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ABSTRACT

In this work we have studied the effect of chromatin
structure on the base excision repair (BER) effi-
ciency of 8-o0xoG. As a model system we have
used precisely positioned dinucleosomes assem-
bled with linker histone H1. A single 8-oxoG was
inserted either in the linker or the core particle
DNA within the dinucleosomal template. We found
that in the absence of histone H1 the glycosylase
OGG1 removed 8-o0xoG from the linker DNA and
cleaved DNA with identical efficiency as in the
naked DNA. In contrast, the presence of histone
H1 resulted in close to 10-fold decrease in the effi-
ciency of 8-0xoG initiation of repair in linker DNA
independently of linker DNA length. The repair of
8-0x0G in nucleosomal DNA was very highly
impeded in both absence and presence of histone
H1. Chaperone-induced uptake of H1 restored the
efficiency of the glycosylase induced removal of
8-0x0G from linker DNA, but not from the nucleo-
somal DNA. We show, however, that removal of
histone H1 and nucleosome remodelling are both
necessary and sufficient for an efficient removal of
8-0x0G in nucleosomal DNA. Finally, a model for
BER of 8-0x0G in chromatin templates is suggested.

INTRODUCTION

Eukaryotic cells are constantly subjected to oxidative stress
leading to a tremendous number of insults, which have to
be efficiently repaired. In the DNA, 8-ox0-7,8-dihydro-
guanine (8-0xoG) is one of the major lesions induced
upon oxidative stress. 8-0xoG is repaired by the Base
Excision Repair (BER) pathway (1). BER uses a limited
number of enzymes and how BER functions on naked
DNA template is well characterized. 8-0xoG is recognized

and removed by the enzyme 8-oxoguanine DNA glycosy-
lase (OGG1), which exhibits both a glycosylase and an
apurinic/apyrimidinic (AP) lyase activity (2,3). After
8-0x0G removal OGG1 nicks DNA at the site of the lesion
and then the endonuclease (APE1) creates a free 3'-hydroxyl
at the site of the nick. The resulting gap in DNA is further
filled by polymerase B and the nick is finally ligated by
DNA ligase III [reviewed in (4)].

In eukaryotic cells, DNA is organized into chromatin.
Chromatin exhibits a complex organization. The first level
of chromatin organization is the nucleosome, which
consists of an octamer of core histones (two of each
H2A, H2B, H3 and H4) around which ~147 bp of DNA
are wrapped into two left superhelical turns (5). Under
physiological conditions the nucleosome forms a rather
stable structure (6). Distinct nucleosomes, connected by
linker DNA, form the 10-nm chromatin filament (95).
The 30-nm chromatin fibre is generated at higher ionic
strength upon interaction of the 10-nm chromatin filament
with the linker histone H1 (7,8). The available data show
that the globular domain of histone H1 binds to both the
DNA minor groove located at the centre of the nucleo-
some and ~20-bp DNA at the entry/exit of the nucleo-
some (9—-11). The C-terminal domain of histone H1 (11,12)
as well as the N-terminal tail of core histone H3 (13) inter-
acts with the nucleosome linkers which leads to the for-
mation of the stem structure, where the two linkers are
brought in close vicinity to each other. The linker histones
and the N-termini of the core histones as well as their
post-translational modifications play a crucial role in the
condensation and spatial organization of both the chro-
matin fibre and the mitotic chromosomes (14-16).

How BER functions on chromatinized templates is far
from being clear. The different enzymes involved in BER
appeared to act in distinct manners on nucleosomes. In
general, the presence of nucleosomes strongly interferes
with BER (17-22). For example, uracil DNA glycosylase
(UDG) showed a strong reduction (down to 30 times) in
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accessibility in nucleosomal DNA (17-19). In addition,
the UDG efficiency appeared to depend strongly on the
rotational positioning of the inserted uracil within the nu-
cleosomal DNA (22,23), i.e. when the uracil faces the
solution it is removed as easily as in free DNA, while
the removal of uracil facing histone octamer is inhibited
by more than three orders of magnitude. The activities of
OGG1, APEI and polymerase B were strongly reduced for
an 8-0xoG located near the dyad of strongly positioned
nucleosomes and remodelling by SWI/SNF was required
for efficient repair (24). In contrast, both the FLAP endo-
nuclease (FEN1) and DNA ligase I were reported to have
similar activities on both naked DNA and nucleosomally
organized DNA (25,26).

