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Reminiscence and conversation between older adults and younger volunteers

using past photographs are very effective in improving the emotional state

of older adults and alleviating depression. However, we need to evaluate

the emotional state of the older adult while conversing on the past

photographs. While electroencephalogram (EEG) has a significantly stronger

association with emotion than other physiological signals, the challenge is

to eliminate muscle artifacts in the EEG during speech as well as to reduce

the number of dry electrodes to improve user comfort while maintaining

high emotion recognition accuracy. Therefore, we proposed the CTA-CNN-

Bi-LSTM emotion recognition framework. EEG signals of eight channels

(P3, P4, F3, F4, F7, F8, T7, and T8) were first implemented in the MEMD-

CCA method on three brain regions separately (Frontal, Temporal, Parietal)

to remove the muscle artifacts then were fed into the Channel-Temporal

attention module to get the weights of channels and temporal points most

relevant to the positive, negative and neutral emotions to recode the EEG

data. A Convolutional Neural Networks (CNNs) module then extracted the

spatial information in the new EEG data to obtain the spatial feature maps

which were then sequentially inputted into a Bi-LSTM module to learn the bi-

directional temporal information for emotion recognition. Finally, we designed

four group experiments to demonstrate that the proposed CTA-CNN-Bi-

LSTM framework outperforms the previous works. And the highest average

recognition accuracy of the positive, negative, and neutral emotions achieved

98.75%.
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Introduction

Background

Japanese family norms based on the traditional culture of
filial piety form a social support network centered on kinship
ties, which differs sharply from the individual-centric social
networks of Western countries (Sugisawa et al., 2002; Knight
and Sayegh, 2010). As a result, Japanese older adults are more
likely to feel socially isolated at a rate of 15.3% compared to
5.3% in the UK (Noguchi et al., 2021). Poor interaction and
lack of social participation are among the contributing factors
to social isolation which are closely associated with depression,
one of the major risk factors for the development of Alzheimer’s
dementia (Santini et al., 2015). Many studies (Westermann et al.,
1996; Thierry and Roberts, 2007; Sitaram et al., 2011; Iwamoto
et al., 2015; Leahy et al., 2018) have shown that reminiscence
and communication about past photographs between older
adults and younger volunteers, healthcare workers, or families
encourage positive interaction and social engagement. And
therefore, they are highly effective in improving the emotional
state and alleviating depression in older adults. However, it is
necessary to evaluate the emotional state of the older person
when talking about the photographs to (a) ensure that the
communication is positive, as long-term negative emotions may
cause changes in feelings and state of mind (Figure 1A) leading
to various mental illnesses (Van Dis et al., 2020). For example,
mania is easily caused by a prolonged state of ecstasy (high
positive) and euphoria (high arousal) as shown in Figure 1B
and (b) estimate whether the photographs in the conversation
are effective in improving the emotion of the older person, and
replace them with other photographs if they are not effective.
While numerous studies focus on the evaluation of emotions
in older adults, earlier studies generally used self-assessment
in the form of verbal or questionnaires and were found to be
intermittent and influenced by social expectations or demand
characteristics (the idea that participants or stimulators will
develop similar or specific emotions in response to perceived
expectations) (Orne, 1962). Later developments use smart
wearable devices (physiological signals) (Kouris et al., 2020),
facial expression (Caroppo et al., 2020), and speech recognition
(Boateng and Kowatsch, 2020) to monitor and recognize
emotions. However, variances and continuities such as facial
aging in older adults and differing accents among various groups
of people (e.g., different dialects spoken throughout Japan) make
it difficult to distinguish and unify such features and expressions.
These inevitably result in unreliable emotion recognition results
for older adults.

Thus, while physiological signals to monitor emotions
seem to be a more suitable approach for older adults,
not all physiological signals are suitable for distinguishing
between different emotional experiences. For example, although

excitement and panic are different emotions generated in
response to different stimuli of award and threat, both exhibit
the same physiological changes (i.e., increased heart rate,
increased blood pressure, body shaking, etc.). Moreover, time
is also necessary for the autonomic and sympathetic nervous
systems to switch on and off, resulting in outward physiological
changes that are slow-acting and insufficient in keeping up
with the emotional changes (Liu and Cai, 2010). By conducting
the EEG signals through the electrodes on the scalp we can
collect EEG signals with a high temporal resolution that reflect
different emotional states and variances between these moments
(Alarcao and Fonseca, 2017) (Note: all commercially available
acquisition devices have a sampling rate of at least 160 Hz/s). As
we know from the widely accepted cognitive-evaluation theory
of emotions (two-factor theory) (Cornelius, 1991), when we
are stimulated by the external environment, we immediately
generate physical reactions and simultaneously evaluate them
with past knowledge and experience (cognitive process) and
finally integrate them into the cerebral cortex obtaining the
emotional state (the whole process shown in Figure 1C).
Therefore, we can say that EEG signals have a significantly
stronger association with emotions than other physiological
signals. They are also objective, non-invasive, and safe.

The general process and principles of EEG signals for the
emotion recognition system (shown in Figure 1D) are (1)
stimulus materials elicit emotions in the subject while collecting
EEG signals, (2) the computer sequentially preprocesses and
extracts features from the received EEG signals, and (3) an
EEG-based emotion recognition classifier is trained using task-
relevant EEG features. The emotion label of EEG features in
training emotion classifiers is based primarily on the SAM
scale using the valance-arousal emotion model proposed by
Posner et al. (2005). The subject is exposed to stimuli and
their emotional state is evaluated by oneself using the SAM
scale (Valence: positive to negative emotional state; Arousal:
difference in the level of physiological activity and mental
alertness), which is mapped to the valence-arousal emotion
model (Figure 1B) to obtain a corresponding “emotion label.”
In this way, the subjective experience of different emotions
(emotion labels) and subjects’ objective physiological responses
(EEG signals) are matched one-to-one. Nowadays, many
inexpensive solutions for portable EEG acquisition devices are
available on the market (Stytsenko et al., 2011; Surangsrirat
and Intarapanich, 2015; Athavipach et al., 2019), and thus EEG
signal-based emotion recognition has a promising application
and research value. For this study in the conversation scenario
using EEG signals for emotion recognition is extremely
challenging. Especially, as the facial muscle activity during the
conversation will evoke high-energy artifacts that may distort
the intrinsic EEG signal. Such artifacts will hide the rhythm
of the real EEG signal and cause perturbation in an EEG
system that makes EEG signal processing difficult in all respects
(Kamel and Malik, 2014). Therefore, in EEG-based emotion

Frontiers in Aging Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnagi.2022.945024
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-945024 September 15, 2022 Time: 16:19 # 3

Jiang et al. 10.3389/fnagi.2022.945024

FIGURE 1

Overview of the causes and methods of monitoring individual (subject) emotions. (A) Characteristics of mood, emotion, and feeling.
(B) Expression of emotions space model and mental disorders. (C) The formation of emotion. (D) EEG emotion recognition system.

recognition, appropriate signal pre-processing methods must be
first adopted to remove artifacts and make the EEG data as clean
as possible simply reflects the brain’s activity. Meanwhile, the
challenge to reduce the number of dry electrodes to improve
user comfort while ensuring a high emotion recognition rate
remains.

