assumes less structure about the relation between
external covariates and regression coefficients than the direct VC mean model approach. In particular, a VC mean model
describes both magnitude and direction of the external covariates effects, while our variance model only describes the
magnitude and is invariant to the direction of the effects. Nonetheless, a combination of the two approaches (both mean
and variance modelled as functions of the external covariates) may be a fruitful future research direction. Other methods
that consider an external covariate model for the variance components of the regression coefficients are bSEM (Leday
et al., 2017; Kpogbezan, Vaart, Wieringen, Leday, and van de Wiel, 2017; and xtune (Zeng, Thomas, and Lewinger, 2020).
Here, bSEM is designed to include only dichotomous external covariates, so is not applicable in most of the applications
and simulations that we have considered here. Inclusion of multiple external features is allowed by xtune, but not on the
drug level, so xtune has limited applicability in our simulations and applications.
A possible criticism of the NIG model is the treatment of 𝜶 as fixed hyperparameters instead of random. A Bayesian

could argue that endowment of 𝜶 with a hyperprior results in propagation of uncertainty about 𝜶 and as a result improved
regression parameter uncertainty quantification. Van deWiel, te Beest, andMünch (2019) show in a similar setting that EB
estimation of hyperparameters does not necessarily lead to worse uncertainty quantification as measured by frequentist
coverage of Bayesian credible intervals, as compared to a full Bayes treatment of the hyperparameters.
Possible directions of future research are applications of the NIGmodel to different data types. Suitable applications are

eQTL studies, in which gene expressions are regressed on SNPs. Several interesting external covariates are available, both
on the genes as well as the SNPs. An example of such an external covariate for the genes is gene length, where we suspect
that longer genes are harder to predict. The distance of the SNP to the gene is an example of an external SNP covariate,
where the expectation is that SNPs further from the gene are less predictive of that gene’s expression.
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