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A B S T R A C T

Purpose: To determine which combination of imaging modalities/contrast, radiomics models, and how many
features provides the best diagnostic performance for the differentiation between low- and high-grade soft
tissue sarcomas (STS) using a radiomics approach.
Methods: MRI and CT from 39 patients with a histologically confirmed STS were prospectively analyzed.
Images were evaluated both quantitatively by radiomics models and qualitatively by visual evaluation (used
as reference) for grading (low-grade vs high-grade). In radiomics analysis, 120 radiomic features were
extracted and contributed into three models: least absolute shrinkage and selection operator with logistic
regression(LASSO-LR), recursive feature elimination and cross-validation (RFECV-SVC) and analysis of vari-
ance with SVC (ANOVA-SVC). Those were applied to different combinations of imaging modalities acquisi-
tion, with and without contrast medium administration, as well as selected number of features.
Results: Fat-saturated T2w (FS-T2w) MR images using RFECV-SVC radiomic models involving five features
yielded the best results with mean sensitivity, specificity, and accuracy of 92% § 10%, 78% § 30%, and 89% §
12%, respectively. The performance of radiomics was better than that of conventional analysis (67% accuracy)
for STS grading. Combination of multiple contrast or imaging modalities did not increase the diagnostic
performance.
Conclusion: FS-T2w MR images alone with a five-feature radiomics analysis usingh REFCV-SVC model may be
able to provide sufficient diagnositic performance compared to conventional visual evaluation with multiple
MRI contrast and CT imaging.
© 2022 The Authors. Published by Elsevier Masson SAS on behalf of Société française de radiologie. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Soft tissue sarcomas (STS) are a rare and heterogeneous group of
lesions representing less than 1% of all tumors. The prognosis of
patients with STS is dependent on tumor grade [1], which also
strongly influences the therapeutic decision making [2]. Non invasive
STS grading could have an impact on patient management as it could
help prioritize and guide patients with more aggressive lesion to spe-
cialized cancer centers, with a potential prognostic benefit [3].
Improved non-invasive staging may potentially facilitate the man-
agement of STS reducing the need for percutaneous or surgical
biopsy, thus could provide follow-up criteria for patients undergoing
adjuvant therapy [4]. High-grade STS tend to present higher necrosis
ratios and greater histological heterogeneity, which could be poten-
tially assessed by texture analysis (TA). TA assesses the intensity het-
erogeneity of the pixels/voxels of an image through mathematical
analysis, hence overcomes the limitation of subjective image inter-
pretation [4-6]. Since the area under the receiver operator character-
istics curve (AUC ROC) was often used to evaluate the diagnostic
performance in terms of sensitivity and specificity, in TA, AUC ROC
can be adopted as a metric to optimize the modelling procedure and
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Fig. 1. Flow chart resuming the patients included and excluded with the final study
population.

Table 1
Patient’s demographic characteristics and histologic classification of the STS
evaluated.

Characteristics All
patients

Low-Grade
(Grade I)

High-Grade
(Grade II and III)

Age (years) 64§ 16 53 § 19 67 § 14
Gender
Men 25 (64%) 6 (15%) 19 (49%)
Women 14 (36%) 8 (21%) 11 (28%)
Location
Trunk* 6 (15%) 1 (3%) 5 (12%)
Extremities 33 (85%) 7 (18%) 26 (67%)
Final Grade
I 8 (21%)
II 21 (54%)
III 10 (26%)
Histological type
Myxofibrosarcoma 7 (18%) 4 (10%) 3 (8%)
Leiomyosarcoma 2 (5%) 2 (5%)
Myxoid liposarcoma 1 (3%) 1 (3%)
Fusiform cell sarcorma 12 (31%) 1 (3%) 11 (28%)
Dermatofibrosarcoma

protuberans
1 (3%) 1 (3%)

Rhabdomyosarcoma 2 (5%) 2 (5%)
Undifferentiated sarcoma 14 (36%) 14 (36%)

* three in the thoracic wall, one in the pelvis, one in the posterior cervical
soft tissues, and one in the posterior abdominal wall

B. Chen, O. Steinberger, R. Fenioux et al. Research in Diagnostic and Interventional Imaging 2 (2022) 100009
identify useful imaging features as potential endpoints imaging bio-
markers [7].

In recent years, radiomics has been shown to improve lesion char-
acterization by feeding a large number of features (e.g., texture
parameters, geometry information, wavelet reconstruction, and his-
togram information) extracted frommedical images to artificial intel-
ligence based algorithms [6]. Radiomics improves lesion
characterization and has shown a good correlation with histological
tumor grades [5,8-10]. Although standardization of radiomics meth-
ods has been proposed, there is no consensus on the optimal imaging
strategies (e.g., whether CT or MRI should be used, or whether con-
trast enhancement imaging is superior to native contrast, etc.) [11].
Moreover, the application of radiomics is technically complex and
depends on various factors such radiomics algorithm, quantity, and
quality of the texture features analyzed, all of which may have an
impact on diagnostic performance. [10,12,13].