In this paper, we propose a CNN-RNN framework
combined with a channel-temporal attention mechanism (CTA-
CNN-Bi-LSTM) for EEG emotion recognition inspired by the
channel-spatial attention module (CBAM) proposed in the field
of computer vision research (Woo et al., 2018). The primary
contributions of this study are summarized as follows.

(1) In the EEG signal pre-processing stage, due to the
EMG and EOG artifacts contribute differently to different brain
regions and attenuate as the distance from the scalp gets more
remote. We divided the 8-channel EEG signals into Frontal,
Temporal, and Parietal groups according to brain regions. And

then remove multiple biological artifacts from raw EEG signals
in each group separately based on the MEMD-CCA method (Xu
et al., 2017; Chen et al., 2018).

(2) In the phase of assigning emotional labels to EEG
signals, the emotion labels (positive, neutral, and negative)
of EEG signals were automatically obtained by the K-means
method based on the ratings of the emotion scale [Valence
(-4,4), Arousal(-4,4) and Stress (1,7)] of each participant.
The advantage of using this method is not to use the same
rating classification criteria for all participants, but to use each
participant’s rating to classify their own emotions.

(3) For data-driven EEG-based emotion recognition without
feature engineering, we developed a CTA-CNN-Bi-LSTM
framework. This framework integrates the channel-temporal
attention mechanism (CTA) into the CNN-Bi-LSTM module
to explore using spatial-temporal information of different
important channels (channel attention) and time points
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(temporal attention) of EEG signals to achieve EEG-based
emotion recognition. And the proposed framework achieved
average emotion recognition accuracy of 98%, 98%, and 99% in
the negative, neutral, and positive emotions.

(4) We conducted four group experiments on the OCER
dataset to explore the contribution of each module to EEG-
based emotion recognition. The experimental results indicate
that the CNN module provided the largest contribution to the
accuracy improvement (21.29%) of the proposed framework,
the Bi-LSTM module after the CNN module provided little
enhancement (8%) of the framework and the addition of the
Channel-Temporal attention module before the CNN-RNN
module led to a further significant improvement (11%).

Related works

In this part, we first describe the artifacts that typically
emerge during EEG acquisition and existing effective methods
to remove them. Then we introduce EEG emotion recognition
systems which have evolved from traditional hand-crafted
feature extraction to end-to-end deep learning frameworks with
channel selection mechanisms.

Electroencephalogram artifacts and removal
methods

Due to the potential technical and biological artifacts
(Figure 2) in the EEG acquisition process will cause the
oscillating discharge larger than the neuronal discharge
(Kamel and Malik, 2014). Before proceeding with
electroencephalography (EEG) data analysis, it is important to
make sure that the EEG data is as clean as possible, meaning
that the data collected simply reflects the brain’s activity.

Technical artifacts mainly include three types: impedance
fluctuation (Rodriguez-Bermudez and Garcia-Laencina, 2015),
line interference (Huhta and Webster, 1973), and wire
movement (Urigüen and Garcia-Zapirain, 2015). Technical
artifacts can be avoided by paying attention during the
acquisition of the EEG signals. Biological artifacts mainly
include two types: muscular artifacts [Electromyogram (EMG),
Electrocardiogram (ECG)], ocular artifacts [Electrooculogram
(EOG)] including eye movement and eye blinking. Such
biological artifacts are inevitable contaminations due to the
conductivity of the scalp (Kamel and Malik, 2014), and the closer
the artifact’s sources are to the electrodes, the more significant
is their effect on the EEG data. In particular, the activity of
the facial muscles (forehead, cheeks, mouth), neck muscles and
jaw musculature (EMG) have a serious effect on the EEG,
with a broadband frequency distribution of 0–200 Hz (Halliday
et al., 1998; Van Boxtel, 2001). In addition, the heart also is
muscular (ECG) and continuously active, which also affects the
quality of the EEG data. The artifact has a broadband frequency
distribution of 0–75 Hz (Lee and Lee, 2013), but has less effect

on the EEG because of the large distance between the scalp
and the heart. The eyes have a powerful electromagnetic field,
which is formed by millions of neurons in the retina, thus eye
movement (horizontal, vertical, and rotation) and eyeblink will
affect the electric field received by the electrodes resulting in
electrooculogram (EOG) artifacts. Similar to eye movements,
eye blinking can interfere with brain signals to a large extent,
one, due to the proximity of the eye to the brain, two, as
individuals would blink 20 times per minute to keep the ocular
moisture of their eyes (Karson, 1983), and these artifacts are
unavoidable for prolonged tasks.

Therefore, for our task, the removal of EMG and EOG
artifacts from raw EEG signals can be considered the top issue
to address. There are already many algorithms (Narasimhan and
Dutt, 1996; Jung et al., 2000; Schlögl et al., 2007; Ferdousy et al.,
2010; Vos et al., 2010; Safieddine et al., 2012; Sweeney et al.,
2012; Teng et al., 2014; Zhao et al., 2014; Chen et al., 2017;
Paradeshi et al., 2017; Yang et al., 2017) for removing these two
artifacts (summarized in Table 1), the BSS-based techniques are
widely proposed because they do not require a priori knowledge
and reference electrodes for EMG/EOG signals acquisition
and they could separate related artifacts from EEG signal by
statistical inference. Among them, CCA-based methods which
more effective than ICA-based methods and other filters, taking
advantage of the fact that the autocorrelation coefficient of
EEG is larger than that of EMG, so it is possible to separate
task-related EEG and EMG artifacts. Moreover, relevant studies
(Vos et al., 2010; Urigüen and Garcia-Zapirain, 2015) have
demonstrated the effectiveness of the CCA method in removing
muscle artifacts during speech. EEMD-CCA (Sweeney et al.,
2012) is one of the best methods the for removal of EMG
and EOG artifacts for single-signals EEG signals. Although
for non-single channel EEG signals, EEMD-CCA can be
applied channel-by-channel, the inter-channel correlation is not
captured. The later proposed MEMD-CCA (Chen et al., 2017)
addressed the challenge by decomposing all channels together
and then aligning the same frequency components of each
channel to form multivariate IMFs before applying CCA (by
setting the autocorrelation coefficient threshold, generally less
than 0.9 components are set to 0) to remove the artifacts to
reconstruct the EEG signals. However, it does not take into
account the different degrees of influence on the EEG signals
due to the distance of the artifact source from the location of the
scalp electrodes (shown in Figure 2). Therefore, it is necessary
to group the EEG channels based on brain areas and then use
MEMD-CCA on each group separately.

Electroencephalogram emotion recognition
systems

Electroencephalogram emotion recognition systems,
mainly differ in their approach to feature extraction and choice
of classifiers: a step-by-step machine learning framework
(hand-crafted feature extraction, feature fusion, modeling
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FIGURE 2

The sources of artifacts in EEG signal and the removal methods.

TABLE 1 Comparison of EMG and EOG artifacts removal techniques.