In this work we have analysed how the BER-initiating
enzyme OGGl] triggers repair of 8-0xoG in histone H1
assembled dinucleosomal templates. A single 8-0xoG
was inserted either in the linker or within the core particle
DNA. The data show that only the removal of histone H1
is required for efficient linker 8-0xoG repair, while both
H1 removal and nucleosome remodelling are required for
repair of nucleosomal 8-0x0G.

MATERIALS AND METHODS
DNA probes

We used the strongly nucleosome positioning sequence
601 (a kind gift from Drs J Widom and B Bartholomew)
to construct our various dinucleosomal templates. To
produce dinucleosomes carrying a single 8-oxoG in the
linker DNA, DNA templates for nucleosome number one
(N1) and nucleosome number two (N2) were produced by
PCR, carrying respectively a Dralll site at 3’- and 5'-end
to allow a directional ligation. The list of all primers used
can be found in the Supplementary Materials. In order to
vary the size of the linker DNA we used different set of
primers hybridizing closer or further away from the 601
positioning sequence inserted in the plasmid pGEMT. A
short DNA carrying the single 8-oxoG was produced by
hybridization of two synthetic 20-mer oligonucleotides:
the sense with the 8-0xoG and the anti-sense free of lesion.
Annealing of these two strands creates two oriented cohesive
ends compatible with the required Dralll sites of the nu-
cleosomal templates N1 and N2. To insert the 8-oxoG
lesion we digested the PCR products corresponding to
nucleosome one and two by Dralll and ligated them se-
quentially with the short double-strand 20-mer oligo-
nucleotide. The oligonucleotides were phosphorylated on
the 5-ends to avoid formation of nicked DNA.

For the template DNA carrying 8-0xoG near the dyad
of the first nucleosome we used a previously described
DNA template for the PCR carrying two restriction sites
AccB71 and Bgll in the 601 positioning sequence for the
insertion of the 8-0xoG (24). We produced the N1 tem-
plates with 8-0xoG according to Menoni ef al. (24) and we
ligated it via Dralll to the nucleosome number two
template. Before labelling, each of the templates were agar-
ose gel purified using crystal violet staining to avoid UV
visualization and formation of any other DNA damage.
For the probes carrying 8-0xoG in the linker DNA,
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templates were digested by Bst981 and the top strand
was labelled by polymerase Klenow enzyme with
[0-**P]dTTP in the presence of 50 uM dATP and gel puri-
fied. For the probe carrying 8-0xoG near the dyad, EcoRI
digestion was performed and the bottom strand was
labelled with the same procedure.

Proteins

Conventional recombinant Xenopus laevis full length core
histone proteins were produced in bacteria and purified as
described (27). The clones encoding the human H1.5 and
the mouse NAP-1 (mNAP-1) were expressed in bacteria
and the corresponding proteins were purified as described
in (11). Briefly, the soluble H1 was purified first by SP
sepharose and then by fractionation over a Resource S
cation exchange column (Biorad). NAP-1 was purified
by Resource Q anion exchange column. Purified proteins
were analysed by 15% or 18% SDS-PAGE, stained with
Coomassie blue. RSC was purified from yeast cells by
using a standard TAP tag protocol (28). The recombinant
murine enzyme OGGI1 was purchased from Sigma-
Aldrich. According to the producer, 1 U of enzyme cleaves
50% of 0.5 pmol of DNA substrate for 10 min at 37°C.