The reported performance of MRI-based radiomics for the differ-
entiation between low- and high-grade STS varies in the literature
(AUC ROC varying from 0.78 to 0.92) [10,12]. Additionally, CT based
radiomics models have shown promise for the evaluation of tumors
of various organs and systems (liver, bowel wall, lung, and kidney);
however there is little information available on the application of this
method for STS grading [14-19]. In this study, we sought to evaluate
the diagnostic performance of radiomics for the differentiation
between low- and high-grade STS with various imaging contrasts/
modalities (fat-saturated T2-weighted, contrast enhanced fat-satu-
rated T1-weighted MR image sequences, and contrast-enhanced CT)
and technical factors (radiomics models and number of features).

2. Materials and methods

2.1. Patients selection

52 patients with a histologically confirmed STS who underwent
contrast-enhanced MRI and contrast-enhanced CT from January 2010
to March 2017were initially identified in the clinical research Tumo-
Osteo (Clinical trials number NCT02895633). All patients were adults
and provided written informed consent. Seven patients without his-
tological confirmation and one with important metallic artifacts were
excluded. Five other patients were excluded because contrast-
enhanced CT was not available. Thus, the final study population com-
prised 39 patients (Fig. 1). In this final population, there were 25 men
and 14 women (M/F ratio = 1.8/), mean age 64 § 16 (between 23 and
97). This retrospective study was approved by the local ethics com-
mittee.

2.2. Pathologic analysis

Tumor grade assessment was performed using needle core biopsy
material for each tumor according to the French soft tumor grading
system (FNCLCC [20]). FNCLCC grade I STS were considered as a group
as these tumors can be considered as low-grade, and are often treated
by surgery alone with a low risk of local or metastatic recurrence.
FNCLCC grades II and III STS were grouped as these lesions can be
considered as high-grade and usually require adjuvant chemotherapy
and radiotherapy due to the risk of local recurrence and metastatic
disease [21,22]. In the included population, there were eight grade I,
21 grade II, and 10 grade III STS, yielding eight low-grade and 31
high-grade tumors. The detailed histologic characteristics of the
tumors studied are presented in Table 1.

2.3. Imaging acquisition

Each patient underwent MR and CT acquisitions on the same
day. MR images were obtained from two different units: a 1.5T MR
scanner (SignaHDxt 1.5T, GE Healthcare, Milwaukee, WI, USA) (34
2

patients), or a 3T MR scanner (Discovery MR750W 3.0 T, GE
Healthcare, Milwaukee, WI, USA) (five patients). MR protocol
included a fat- saturated using CHESS technique (FS), T2-weighted
sequence, a non contrast enhanced (CE) FS T1-weighted sequence
and a CE FS T1-weighted MR images sequence (contrast medium:
0.1 ml/Kg of Gadobenate Dimeglumine, Multihance� Bracco Imag-
ing�, Milan, Italy). CT acquisitions (Aquilion One, Canon Medical
Systems, Otawara, Japan) were performed the same day as MRI
after contrast media injection (Iomeprol-400, Iomeron� Bracco
Imaging�, Milan, Italy). Contrast medium (1.5-2ml/kg up to a maxi-
mum of 150ml) was injected at 4-5 ml/sec in a peripheral vein.



Table 2
MRI and CT acquisition parameters.

Modalities MRI CT

Type of acquisition T2w FS CE T1w FS CE CT
TR (ms) 2500-5277 665
TE (ms) 44-75 11
Flip angle (°) 80-90 90
Bandwidth (kHz) 19-41.7 14.7-62.5
NEX 2 - 6 1 - 3
ETL* 8 - 22 2 - 4
Gap (mm)* 0.2-3 0.2-3
FOV (mm)* 156 £ 100-

521 £ 300
140 £ 90-

521 £ 300
200*160-

Matrix size* 224 £ 224
−512 £ 512

352 £ 320-
512 £ 384

512 £ 512

Slice thickness
(mm)*

2 - 4 2 - 4 0.5**

* Parameter variation depending on patient body habitus.
** For CT, the slice thickness is “reconstruction slice thickness”
T2-weighted fat-saturated = T2w FS
Contrast-enhanced T1-weighted fat-saturated = CE T1w FS
Contrast-enhanced CT = CE CT
Field-of-view = FOV
Number of excitations = NEX
Echo train length = ETL
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The acquisition parameters are detailed in Table 2 . Due to the var-
ious locations of STS, the resolution of MRI and CT varied from
patient to patient.