Methods Ref. E Channel Comparison results

PK NPK (BSS-based) (Better than)

Adaptive filtering
√

All EMG: Low-pass filter
EOG: WPT, ICA, DWT, ANC (Narasimhan and Dutt, 1996; Zhao et al., 2014)

Linear regression
√

All EOG: Visual identification (Schlögl et al., 2007)

ICA × Multi PCA, LR, Wavelet (Jung et al., 2000; Paradeshi et al., 2017)

CCA × Multi EMG: low-pass filter + Robust ICA; EOG: equivalent to ICA
(Ferdousy et al., 2010; Vos et al., 2010)

EMD × Single ICA, CCA, WT (Safieddine et al., 2012)

EEMD-CCA × Single EMD, EMD-ICA, EMD-CCA, EEMD, EEMD-ICA (Sweeney et al., 2012)

MEMD × Few ICA (Teng et al., 2014)

MEMD-CCA × Few EMG: ICA, EEMD-ICA, MEMD-ICA CCA, EEMD-CCA (Chen et al., 2017)

CCA-MEMD × Few EOG:ICA, CCA (Yang et al., 2017)

PK, prior knowledge; NPK, no prior knowledge; BSS, blind source separation; Ref. E, reference electrode; ICA, independent component analysis; CCA, canonical correlation analysis;
EMD, empirical mode decomposition; EEMD, ensemble empirical mode decomposition; MEMD, multivariate empirical mode decomposition.

classification) and an end-to-end deep learning framework
(automatic feature extraction, feature fusion, modeling
classification).

Step-by-step machine learning framework

The performance of machine learning frameworks largely
depends on the quality of hand-crafted extracted features
(Hosseini et al., 2020). Generally, researchers extract the
EEG features from parts of the brain regions considered to
contribute the most to emotions based on a priori knowledge
of the combinatorial design. Of the most used in emotion
recognition are the following two theories based on asymmetric

behavior: (1) the right hemisphere dominance theory which
posits right hemispheric dominance over the expression and
perception, and (2) the valence theory which asserts that the
right hemisphere predominantly processes negative emotions
and left hemisphere predominantly processes positive emotions
(Coan and Allen, 2003; Demaree et al., 2005). For example,
in the study (Wang et al., 2014), the authors subtracted
the power spectrum (PSD) of obtained brain waves collected
from 27 pairs of symmetrical electrodes in the left and
right brain regions to obtain 27 asymmetrical PSD features
input to SVM classifiers. The negative and positive emotion
recognition accuracy average rate was 82.38%. Later studies
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(Duan et al., 2013; Zheng et al., 2014, 2017) demonstrated
that the following six features: PSD, differential entropy
(DE), DASM (DE(Left)-DE(Right)), RASM (DE(Left)/DE(Right)),
ASM ([DASM, RASM]), DCAU(DE(Frontal)-DE(Posterior)) were
robust and effective for EEG emotion recognition. However, the
DE features achieved the highest recognition accuracy of 91.07%
which is higher than the other four asymmetric features. This
demonstrates ambiguity as to what degree the stimuli (pictures,
music, videos, etc.) elicit neuronal processes similar to those
occurring in real-life emotional experiences; making it difficult
to cover all the implied features by hand-extracted features.

End-to-end deep learning framework

Recently studies began to focus on end-to-end deep learning
frameworks (Craik et al., 2019). In a study (Alhagry et al.,
2017), the authors proposed the use of LSTM models to
automatically learn features of emotions from the context of
EEG signals. They achieved average recognition accuracy of
85.65% in the valence dimension. Later in a study (Zhang
et al., 2020) the authors further considered that the spatial
information in the EEG signal could be used to improve the
accuracy of emotion recognition and thus proposed a CNN-
LSTM model. EEG raw data was first input into a CNN module
(1-dimensional convolutional layer, maximum pooling layer) to
extract the local spatially features which were then input into
a two-layer LSTM to learn the temporal information in the
spatial features. The result was an average recognition accuracy
of 94.17% with a four-emotion classification. In addition, the
authors input EEG raw data separately into CNN (four-layer of
two-dimensional convolution; spatial features) and LSTM (four-
layer; temporal features) to achieve accuracies of 90.12% and
67.47%, respectively. A later study (Sheykhivand et al., 2020)
also proposed the use of CNN-LSTM for EEG raw data with
the main structure of 10-1D convolutional layers plus 3 LSTM
layers, achieving a recognition average accuracy of 97.42% with
a two emotion classification.

From the results of the above-related studies, it was
found that (a) the model automatically learns emotional
features from EEG raw data better than hand-crafted extracted
features, and (b) the model emotion classification recognition
performance using EEG spatial-temporal features demonstrates
improvements across a wide range. In addition, there are
also studies that combine feature extraction and deep learning
models, such as a DECNN model (Liu et al., 2020) was proposed
that focuses on subject-independent emotion recognition and
used extracted DDE (dynamic differential entropy) features fed
into the CNNs for emotion classification. Finally, the average
accuracy achieved 97.56% in EEG subject-independent emotion
recognition on the SEED public dataset.

Channel selection mechanism
The number of dry electrodes used in the EEG emotion

recognition systems studied above is, in general, excessive and
not conducive to prolonged wear from a comfort perspective.

Moreover, the EEG signals obtained with multichannel EEG
devices often contain redundant, irrelevant, or interfering
information (noise, overlapping/interference of signals from
different electrodes) for affective analysis (Alotaiby et al., 2015).
Thus, selecting the most relevant channel for emotion analysis
is essential for enhancing comfort and emotion recognition
accuracy.

A study (Tong et al., 2018), utilized the Relief algorithm
to calculate the weight values of each channel according to
the time-domain features of the EEG signal. At the cost of
losing 1.6% accuracy, 13 channels with the highest contribution
to emotion classification under time-domain features were
selected from the initial 32 channels. Later, a study (Dura
et al., 2021) used the reverse correlation algorithm applied to
the band-time-domain features of 32 channels to construct
a subset of electrodes with the smallest band correlation for
each subject. The number of occurrences of each subset in
each subject was then calculated to obtain the most common
subset of channels. The smallest subset contained only four
electrodes and accuracy was not affected. However, the accuracy
of such channel selection methods would depend entirely on
the quality of hand-extracted features. In response, the latest
has research proposed to apply an attention mechanism to
channel selection to prompt the network to automatically learn
the most important information and improve the performance
of important features. In a study (Tao et al., 2020), the
authors added the channel attention module before the CNN-
LSTM model to automatically learn the importance of each
channel to the EEG emotion signals and then assigned weights
to each channel. It was found that the FC5, P3, C4, and
P8 channels contributed the most to emotion classification
on the DEAP dataset (32 channels) and had an average
accuracy improvement of 28.57% compared to the CNN-
LSTM model without the channel attention. Later, a 3DCANN
(Liu et al., 2021) framework was proposed, in which five
consecutive 1s-62-channel EEG signals were fed as 3D data
inputted to a CNNs module with two convolutional layers
to extract spatial features, which were later output to two
attention modules in the channel dimension to enhance or
weaken the effect of different electrodes on emotion recognition.
The model achieved an average accuracy of 96.37% for
positive, negative, and neutral emotions. It is demonstrated
that the attention mechanism enhances the information of
the important channels and suppresses the information of
the irrelevant channels for emotion analysis. However, the
shortcoming is that, to get the global perspective of the
temporal dimension (Time × Sample point) of the EEG signals
(Time × Sample point × Channel), the channel attention
module pools the EEG signals globally into 1 × 1 × Channel
to get the weight matrix of the channel. This directly ignores
the specific temporal information of the EEG signals, if
a channel contains more noise/artifacts, it may get larger
weight values instead of being conducive to the later model
learning.
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As our purpose is to perform emotion recognition during
the conversation, even if the removal of artifacts is implemented
in EEG signals, some artifacts may be still present. Therefore,
attention mechanisms need to be applied simultaneously in the
temporal dimension. The temporal attention mechanism will
play an important role in determining “where” the need to focus
attention exists. It can improve the expressiveness of the time
points of changing emotional states in the EEG signal while
suppressing noise/artifacts information.