Reconstitution and characterization of positioned
dinucleosomes

Nucleosomes were reconstituted by salt dialysis using
~100ng of the labelled DNA probe and 2.5 pg of nucleo-
somal size carrier DNA and recombinant histones (29,30).
The appropriate histone:DNA ratio was carefully adjusted
experimentally in order to reduce the content of free DNA
in all nucleosomal preparations to <2%. Electrophoretic
Mobility Shift Assay (EMSA) was carried out in 5% (w/v)
polyacrylamide gel (29:1) or 1% agarose gel (w/v) in 0.3x
TBE buffer. Details on Atomic Force Microscopy (AFM)
characterization of our positioned dinucleosomes are pro-
vided in (31). The DNase I experiments were performed as
described (32). The ratio of the amounts of DNase I used
for dinucleosome and free DNA was 1:0.25 respectively.
The micrococcal nuclease (MNase) digestion of the 230-bp
601 nucleosomes was done at room temperature for 6 and
12min in the presence of 8U/ml of the enzyme. The
reaction buffer was 10Mm Tris, pH 7.4, IlmM DTT,
25mM NaCl, 5% glycerol, 100pg/ml BSA, 1.5mM
CaCl, and 100 pg/ml of plasmid DNA. The reaction was
stopped by addition of 20mM EDTA and 0.1 mg/ml pro-
teinase K, 0.1% SDS. DNA was isolated and run on a
10% native polyacrylamide gel.

Assay for OGGI1 cleavage

The experiments were performed according to Menoni
et al. (24). Briefly OGGI1 was incubated with ~0.5 pmol
of dinucleosomal substrates, containing ~20fmol of
8-0x0G modified labelled DNA probe, either naked or
dinucleosome reconstituted, in a repair buffer consisting of
10mM Tris—HCI pH 7.4, 32mM NacCl, 2.5mM MgCl,,
200 uM EDTA, 8 mM KCI, 100 pg/ml BSA, | mM DTT,
0.02% NP40, 5% glycerol. When RSC was present, | mM
ATP was added to the reaction mixture. To maintain the
integrity of nucleosomes, all reactions were performed at
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29°C (33). Reactions were stopped by 20mM EDTA,
0.1% SDS and DNA was extracted by phenol/chloroform
and ethanol precipitated prior to be analysed on 8% acryl-
amide—8M urea denaturing gel electrophoresis. Remodelling
reactions were carried out with 2.5 U of RSC in presence of
I mM ATP.

Curves were fitted by the equation: R = (R,,t/t.)/(1+1/t,.),
where R,, is the maximum relative cleavage (%) and ¢, is
the apparent time constant. The experimental points were
fitted better by this algebraic equation than an exponential
growth function. Note, that neither the equation we used,
nor a simple exponential equation describes the true
complex enzymatic model of OGG1 cleavage that is still
under debate. In fact, we have used this equation as a
mathematically convenient way to compare apparent
time constants by using a least square algorithm provided
by OriginPro 8.5 software (OriginLab Corporation). The
reported mean values and the respective relative standard
deviations (RSD) were obtained by at least two independent
experiments.

RESULTS

In this work we aimed to study the efficiency of BER to
remove 8-0xoG lesions in dinucleosomal templates. To
this end we have used a model system consisting of
tandem repeats of two 601 sequences to reconstitute two
distinct strongly positioned dinucleosomes with 20- and
75-bp length of internal linker DNA, respectively. A
single 8-0xoG was inserted either in one of the nucleo-
somes in the vicinity of the dyad or in the centre of
linker DNA between the two nucleosomes of the dinucleo-
somal template (see schematics of the dinucleosomal tem-
plates, Figure 1A). To understand how the presence of
histone H1 affects BER, we have used dinucleosomes
assembled with histone H1. The efficiency of the BER-
initiating enzyme OGGI1 to remove the 8-oxoG and
cleave the DNA within the different templates was then
measured.