Materials and methods

In this section, first, we describe the EEG dataset, the method
of division of the EEG dataset, and the preprocessing of EEG
signals. Then, we describe in detail the structure of each module
of the proposed CTA-CNN-Bi-LSTM.

The division and preprocessing of
electroencephalogram dataset

Our experiments were conducted on the dataset from the
previous study (Jiang et al., 2022). Eleven older adults (six males
and five females) and seven younger adults (five males and two
females) were randomly pair-matched into 11 groups, and each
group engaged in 36 photo conversations. The young person
guided the older adult in a 1-min conversation around each
photo during which time the EEG signals from the older adult
were collected. After each photo conversation, the older adult
also filled out an emotion evaluation form (rating of valence,
arousal from –4 to 4, and the level of stress from 1 to 7).
A detailed description of the EEG dataset (here named OCER)
is presented in Table 2.

As individual differences in gender, age, economic,
educational, and life circumstances would result in differences
in the benchmarks for evaluating emotions, we did not classify
samples by uniformly setting thresholds for the rating values
on each dimension. Instead, in our experiments, the ratings
of valence, arousal, and stress were first standardized using
the standard deviation standardization method (Z-score). And

TABLE 2 Summary of experiment dataset (OCER).

Conversation experiment

Trails 36 trails× 60 s

Subject Older: 11 (M = 71.25± 4.66) Young: 7 (M = 22.4± 1.51)

Rating Valence (–4,4), Arousal (–4,4), Stress (1,7)

EEG dataset
Device OpenBCI Cyton board (250 Hz/s)

Channel F3, F4, F7, F8, T7, T8, P3, P4 (10–20 system)

Array 396(Samples)× 60 (s)× 250(Hz/s)× 8 (Channels)

the K-means method (Likas et al., 2003) was then applied to
the three standardized scores for each individual, and the 36
samples were divided into three groups of positive, neutral,
and negative emotions samples. Finally, the pre-processing was
applied to the EEG signals in the dataset:

Removal of technical artifacts
Electroencephalogram signals used a 1–45 Hz bandpass

filter (removal of the line interference) and a Chebyshev I
high-pass filter to remove baseline drift (Jiang et al., 2022).

Removal of biological artifacts
Electroencephalogram signals were divided into three

groups: The frontal group (F7, F8, F3, F4), the temporal group
(T7, T8), and the parietal group (P3, P4). And then each group
used MEMD-CCA (Xu et al., 2017; Chen et al., 2018) methods
to remove multiple artifacts (detailed in Figure 3A).

Segmented data
Used a 3s-non-repetitive window for segmentation of each

sample (60 s trail) in the dataset. The reason is that normally the
duration of an adult’s emotional state does not exceed 12 s and
in studies (Li et al., 2017; Tao et al., 2020) a 3s-non-repetitive
sliding window applied to the EEG signals achieved excellent
results for the emotion recognition task.

Preprocessing of proposed framework

First of all, before inputting the raw clean EEG dataset into
the first module of the proposed framework, we normalized each
raw EEG sample along the channel direction with zero-mean
normalization to eliminate subject and channel differences in
EEG signals and reduce computational complexity. Thus, the
mean value of the processed raw EEG signals sample for each
channel is 0 and the standard deviation is 1. The normalization
formula for each channel is as follows:

Xk∗
i,j =

Xk
i,j − Xk

σC . (1)

Where Xk
i,j
(
i = 1, 2, 3 Time

(
second

)
; j = 1, 2, ..., 250

Sample Point (250Hz/s) ; k = 1, 2, ..., 8 EEG Channel
)
∈ RT×P

represents the data of the k-th channel of a 3s-EEG sample.
T and P are the time length and the sample point of the 3s-
EEG sample respectively. Xk and σCare the mean and standard
deviation of the k-th channel respectively.

Modules of proposed
CTA-CNN-Bi-LSTM framework

The proposed framework consists of the following three
modules: channel-temporal attention module, spatial feature
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FIGURE 3

Illustration of the proposed framework based on raw EEG data for emotion recognition. (A) Removal of biological artifacts by MEMD-CCA.
(B) CTA-CNN-Bi-LSTM framework.

extraction module (CNNs) and bi-directional temporal feature
extraction module (Bi-LSTM). The structure of the proposed
CTA-CNN-Bi-LSTM framework is shown in Figure 3B. The
specific calculation process and description are as follows.

Channel-temporal attention module
An EEG sample is defined as X ∈ RT×P×C whereby T

denotes the time duration of one EEG sample, P is the
sampling points per second and C denotes the number of
EEG channels. The output after the channel-temporal attention
module is Xc −s ∈ RT×P×C, and the specific calculation process
and descriptions are as follows. Here for our EEG dataset, the T
is 3 s, P is 250 Hz/s, and C is 8 channels.

Channel attention

The global average pooling and maximum pooling are
performed separately in the temporal dimension on the channel
direction of X to obtain two channel statistical descriptions
XAvg

C , XMax
C ∈ R1×1×C. They are then fed into a two-layer

weight-sharing multi-layer perceptron (MLP): the first layer is
the compression layer (the number of neurons is set to C/r to get
the weight W1 ∈ R1×1×C/r and ReLU is used as the activation
function. r represents the reduction ratio and here r is set to
2); The second layer is the excitation layer (the number of
neurons is set to C to get the weight W2 ∈ R1×1×C). Finally,
these two combined features are mapped using a sigmoid
activation function to generate the channel attention mapping
matrix Wc ∈ R1×1×C as follows:

Wc(X) = Sigmoid(W2(ReLu(W1 · X
Avg
c ) +

W2(ReLu(W1 · XMax
c ))). (2)

And the output of channel attention Xc ∈ RT×P×C is as
follows:

Xc = Wc(X)⊗ X. (3)

Temporal attention

Average pooling and maximum pooling are used along the
channel dimension on the temporal direction to obtain
XAvg

s , XMax
s ∈ T × P × 1 to stitch them together, and

convolutional layers (a convolutional kernel of size 3 × 3,
K3 × 3). The sigmoid activation functions are used to generate
the temporal (T × P, Time × Sample Point) attention mapping
matrix Ws ∈ RT×P×1 as follows:

Ws (X) = Sigmoid(K3 × 3([XAvg
s , XMax

s ])). (4)

Thus, our final output Xc −s ∈ RT×P×C is as follows:

Xc−s = Ws (Xc)⊗ Xc. (5)

In this way, the output shape of Xc−s ∈ RT×P×C remain
unchanged and has learned what channels are important and at
which time points in the channel and temporal dimension.

Convolution neural networks module
The convolution neural networks (CNNs) and their essential

characteristics (spatially dependencies/local connection and
weight sharing) have been widely used in various fields,
especially for image tasks (object segmentation, image
classification, style conversion, etc.) (Hijazi et al., 2015;
Rawat and Wang, 2017). All of these applications were built
based on the feature maps after the CNNs performed feature
extraction for the task. Thus, essentially the role of CNNs
models is to extract local spatial features of EEG signals. The
specific steps of our CNNs module are as follows.
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Step 1: Convolution layer

The input recorded EEG signals Xc−s ∈ RT×P×C and the
convolution kernel of CNNs is defined as filterk

(i,j). k represents
the number of filters, which is the same as the number of EEG
channels. (i, j) is the size of the convolutional sliding window in
the temporal-spatial (T × P, Time × Sample Point) dimension
of multi-channel EEG signals. More specifically, the k-th filter
is convolved with the corresponding region in T × P dimension
of the k-th channel of Xc−s with a window size of i× j sliding
in step 1 (direction from left to right and top to bottom). The
output value is obtained by adding the sum of the k channels.
Finally, the feature map Xf

C−S is as follows:

Xf
C−S = f

(∑
XC−S ⊗ K + b

)
. (6)

The bias term is represented by b. A convolution kernel
produces a feature map, and the closer the value in Xf

C−S is to 1,
the more it is associated with the feature, and the closer it is to
–1, the less it is associated.

In our dataset for EEG emotion recognition, the k was
set 8 corresponding to the number of EEG channels. And the
size of the sliding window (i, j) was set “1×10” and sliding
in step 1, where the “i” was set 1 in order not to destroy the
temporal features of the EEG signals at different seconds and the
convolutional window to constantly move at the same second as
the sampling points when sliding. Therefore, later the generated
spatial feature maps have the following characteristics: (a)
different spatial locations on the same channel were sharing
convolutional kernel parameters (spatial independence), and (b)
different convolutional kernels were used on different channels
(channel specificity). This allowed each feature map of the
output CNNs to learn different spatial emotion features with
temporal information preserved.

Step 2: Exponential linear units layer

The exponential linear units (ELU) was selected as the
activation function after the convolution layer because it is
continuous and differentiable at all points and its gradient is
non-zero for all negative values, meaning it does not encounter
the problem of exploding or disappearing gradients during deep
network learning. It achieves higher accuracy compared with
other activation functions such as ReLU, Sigmoid, and tanh
(Clevert et al., 2015). The ELU activation function can be written
as:

f (x) =

{
ex
− 1, x < 0

x, x ≥ 0
. (7)

As can be deferred from (7), the ELU function retains the
values greater than or equal to 0 in the feature map Xf

C−S and
assigns ex

− 1 to all the remaining values less than 0. This
further suppresses the uncorrelated data in the feature map
using a non-linear activation function.

To ensure that the temporal information contained in the
extracted spatial feature maps is not reduced during the input

temporal feature extraction module (Bi-LSTM), we did not use
the pooling layer often used in CNN structures. Thus, our spatial
feature extraction module used two convolution-ELU layers.

Bi-directional long short-term memory module
LSTM networks (Hochreiter and Schmidhuber, 1997) have

been widely used in time series related tasks, such as disease
prediction (Chimmula and Zhang, 2020) and air quality
prediction (Yan et al., 2021). This is because, unlike previous
feedforward neural networks (one-way propagation, where
the input and output are independent of each other), LSTM
networks have internally inclusive memory units (the state of
the current time step is jointly determined by the input of that
time step and the output of the previous time step). LSTM is,
effectively, a gating algorithm added to the memory unit of a
traditional RNN which solves the problem of long sequences in
which the gradient disappears and explodes during the training
process of the RNN model (Bengio et al., 1994). The memory
unit of LSTM is as follows:

Zforget = sigmoid(Wf
[
ht−1, Xt

]
+ bf ), (8)

Zinput = sigmoid(Wi
[
ht−1, Xt

]
+ bi), (9)

Zoutput = sigmoid(Wo
[
ht−1, Xt

]
+ bo), (10)

Z = tanh(W
[
ht−1, Xt

]
+ bc), (11)

Ct = ZforgetCt−1 + ZinputZ, (12)

ht = Zoutputtanh(Ct), (13)

yt = σ
(
Wtht

)
. (14)

where Zforget , Zinput , Zoutput are vectors of data input from
the current state and input data received from the previous
node multiplied by the weights and then converted to values
from 0 to 1 by a sigmoid activation function which acts as
a gating function (0 means complete discard of information,
1 means complete retention of information). Thus Zforget
determines which information in Ct−1 needs to be forgotten;
Zinput determines which new information in Xt needs to be
recorded; Zoutput determines which information is the output
of the current state. Z is converted to a value between –1 and
1 by the tanh activation function as the input data for Ct . In
addition, Ct (cell state) and ht (hidden state) represent the two
transmission states of the memory cell to the next cell of the
LSTM. yt is obtained from ht by σ transformation and represents
the output of the memory cell.

Frontiers in Aging Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnagi.2022.945024
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-945024 September 15, 2022 Time: 16:19 # 10

Jiang et al. 10.3389/fnagi.2022.945024

However, for the EEG emotion recognition task, the
current emotional state is correlated with both previous and
subsequent information due to the latency of the device during
signal acquisition. Bi-LSTM (Schuster and Paliwal, 1997) is an
extension of LSTM consisting of a forward LSTM layer (fed the
sequence, left to right) and a backward LSTM layer (reversed fed
the sequence, from right to left) which can solve this problem.
The out layer of the memory unit of Bi-LSTM is as follows:

yt = σ(Wt(→
ht
+←

ht
). (15)

TABLE 3 Division of OCER into three motions by K-MEANS.

Subject Rating Clustering center (Z-score)

ID scale 1 2 3

1 Valence −1.58 0.26 1.27

Arousal −0.98 0.65 1.85

Stress −0.90 −0.90 −0.90

2 Valence −1.58 0.55 1.16

Arousal −0.98 −1.12 1.08

Stress −0.90 −0.90 −0.90

3 Valence 0.63 0.61 0.63

Arousal −2.40 −0.96 0.44

Stress 0.23 −0.80 −0.90

4 Valence −0.20 0.63 1.02

Arousal −0.41 −0.56 0.62

Stress 0.23 0.46 0.38

5 Valence −1.58 −1.53 −0.11

Arousal −3.11 −1.07 −0.98

Stress 0.23 0.78 1.36

6 Valence −0.35 0.22 0.63

Arousal −0.63 0.44 0.60

Stress 2.30 0.73 2.01

7 Valence −3.05 −1.58 −0.48

Arousal −0.98 −0.98 −0.98

Stress −0.90 −0.83 −0.90

8 Valence 0.14 −0.11 0.35

Arousal 0.91 −0.27 0.44

Stress 1.36 −0.90 0.23

9 Valence −1.39 −0.45 0.51

Arousal −0.81 −0.60 −0.20

Stress 2.78 1.10 0.41

10 Valence −0.48 0.49 1.36

Arousal −0.27 0.91 1.69

Stress −0.90 −0.85 −0.90

11 Valence −0.11 0.63 1.36

Arousal 0.40 0.76 1.14

Stress 0.23 0.23 0.23

All results are retained to 2 decimal places. The larger the score of Valence indicates the
more positive; the larger the score of Arousal indicates the greater emotional intensity
(no positive or negative directionality); the larger the score of Stress indicates the greater
stress (negative directionality).