In the absence of histone H1 the linker DNA is as
accessible as naked DNA to BER

Recombinant core histones were purified to homogeneity
(Figure 1B) and used to reconstitute the dinucleosomal
templates. The reconstituted dinucleosomes were then
characterized by EMSA, AFM and DNase I footprinting
(Figure 1). The EMSA shows a single band, correspond-
ing to the reconstituted dinucleosomes with essentially no
free DNA (Figure 1C). This indicates a complete associ-
ation of the histone octamer with DNA under our experi-
mental conditions for reconstitution. The AFM visualization
shows, as expected, the presence of two nucleosomes within
the dinucleosomal template (Figure 1D). The DNase I
footprinting gives additional detail on the organization of
the dinucleosome in solution. The reconstituted template
exhibited two regions with strong protection, characteris-
tic for well-positioned nucleosomes within the dinucleo-
somal template, separated by a region with a DNase I
digestion pattern identical of naked DNA and corres-
ponding to the linker DNA. All these data demonstrate
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Figure 1. The 8-0x0G located in the linker DNA of the dinucleosome
is removed by OGG1 as efficiently as in free DNA. (A) Schematics of
the 601 dinucleosome constructs used for studying the repair of
8-0x0G. Tandem repeats of two 601 DNA sequences were used to
reconstitute positioned dinucleosomes with linker DNA (between the
two nucleosomes) of length of either 20 or 75bp. The flanking free
DNA arms at both ends of the dinucleosome were of 52 and 56 bp,
respectively (for details see Supplementary Figure S1). 8-0xoG was
inserted either in close vicinity to the nucleosomal dyad or in the
centre of the linker DNA. Experiments were carried out either in the
absence or in the presence of histone HI. (B) Eighteen percent SDS gel
electrophoresis of the purified recombinant histones (left); right (oct),
the equimolar mixture of the core histones used for the reconstitution
of the dinucleosome. (C-E): Characterization of the reconstituted
dinucleosome by EMSA (C), AFM (D) and DNase I footprinting
(E). (F): Time course of the digestion of free DNA and dinucleosomes.
Equal amounts of *>P-end labelled free DNA and dinucleosomes were
incubated with 0.5 U of OGGH for the times as indicated. The reaction
was stopped and DNA was isolated by phenol-chloroform treatment.
The products of the OGGI cleavage reaction were separated on 8%
denaturing PAGE and after exposure of the dried gel, data were
quantified and expressed as a percentage of cut fractions versus incu-
bation time. Solid curves are least squared fits of experimental points
by the formula: R = (R,t/t.)/(I+1/t.). R, values are 100% and
84+4% for DNA and dinucleosomes respectively and 1 .PNA)
1,4 = 0.94 £ 19%.

that the reconstituted dinucleosomes are strongly pos-
itioned and represent a homogenous population of
particles.

We next used these particles for studying how the in-
serted 8-0xoG within the linker DNA was cleaved and
removed by OGGI1 (Figure 1F). The same amount of
either **P-end labelled dinucleosomes (with linker length
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of 75bp) or **P-end labelled naked dinucleosomal DNA
(that was used for reconstitution) were incubated for dif-
ferent times with 0.5 U of OGGI1. The DNA was then
analysed by an 8% denaturing PAGE and the cleavage
efficiency of OGG1 was expressed as cut fraction versus
the concentration (Figure 1F). As determined by curve
fitting, half-maximal cleavage time (the cleavage time
constant) for both free DNA and the dinucleosomal tem-
plates is essentially the same. We conclude that 8-oxoG
within the linker DNA of the dinucleosome without
histone H1 is recognized and processed by OGGI1 as in
naked DNA.

The presence of histone H1 interferes strongly with the
removal of 8-0x0G from the linker DNA of the
dinucleosomes

We next asked whether histone H1 affects the efficiency of
OGGI to cleave 8-0x0G in the linker DNA of dinucleo-
somal templates. We have used NAP-1 assisted deposition
of HI to generate high-quality dinucleosomes containing
two histone H1 molecules per **P-end labelled dinucleo-
some (34). Briefly, we first assembled NAP-1-histone H1
complex at a ratio 2:1 as previously described (11). Then
we incubated the NAP-1-histone HI1 complex with
dinucleosomes (with linker DNA length of either 75 or
20bp) at ratio ~2.4:1 for 60 min at room temperature.
The dinucleosomes were separated on either 5% native
PAGE (Figure 2A) or 1% agarose gel (Figure 2B). Both
samples run as a single band with electrophoresis mobility
slightly slower than the respective control dinucleosomes
without H1 (Figure 2A and B: lines 1, 5). In contrast,
when only histone HI was directly added to the dinucleo-
some solution, the dinucleosomes migrated as a smear
throughout the length of the lane of the gel, which is in-
dicative for the formation of aggregates (Figure 2A and B:
lines 2—4, 7-9). These data illustrate, in agreement with
previous data (11), that histone H1 is properly bound to