In addition, the LSTM contains overly numerous
parameters, and the Bi-LSTM is twice as large as the LSTM, so
it is easy to overlearn to produce the overfitting problem. The
most common solution in deep learning is the utilization of
dropout regularization (Hinton et al., 2012) which temporarily
disconnects the input-hidden layer-output layer with a certain
probability. However, temporarily dropping layer-to-layer
connections in recurrent neural networks may cause direct
loss of some of the previous memory. Therefore, we use the
recurrent dropout method (Semeniuta et al., 2016) to act on
the memory units; temporarily dropping a part of the links
in ht (hidden state) with probability p at each time step. This
ensures that the output yt does not lose the earlier important
information while simultaneously solving the overfitting
problem. Therefore, the features of past and future emotion
information through this structure were combined in the out
layer. Here, our temporal feature extraction module consists of
two layers of internal memory cell units (32 and 16 respectively)
with a 0.2 recurrent dropout rate of the bidirectional LSTM.

In summary, our proposed framework can automatically
extract meaningful features for emotion classification from
raw clean EEG data. Firstly, a channel-temporal attention
mechanism is used to infer attention weights for raw EEG signals
X successively along the channel and temporal dimensions and
got re-coded EEG signals Xc−s , which improves the points of
time representation of significant channel and emotional state
changes. Next, CNNs (including two convolution-ELU layers)
are used to extract spatial features of Xc−s to get feature maps
Xf

C−S. Finally, all spatial feature maps Xf
C−S were packaged in

time series input into a two-layer Bi-LSTM with a recurrent
dropout function to learn temporal information from the spatial
features maps for EEG emotion recognition.

Results and analysis

Firstly, we describe the division and preprocessing of the
EEG dataset. Secondly, we displayed the result of the channel
attention weights in the channel-temporal attention module.
Finally, we introduce designed four groups of deep learning
methods for demonstrating the validity of each module of our
proposed method.

The division and preprocessing of
electroencephalogram dataset

The standardization of the scores of the rating scale [Valence
(–4,4), Arousal (–4,4) and Stress (1,7)] and the classification
of emotions using K-means for 36 samples of each participant
was completed in IBM SPSS Statistics (version 26). The related
results were displayed in Table 3. Each participant’s 36 trials
were divided into three categories respectively: Clustering “1”
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TABLE 4 The emotion classification of OCER and the data arrays.

Emotion classification

Negative 72 samples (60 s)

Neutral 180 samples (60 s)

Positive 138 samples (60 s)

3s-dataset arrays
Dataset 7800(seg)× 3(s)× 250(Hz/s)× 8(channels)

Label 7800× 3(Negative, Neutral, Positive)

represented the “negative emotion”; Clustering “2” represented
the “neutral emotion”; and Clustering “3” represented the
“positive emotion”. The advantage of using this method is
that instead of using the equal criteria for all participants,
each participant’s criteria was used to classify the emotions.
Therefore, there are 73 negative samples, 182 neutral samples
and 141 positive samples in the EEG dataset (OCER). Then,
after removing the technical and biological artifacts in the EEG
dataset by using the method mentioned in section the division
and preprocessing of electroencephalogram dataset, we found
that artifacts of the 36-th trail from subject 4, the 11-th trail
from subject 6, the 31-th and 32-th trails from subject 8, the
23-th trail from subject 9 and the 35-th trail from subject 10
could not be removed cleanly (the amplitude of EEG signals
more than 200 µV) and they were excluded. Finally, we cut each
clean trail using a 3-s non-repeating window. Therefore, the
array of the EEG dataset became 7800 (390 × 20 segments) × 3
(seconds) × 250 (sample points/s) × 8 (channels). The details
were shown in Table 4.

Electroencephalogram channel
attention weights

To illustrate the different degrees of importance of each EEG
signal channel for emotion recognition, the mean of ten times
weight calculations of the channel attention in the channel-
temporal attention module for OCER are shown in Figure 4.
As shown, the weights of the channels for different emotions
were significantly different. The EEG signals of the channels
corresponding to the right brain regions (except F4 is less than
0.5) contributed more to positive emotions. The EEG signals
the channels corresponding to the left brain regions (except
P3 less than 0.5) contributed more to negative emotions. And
the weights of channel F4 and channel F3 achieved significant
advantages in neutral emotion. Further to demonstrate the
contribution of different channels to the emotions, the one-way
ANOVA was implemented on the 8-channel weights of the three
emotions respectively. The weights of channel F8 and F7 had
a significant (F = 3.55, p < 0.01) in negative emotion, channel
P4 and T7 had a significant (F = 3.39, p < 0.01) in positive
emotion, a non-significant for 8-channel in neutral emotion.
This suggests that there are variances in the contribution of

channels to different emotions and utilizing channel attention
mechanisms could enhance the ability to discriminate between
different emotions.

Parameters of proposed and baseline
methods

The proposed framework mainly was implemented with
the Keras module based on the TensorFlow framework and
trained on NVIDIA GeForce GTX GPU. At first, each batch
size (here denoted by None) of samples defined as (None,
3,250,8) was input into the CTA module and the output shape
was the same as (None, 3,250,8). The samples were then fed
into the CNN module which used the AdaBelief optimizer
(Zhuang et al., 2020) with a learning rate of 1e-3 and the
epsilon of 1e-7 to minimize the cross-entropy loss function.
In order not to destroy the temporal information in the EEG
signals, the size of the convolution kernel was set to 1×10×8
(height, width, depth) and the number of kernels was 8 the
same as the number of EEG signal channels. This makes the
number of channels of the feature maps of the output CNNs
consistent with the number of channels of the EEG raw data.
This causes each feature map in the input Bi-LSTM with a
shape of (None, 3,250,8), which means that the time step is
3 and the features map was split up into three feeds that can
be expressed as (None, 3,250 × 8). Therefore, the Bi-LSTM
module further extracts the temporal features from the spatial
feature maps containing temporal information. In the Bi-LSTM
module, the dimension of the hidden states of the LSTM in
each direction (forward/backward) of the two layers were 32
and 16, respectively. In addition, in every LSTM the recurrent
dropout rate was set as 0.2. Initially, the input batch size is 10
and the epoch is set at 200. And the early stopping technique
(Prechelt, 1998) is used during the training process: the training
is stopped when the loss value of the test set no longer decreases
in two epochs.

To demonstrate the validity of the three modules in
the proposed framework, four groups of experiments were
implemented: Group A: LSTM, Channel Attention-LSTM
(CA-LSTM) and Channel-temporal Attention (CTA)-LSTM;

TABLE 5 Baseline and proposed method for EEG dataset
emotion recognition.

Channel
attention

Temporal
attention

CNN LSTM/Bi-
LSTM

RNN × × ×
√

C-RNN
√

× ×
√

CTA-RNN
√ √

×
√

CNN-RNN × ×
√ √

C-CNN-RNN
√

×
√ √

Proposed method
√ √ √ √
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FIGURE 4

The result of channel weight on OCER dataset respectively for negative, neutral, and positive emotions. **P < 0.01.

Group B: Bi-LSTM, CA-Bi-LSTM, and CTA-Bi-LSTM; Group
C: CNN-LSTM, CA-CNN-LSTM, CTA-CNN-LSTM; Group D:
CNN-Bi-LSTM, CA-CNN-Bi-LSTM and CTA-CNN-Bi-LSTM.
Here the LSTM and Bi-LSTM are referred to generically as
RNN. Except for the different number of RNN layers, the model
including the CNN-RNN module used two layers of LSTM/Bi-
LSTM with hidden states of dimensions 32 and 16. The model
including the RNN module used 3 layers of LSTM/Bi-LSTM
with hidden states of dimensions 64, 32, and 16. Because
each layer of Bi-LSTM is combined with two directions of
LSTM, the training parameters are twice as large as the LSTM.
All models use the same parameter settings as the proposed
method. Specific structures and parameters were shown in
Tables 5, 6.

Results of experiments

Our work aimed to evaluate individuals’ emotions during
the periodic implementation of reminiscence therapy, in which
our focus was on the individual’s emotion recognition accuracy,
rather than an emotional recognition model to accommodate
all older adults. Therefore, the subject-dependent method was
utilized for EEG emotion recognition. All samples of the OCER
dataset (Table 4) were divided into training sets and test set
based on the 10-fold cross-validation method. This method
randomly divided the dataset into ten equal parts (nine parts
as the training set and one part as the test set) and this process
repeated 10 times. Finally, the number of samples in the training
set was 7020 and the number of samples in the test set was 780.

The average accuracy of the results of the 10 test sets
was used as the evaluation metric for the performance of

the proposed framework and baseline methods. Further, a
one-way ANOVA was performed on the results of average
emotion recognition accuracy rate for four groups of 12 models
to explore whether there was a significant in EEG emotion
recognition across models. The detailed results were shown in
Figure 5. As seen from the figure, for the average accuracy
of emotion recognition on the OCER dataset: (1) Significance
among groups A, B, C, D (F = 372.8, p < 0.0001); (2) Significance
among the models within groups A, B, C, D (p < 0.01 or
p < 0.0001), except between the CNN-LSTM model and the
CA-CNN-LSTM model in group C (p = 0.7756, non-significant).
(3) The proposed framework CTA-CNNN-Bi-LSTM in group D
achieved the best emotion recognition accuracy with 98.75% on
three emotions.

To demonstrate the contribution and performance of each
module of the proposed framework on the recognition of
negative, neutral, and positive emotions, we implemented
confusion matrices on all models (see Figure 6). As can
be seen, vertically, from the base models (LSTM, Bi-LSTM,
CNN-LSTM, CNN-Bi-LSTM) to the front of the models
adding the channel attention mechanism (CA) and adding
the channel-temporal module (CTA), the recognition accuracy
improves for almost in the three emotions. Specifically, the
recognition accuracy of negative, neutral and positive emotions
improved by at least 18%, 2%, and 9%, respectively. It
proved the effectiveness of the CTA module in improving
the model’s performance in distinguishing between different
emotions. Horizontally, from left to right, from the LSTM
series models to the CNN-Bi-LSTM series models (except
for the CA-CNN-LSTM model), the recognition accuracy
improves for almost the three emotions. Specifically, the
recognition accuracy of negative, neutral and positive emotions
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TABLE 6 Array and total parameters of 3s-dataset (OCER) fed into different models.

Model Input array Main layers Total params

RNN None× 3× 2000 3 Unit (64,32,16) 544,243/1108,963

C/CTA-RNN (None× 3× 250× 8)reshape (None× 3× 2000) 3 Unit (64,32,16) 544,243/1108,963

-CNN-RNN (None× 3× 250× 8)reshape (None× 3× 2000) 2 Conv (K = 8(1,10))2 Unit (32,16) 648× 2 + 263411/530915

FIGURE 5

The results of mean accuracy (%) and one-way ANOVA in baseline and proposed methods on 3s-data set. The symbol ** means that P < 0.01
and is a statistically significant difference. The symbol **** means that P < 0.0001 is an extremely significant statistical difference.

improved by at least 21%, 9%, and 10%, respectively. It
sufficiently demonstrated the superiority of CNN-Bi-LSTM
in integrating the bi-directional temporal features (past and
future information features) on the spatial features information
in the EEG signals information to determine the current
emotional state. The CTA-CNN-Bi-LSTM model achieved the
best accuracy of emotion recognition for negative, neutral, and
positive emotions.

Furthermore, to indicate the performance of the proposed
framework on the emotion recognition of each individual,
we conducted experiments on each individual. As Figures 7–
9 show, the proposed framework CTA-CNN-Bi-LSTM almost
achieved the best accuracy of emotion recognition for negative,
neutral and positive emotions on each subject. In addition,
for the base models, the RNN models did not perform well
below 60% for each individual on negative emotions, but after
adding the CTA module before the RNN models the individual’s
negative emotion recognition rate with an accuracy of more than
80%. And the CNN-RNN series models perform better than
the RNN series in terms of positive emotion for each subject.
There was no such significant tendency in negative emotion

and neutral emotion for each subject. For the negative emotion,
the CA-Bi-LSTM model performed better than the CA-CNN-
Bi-LSTM on subjects 5, 6, and 11. For the neutral emotion,
the CTA-Bi-LSTM model performed better than the CTA-CNN-
LSTM model on subjects 1, 5, 6, 7, and 8. However, the proposed
framework performed best on each individual for the three
emotions.

Discussion

Principal results and limitations

The experimental results reveal that the CTA-CNN-Bi-
LSTM framework performs better in EEG emotion recognition
as the proposed framework combined consideration of the
spatial features and two directions’ temporal features which were
extracted from the channels and temporal dimension of EEG
signals most relevant to emotions.

In the first module of our proposed framework, the
channel-temporal attention module applied to the clean EEG
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FIGURE 6

The result of confusion matrixes of negative, neutral, and positive emotions in baseline and proposed method.

raw data emphasized meaningful feature information and
suppresses irrelevant information in both channel and temporal
dimensions. Firstly, the channel weights were calculated under
the global average pooling and global maximum pooling in
the temporal dimension to obtain two channel statistical
descriptions (two different angles of the global field of view).
In contrast, the channel attention module in the previous study
(Tao et al., 2020) only conducted global average pooling on the
temporal dimension (T8 and F8 dominated among 14 electrodes
in the DREAMER dataset; FC5, P3, C4, and P8 dominated
among 40 electrodes in DEAP), which may have resulted in
the inability to distinguish the contribution of channels to
different emotions. The channel weights in this study were
calculated so that the weights of F3 and F4 achieved significant
advantages in neutral emotion. For negative emotions, channel
weights greater than 0.5 are F3, T7, F7, and T8, meanwhile the
weights of channels F8 (0.2) and F7 (0.73) had a significant
(F = 3.55, p < 0.01) in negative emotion, which both suggested
that they played a major role in the channels corresponding to
the left-brain area. For positive emotions, the channel weights
greater than 0.5 were F8, T8, and P4, and channel P4 (0.6)

and T7 (0.28) had a significant (F = 3.39, p < 0.01) in positive
emotion, which indicate that the right-brain area corresponding
to the channel was dominant. These findings are consistent with
previous studies: (1) The valence theory stated that left-brain
areas predominantly process negative emotions and right-brain
areas process positive emotions (Demaree et al., 2005); (2) EEG
signals in the frontal lobe, lateral temporal lobe, and parietal
lobe brain regions of the brain were the most informative on
different emotions (Lin et al., 2010; Zheng et al., 2017; Özerdem
and Polat, 2017; Tong et al., 2018). If it is necessary to reduce
electrodes while ensuring a high recognition rate of emotions,
the intersection of all emotion-dominated channels or channels
with significant differences can be selected. This means that F3,
F4, F7, and F8 can be chosen for the task of our study. Other
tasks can recalculate channel weights according to this method.