A Linker DNA 75bp Linker DNA 20bp
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the dinucleosome when NAP-1 was used as a chaperone
for histone HI. Note that such dinucleosomes exhibit a
specific «OH footprinting pattern, reflecting the binding of
one H1 molecule at the entry/exit site of the nucleosome
within the dinucleosomal template (11). Noteworthy,
the proper NAP-1 deposition of histone H1 on nucleo-
somal DNA was also tested by using microccocal nuclease
digestion of reconstituted mononucleosomes on the
230 bp *P-body-labelled 601 fragments (Figure 2C). The
data show that the micrococcal nuclease digestion pattern
of HI1 containing mononucleosomes, contrary to
the control (without H1) mononucleosomes, showed a
‘chromatosome stop’ at 167 bp, further confirming the
proper association of histone HI with the nucleosomal
templates [Figure 2C and (39)].

By using these properly defined dinucleosomes, we next
studied the accessibility of 8-0xoG towards OGG1 within
the dinucleosomes with different linker lengths (Figure 3).
The control dinucleosomes without H1 exhibited similar
behaviour, i.e. no dependence on the length of the linker
of the 8-0x0G accessibility towards OGG1 was observed
(Figure 3A and B; the two upper panels). In contrast, the
presence of H1 dramatically affects the cleavage efficiency
of OGGTI in the linker DNA independently of its length
(Figure 3A and B; the two middle panels). Quantification
of the data showed that the rate of cleavage is ~10-fold
lower in the presence of H1 in nucleosomes with either
linker length (Figure 3A and B; the lowest panels).
Therefore, histone H1 strongly inhibits the accessibility
of 8-0x0G in a manner independent of the length of the
linker DNA.

NAP-1 mediated removal of histone H1 restores the
accessibility of linker DNA inserted 8-0xoG towards
OGG1 within dinucleosomal templates

If histone H1 was really responsible for the observed
inhibition of repair in linker-DNA inserted §8-0xoG, the
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Figure 2. NAP-1-mediated deposition of the linker histone H1 on dinucleosomes. (A and B) **P-labelled dinucleosomes with linker DNA of either 75
or 20 bp were incubated with histone H1 alone or with NAP-1-H1 (2:1) complex at the indicated histone Hl/dinucleosome ratios. The reaction
mixture was then run on native 5% PAGE (A) or 1% agarose gel (B). (C) Miccrococal nuclease digestion of the mononucleosomes. Body-labelled
mononucleosomes without H1 (lines 1, 2) and H1-containing (lines 3, 4) were digested with micrococcal nuclease and after arresting the reaction, the
digested DNA was purified and run on 10% native PAGE. Lane 5 shows the DNA size marker in base pairs. The positions of the chromatosome

band (167 bp) and the core particle (147 bp) are indicated by arrows.
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Figure 3. The presence of histone H1 strongly inhibits the efficiency of
OGGI. *¥P-end labelled control or HI containing dinucleosomes with
either 75bp (A) or 20 bp (B) linker DNA with a single 8-0xoG inserted
within the linker DNA were incubated with 0.2 U of OGGI for the
times indicated. The cleaved DNA was then isolated and separated on
8% denaturing PAGE. The positions of the full length (FL) and the
cleaved (cut) DNA are indicated. The lower panels show the quantified
data presented as percentage of cut fractions. Data were least square
fitted as described in the experimental section and Figure 1F. The ex-
perimental points were fit to the same R,, = 83% that was obtained for
the —H1 data and then fixed for the +H1 data point ﬁtting. The mean
values from two independent experiments for of 7= r,”*7/t." " were:
8.14+12.4% and 10.3+£13.2% for the 75- and 20-bp linker DNA,
respectively.

removal of H1 should restore the efficient repair of the
lesion by OGGI. To test this, we used NAP-1 to remove
H1 from the dinucleosomes containing H1 (Figure 4A).
Indeed, since NAP-1 is a chaperone of H1, the adding of
increasing amount of NAP-1 to the dinucleosome solution
would result in progressive removal of HI from the
dinucleosome and generation of Hl-depleted particles
with higher mobility and free NAP-1-HI1 complexes.
The experimental data show that this is really the case.
As seen in Figure 4A, the increase of NAP-1 leads to
dinucleosome with a faster mobility and finally, to the
generation of a structure with electrophoretic mobility
identical to a dinucleosome without H1. We attributed
this effect to the NAP-1 induced removal of histone H1
from the dinucleosomes.

We then studied how the presence of NAP-1, i.e. the
removal of HI, affects the cleavage of the linker DNA
8-0x0G by OGGI. The different samples were treated
with either 0.5 or SU of OGGI for 90 min at 29°C and
the products of the cleavage reaction were analysed by
denaturing PAGE and quantified. The results presented
in Figure 4B clearly show that in the presence of high
concentrations of NAP-1, there is no difference in the
accessibility of the 8-0xoG between dinucleosomes with
and without histone H1. We conclude that the removal
of histone H1 is responsible for this effect. In agreement
with this, we found that NAP-1 has no influence on

the cleavage efficiency of OGGI1 on dinucleosome

without H1.

The concerted action of NAP-1 and RSC is necessary and
sufficient for efficient repair of 8-0xo0G inserted in a core
particles DNA within dinucleosomal templates

How could 8-0xoG (present in nucleosomal DNA) be
removed from H1 containing dinucleosomal templates?
In a previous study we have shown that §8-oxoG could
be removed from nucleosomal templates lacking H1 only
after ATP-dependent nucleosome remodelling (24). In
addition, it was reported that the presence of H1 interferes
with nucleosome remodelling (36,37). With this in mind,
we hypothesized that the efficient repair of nucleosomal
8-0x0G requires both HI1 release and remodelling of the
dinucleosomal templates. We have studied this problem
by using dinucleosome containing H1 with an 8-0xoG
inserted in close vicinity to the dyad of one of the nucleo-
somes, since within this region the core histone-DNA
interactions are quite strong and no significant unwrapp-
ing of the DNA ends is expected (Figure 5, see schemat-
ics). The samples were incubated with either NAP-1 alone
or with chromatin remodeler RSC alone or with both (this
allowed to either remove H1 or to remodel dinucleosomes
with HI and to remodel dinucleosomes stripped from H1
by NAP-1). At the same time the dinucleosomes were
treated with OGG1 and the products of the cleavage reac-
tion were analysed as previously described (see Figure 3
for detail). The removal of histone HI has essentially no
effect on the OGGI1 cleavage of 8-oxoG (Figure 5,
compare lane 1 with lane 4), while the treatment with
RSC alone has increased the OGGI1 cutting efficiency
~5-fold (Figure 5, compare lane 3 with lane 6).
Importantly, the simultaneous NAP-1 induced removal of
histone H1 and remodelling of the dinucleosome by RSC
result in a quasi complete (~80-85%) cleavage of §-0xoG
by OGG]1 (Figure 5, lane 5). Therefore, both histone H1
removal and dinucleosome remodelling are necessary and
sufficient for efficient repair of nucleosomal 8-0x0G.