When the recoded EEG data obtained directly using the
channel attention is used for subsequent model learning,
as shown in Figure 5, the average accuracy of the CA-
RNN/CA-CNN-RNN model improved only slightly compared
to RNN/CNN-RNN, except the CA-CNN-LSTM model was
slightly lower than the CNN-LSTM model. However, from
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FIGURE 7

Average accuracy (%) of baseline and proposed method on the recognition of negative emotion in each individual.

FIGURE 8

Average accuracy (%) of baseline and proposed method on the recognition of neutral emotion in each individual.
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FIGURE 9

Average accuracy (%) of baseline and proposed method on the recognition of positive emotion in each individual.

Figure 6, the CA-CNN-LSTM improved the recognition
accuracy of negative emotion by 10% over the CNN-
LSTM model. The average accuracy of CTA-RNN/CTA-CNN-
RNN not only increased but also achieved the minimum
variance, demonstrating that the temporal attention mechanism
did improve the representation of emotional state change
time points in EEG signals while further suppressing the
noise/artifact information. And the results were higher than
the accuracy results of the previously mentioned related studies
using channel selection (Alotaiby et al., 2015; Tong et al.,
2018; Tao et al., 2020; Dura et al., 2021). Therefore, the EEG
raw data was processed by the channel-temporal attention
module to emphasize meaningful feature information and
suppress irrelevant information in both channel and temporal
dimensions.

In the second and third modules of our proposed
framework, the recoded EEG signals (containing information
on the most relevant channel and temporal dimensions
to the task) from the channel-temporal attention module
were fed into the CNNs and RNN to extract spatial and
temporal features for emotion recognition. As Table 6
and Figure 5 shown, the training parameters of CNN-
RNN without the channel-temporal attention mechanism
(264,707/532,211) were much smaller than those of RNN
(544,243/1108,963), while the average accuracy was substantially
higher than that of RNN (19.34% and 21.29% improvement).

This, as has been shown in previous studies (Sheykhivand
et al., 2020; Zhang et al., 2020; Ramzan and Dawn, 2021),
demonstrates that it is necessary to consider both spatial
and temporal information of EEG signals for emotion
recognition. And the CA-CNN-RNN models achieved an
average accuracy of 78.11% (1.56% lower than CNN-LSTM
model and 10% improvement on negative emotion) and
91.11% (3.37% improvement over CNN-Bi-LSTM model),
respectively. It was further demonstrated that channel attention
suppresses the information of irrelevant channels and enhances
emotional information. Finally, the results of the CTA-CNN-
Bi-LSTM model proposed in this study achieved the highest
average accuracy of 98.75%. It further demonstrated that
channel-temporal attention suppresses both the information
of irrelevant channels and the irrelevant information of
temporal dimensions. The CTA-CNN-Bi-LSTM model with
an improvement of 7.25% over the CTA-CNN-LSTM model.
The reason is that Bi-LSTM model learned the temporal
information on the spatial feature map from both forward
and reverse directions while LSTM model learned from only
one direction in the forward direction. This is consistent
with the conclusions in the study (Siami-Namini et al., 2019):
Bi-LSTM model outperforms the LSTM model on temporal
series forecasting tasks. As our experiments also employed 10-
fold cross-validation, the average accuracy standard deviation
values can more objectively demonstrate that the proposed
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framework has a high emotion recognition performance.
From the result of confusion matrixes of negative emotion
(Figure 6), it was found that the recognition rate of the
basic RNN and CNN-RNN models on negative emotion was
far lower than the other two emotions, firstly, the number
of samples of negative emotion was lower than the other
two emotions, and secondly, negative emotion seemed to
be easily misclassified as neutral emotion. However, through
the channel attention mechanism (CA) and the channel-
temporal attention (CTA), the recognition of negative emotions
with small samples is enhanced and the accuracy rate is
further improved. Finally, we conducted experiments on
each individual, and the proposed framework CTA-CNN-
Bi-LSTM almost achieved the best accuracy of emotion
recognition for negative, neutral, and positive emotions on each
subject.

In summary, EEG raw 3s-dataset achieved the highest
accuracy of 98.75% by the proposed method CTA-CNN-
Bi-LSTM. It included channel-temporal attention module
(CTA), spatial feature extraction (CNNs) and Bi-LSTM. The
proposed method improved the average accuracy by 38.42%
compared to the LSTM model. Of which, the channel-
temporal attention module (CTA-CNN-Bi-LSTM) led to an
average accuracy improvement of 11.01% for CNN-Bi-LSTM.
The convolutional module (CNN-Bi-LSTM) resulted in an
average accuracy improvement of 21.29% for Bi-LSTM. And
the bi-directional LSTM module (CNN-Bi-LSTM) led to an
improvement of 8.07% in CNN-LSTM. It indicates that the
convolution module (spatial information of the EEG signal)
provides the largest contribution (21.29%) to the accuracy
improvement of the framework. The bi-directional LSTM
module after the CNN module provides little enhancement
(8.07%) to the framework. However, the addition of the channel-
temporal attention module before the convolution module (by
suppressing the irrelevant channel information and temporal
dimensional noise) led to a further significant improvement
(11.01%) in the accuracy of the model while reducing the
std. dev. to a minimum. Thus, our proposed framework was
demonstrated to be effective in extracting spatial and temporal
information from recoded EEG signals (including most relevant
channels and temporal dimensional information to emotion)
for emotion recognition. However, our framework used the
dataset divided using the subject-dependent method as the
usage scenario of our task, and it has not been demonstrated
whether the same high performance of emotion recognition
can be achieved on the dataset divided by the subject-
independent method.

Conclusion and future work

The proposed framework in this paper used clean raw
EEG signals (removal of muscle artifacts by MEMD-CCA)

as input to an end-to-end deep learning method (without
feature engineering) for emotion recognition. The proposed
CTA-CNN-Bi-LSTM framework considered both spatial
features and bidirectional temporal features in the channel
dimension and temporal dimensions that were most relevant
to emotions in the raw EEG signals. At first, the channel-
temporal attention module suppresses the channel information
in both the EEG signal that is not related to emotion and
the noise in the spatial dimension in each channel. Later,
the CNN-RNN module first extracts the spatial features
in the recoded EEG signals and then feeds them into
the Bi-LSTM network in order. Therefore, the Bi-LSTM
learned the temporal information simultaneously from
two directions (forward LSTM for previous information
and reverse LSTM for future information) on the spatial
feature maps. Finally, the results of four group experiments
have demonstrated that CTA-CNN-Bi-LSTM improved
EEG emotion recognition compared to other methods and
achieved the highest average accuracy of 98.75% for negative,
positive, and neutral emotion recognition. Therefore, the
proposed framework reduces the emotion-independent
information and noise in the channel and temporal dimensions,
CTA-CNN-Bi-LSTM significantly improved the accuracy
of emotion recognition in the dataset compared with
existing methods.

However, this work may not achieve high emotion
recognition accuracy for new individuals and requires retraining
the model/fine-tuning the model to achieve it, which is not
conducive to later applications of real-time emotion monitoring.
In future work, after collecting EEG signals from more
individuals, perhaps self-supervised learning models such as
a contrastive learning model which learns knowledge on its
own from unlabeled data, could be used to potentially realize
a plug-and-play real-time EEG emotion recognition system.
It focuses on learning the common features between similar
examples and distinguishing the differences between non-
similar examples to construct an encoder. This encoder has the
ability to encode similar data of the same category and make
the encoding results of different categories of data as different as
possible.
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