To further strengthen this conclusion we have carried
out experiments with a solution containing an equimolar
mixture of end-labelled dinucleosomes with 8-oxoG
inserted either in the linker DNA or in the core particle
DNA (see schematics in Figure 6). This sample was
incubated either with NAP-1 or with both NAP-1 and
RSC at 29°C together with 1 U of OGGI1 for 90 min.
The cleaved DNA was extracted and separated on 8%
PAGE under denaturing conditions. This design of the
experiment allows to study the accessibility of both linker
and core particle located 8-0xoG within dinucleosomal
templates in the same reaction conditions, thus, avoiding
sample to sample variations. The obtained data are in
complete agreement with the previous results. Indeed,
the NAP-1 induced removal of HI resulted in 80%
cleavage of the linker 8-oxoG, while the core particle
located one remained inaccessible to OGG1 (~10% cut).
In contrast, upon incubation with both RSC and NAP-1,
both the linker and the nucleosomal 8-oxoG within the
dinucleosomes became fully accessible to OGGI.
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Figure 4. NAP-1 mediated removal of histone HI restores the effi-
ciency of OGGI to cleave 8-0x0G in the dinucleosomal linker DNA.
(A) NAP-1 is able to remove histone HI from the dinucleosomal
template. *P-end labelled 20-bp linker DNA dinucleosomes containing
histone H1 were incubated with increasing excess of NAP-1 over nu-
cleosomes as indicated and the mixture was run on a 1% agarose del
(lanes 4-8). Napl/nuc represents the molar ratio that does not take into
account the 2-fold NAP-1 excess already present after HI deposition.
Lanes 1 and 2: dinucleosomes without histone H1. Note the increase of
the electrophoretic mobility of the dinucleosomes upon increasing the
concentration of NAP-1. (B) OGGI1 Cleavage efficiency of 8-oxoG
within the dinucleosome linker DNA. 3?P-end labelled dinucleosomes
without histone HI (lines 1, 2, 6, 7) or with H1 (lines 3-5, 8-10) were
incubated with an excess of NAP-1 over nucleosomes as indicated and
then treated with either 0.5 (lanes 6-10) or with 5 U (lanes 1-5) of
OGGT! for 90min. The cleavage reaction products were separated on
8% denaturing gel. The dried gel was processed by a Phosphoimager
(Fuji-Fla 5100) (upper panel). The position of the full length (FL) and
cleaved (cut) DNA are indicated. The quantification of the data is
shown on the lower panel. The relative SD is £9% for line 8 and
+4-5% for all other lines.

DISCUSSION

This work was focused on the effect of chromatin on BER
of 8-0xoG lesion. As a model system we have used
dinucleosomes with inserted single 8-oxoG either in the
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Figure 5. Removal of histone Hl and RSC remodelling of the
dinucleosome are necessary for efficient repair of 8-oxoG within the
nucleosomal DNA. The 20-bp linker dinucleosomes, containing a
single 8-0x0G in close vicinity to the nucleosome dyad, (see schematics
at upper panel) with or without histone H1 were treated with either 2.5
U of RSC or 18x excess of NAP-1 or with both as indicated. At the
same time the samples were treated with 1 U of OGGI for 90 min and
the cleaved DNA was run on 8% denaturing gel (middle panel). The
position of the full length (FL) and cleaved (cut) DNA are indicated; 1/
2, half of the amount of RSC; *indicates the position of the
*p radioactive label. Quantified data are shown on the lower panel
as percentage of cut fractions. The relative SD is +10-12% for lines
14 and £3.5-5% for lines 5-10.

centre of the linker DNA or in vicinity to the dyad axis
in one of the nucleosomes of the dinucleosomal template.
Dinucleosomes with different linker length were analysed.
The study was carried out with both dinucleosomal tem-
plates with or without histone H1. The efficiency of the
BER enzyme OGGl1 to remove 8-0xoG and concomitant-
ly cut the DNA was analysed. We found that OGG1 was
able to process 8-0xoG linker DNA lesion quite efficiently
in dinucleosomal templates without histone HI and that
the length of the linker DNA had no effect on the effi-
ciency of OGGI action. These results are in agreement
with Nakanishi et al. (38) showing that that linker DNA
is as accessible as naked DNA to a glycosylase in an olio-
gnucleosome template. Noteworthy, excision of linker
DNA pyrimidine (6—4) pyrimidone photolesions by
purified human NER factors was strongly inhibited (39).
These differences in the activity between NER and BER
might reflect the much larger size of the NER machinery,
which would require a space greater than the space of the
linker DNA to remove efficiently the photolesions.

The presence of histone HI profoundly affects the ac-
cessibility of 8-0xoG to OGG1 within the linker DNA, i.e.
the initial rate of 8-0x0G cleavage drops to ~10-fold in the
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presence of H1. These data are in agreement with the
recently reported reduction of the efficiency of removal
of uracil by the glycosylase UDG at sites located in the
vicinity where the globular domain of H1 is proposed to
bind the nucleosomal DNA as well as within the extra-
core DNA (22).

NAP-1 generated stripping of histone H1 from the
dinucleosomes restores the efficiency of OGGI to
remove 8-0x0G from the linker DNA. Interestingly,
both removal of histone H1 and remodelling of the nu-
cleosomes by RSC were necessary for complete repair of
the core particle located 8-0xoG. The requirement for ef-
ficient repair of the removal of linker histone HI1 from the
dinucleosomal templates might be associated with the in-
ability of chromatin remodelling machines to strongly
remodel dinucleosomes. Indeed, it was reported that linker
histones completely inhibited the remodelling of chroma-
tin arrays by CHDI1 and to ~50% by ACF (36,37,40).
This inhibition might be associated with the presence of
H1-induced stem structure, resulting in close juxtaposition
of the exit/entry of the linker DNA (11). The stem

RSC — - +
Napt — 4+ + -
H1/Napt + + +
N — - [—full-
length
(O] .
- 2 — e = —|linker
T o]
o
&
o
5 — - |—core
o)
& LE
(5] (5]

(o]
o
|

_|_
1 2 3 4

Figure 6. OGG1 cleavage of a mixture of two dinucleosome templates
containing a single 8-oxoG either in the linker or within the core
particle DNA. The 20-bp linker H1 containing dinucleosomal templates
were mixed in equimolar amounts and incubated either with NAP-1
(18x excess) alone or with both RSC (2.5 U) and NAP-1 as indicated.
The samples were simultaneously treated with 1 U of OGGI and the
cleaved DNA was run on 8% denaturing gel (upper panel). The arrows
in the schematics (left) show the site of cleavage and indicate the
mobility of the cleaved dinucleosomal template either in the linker
(lower mobility) or in the core particle DNA (higher mobility). After
exposure of the dried gel, the percentage of cut fraction within both
the linker and the core particle DNA was measured (lower panel). The
relative SD is +11% for the two lowest values in lines 1 and 2 and
+3.54% for the remaining values.

structure would interfere with the remodelling process
and only part of the nucleosomes can be efficiently
remodelled.

We suggest that the NAP-1 induced stripping of H1
[which leads to disruption of the stem structure (11)]
allows complete remodelling of the dinucleosomes by
RSC and subsequently an efficient removal of 8-0xoG.
In other words, in order to initiate repair of the 8-0xoG
from the nucleosomes, they have to be remodelled, but
this last process requires chaperone induced eviction of
histone HI.

Based on our data we suggest the following mechanism
for 8-0xoG repair (see schematics, Figure 7). BER initi-
ation of 8-0xoG in the linker DNA requires only the
removal of histone H1. This could be achieved cither by
a histone H1 chaperone or by the remodeller (40) or most
probably by the concerted action of both of them.
Although, histone HI in contrast to core histones, is
quite mobile in vivo and it is exchanged continuously
between different chromatin regions (41-43). This high
mobility of HI would make the linker DNA localized
8-0x0G accessible to the BER enzymes and thus, easier
to be repaired. The situation appeared to be more complex
for the repair of 8-0x0G localized in the core particle. In
this case, not only H1 has to be removed, but the nucleo-
some has to be remodelled (44). This suggests that in vivo
the repair of nucleosomal 8-0xoG would require the con-
certed action of both HI chaperone and a dedicated
remodeler.

Interestingly, in Tetrahymena cells the dynamics of
binding of linker histones to chromatin depend on ATP-
dependent process (45). Chromatin remodelers are able to
remodel nucleosomes thanks to the freed energy by the
hydrolysis of ATP. Thus, in living cells the remodelers
themselves could play a role in the mobility of histone

H1
NAP1

Figure 7. Model of the NAP-1 and RSC assisted initiation of BER
within dinucleosomes. OGGI1 is unable to repair 8-0xoG (denoted by
Asterisk) in dinucleosomal templates. Removal of H1 is sufficient for
8-0x0G repair in the linker DNA, while both H1 removal and nucleo-
some remodelling are required for the excision of 8-0xoG located
within nucleosomal DNA.



H1 and consequently in the repair of oxidative lesions by
BER enzymes.
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