2.4. Tumor segmentation

The MR data were segmented by a research radiographer (A.B.) by
free hand tumor contouring on axial FS T2w and CE FS T1w
Fig. 2. Case of a 25-year-old male with a prior diagnosis of type I neurofibromatosis with a p
saturated contrast-enhanced T1-weighted (B), axial fat-saturated T2-weighted MR images (
ment of the left thigh. Pathological analysis was compatible with a malignant peripheral ne
are identified by a free-hand ROI (dashed white line).
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sequences only using the ORS visual software (v.1985, Object
Research Systems (ORS) Inc. Montreal, Quebec, Canada) and validated
by a radiologist (O.S.) with three years of clinical experience in mus-
culoskeletal radiology. CT images were segmented by the same radi-
ologist (O.S.) with a software adapted to the segmentation of studies
with a large number of slices using a “sparse segmentation” tech-
nique (e.g., the software does automatic contour interpolation based
on the manual contouring of a few slices) (MITK 2016.11.10 v.
Win64, Medical Imaging Interaction Toolkit, Heidelberg, Germany)
(Fig. 2) [23]. The segmentation process was estimated to last 10
minutes per imaging modality.

2.5. Radiomics analysis

Image analysis was performed using the open source pyradiomics
platfom with ‘’Scikit-learn” library (v 3.7.5 Python software founda-
tion, Beaverton, USA) following the image biomarker standardization
initiative (IBSI) [17].

Preprocessing step: B-Spline interpolation was used to generate
isotropic voxel size in all image data sets (pixel spacing and slice
thickness were set to 0.4-0.6mm). Image datasets were also normal-
ized to the scale of 0-100 and quantized within 20 bins to share a
similar voxel intensity range. Voxels with intensity values outside
the expected range were also removed.

Feature extraction step: In order to test what types of images are
necessary when applying radiomics anlaysis in terms of providing
better diagnostic performance, features were extracted using pyra-
diomics (IBSI proved, for detailed extracted feature types, see Fig. 3)
in the following image set combinations:

- Set 1: Contrast-enhanced CT (CE CT);
- Set 2:T2-weighted fat-saturated (T2w FS);
rogressively enlarging mass of the posterior left thigh. Axial T1-weighted (A), axial fat-
C) and axial contrast-enhanced CT (D) revealed a large mass in the posterior compart-
rve sheath tumor of the sciatic nerve (white arrows). In each image, tumor boundaries



Fig. 3. Extracted feature types in pyradiomics. A) Histogram-based first-order features. B) Morphologic features related to the 2-D and 3-D tumor representation. C) Texture features
derived from gray-level co-occurrence matrix (GLCM), gray level run length matrix (GLRLM), gray level size zone matrix (GLSZM), neighboring gray-tone difference matrix
(NGTDM), and gray level dependence matrix (GLDM).
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- Set 3: Contrast-enhanced T1-weighted fat-saturated (CE T1w FS);
- Set 4: both FS T2w and FS CE T1w FS (MR combined);
- Set 5: All images included (all combined)

Radiomics modelling step: After radiomics feature extraction, three
commonly used radiomics models were applied, and each model
included feature selection and grading:

- Recursive feature elimination with cross-validation (RFEVC) fol-
lowing a support vector classification (SVC) which eliminates the
least important features making until the desired number of fea-
tures is reached [24].

- Analysis of variance (ANOVA) which uses a univariate feature
selection method also followed by a SVC technique.

- Logistic regression (LR) with least absolute shrinkage and selec-
tion operator (LASSO) technique used for feature selection [25].

Different number of selected features (five, 10, 15 and 20 features)
were evaluated in all datasets and models.

75% of the evaluated datasets composed the training set, and the
remaining 25% for the test set. Dataset selection was performed ran-
domly using a stratified method that kept the same proportion of
low- and high-grade tumors in either group. A nested cross-valida-
tion framework (50 iterations for the inner loop and 20 iterations for
4

the outer loop) was implemented with the synthetic minority over-
sampling technique (SMOTE) to compensate for the problem of a
small population with imbalanced groups. F1-score, accuracy and
AUC ROC were output and used as metrics to optimize the radiomics
models.

The computation time of each model per feature group was 3
mins for LASSO-LR, 1.9 mins for RFECV-SVC and 2.3 mins for ANOVA-
SVC using a workstation, (CPU Intel XeonW-2125, 32 G memory).

2.6. Visual tumor grading

Visual tumor grading was performed by a second radiologist (P.T.)
with 11 years of clinical experience in musculoskeletal imaging, on
MR sequences (FS T1w, FS T2w and CE FS T1w). The reader was
blinded to histological findings. STS were classified as low or high
grade considering various criteria reported in the literature: depth
(superficial versus deep with respect to the superficial aponevrosis),
size, tumor margin, intratumoral heterogeneous signal intensity on
T2w images, and presence of non-enhancing tumor areas suggestive
of necrosis [26-28].

2.7. Statistics

Statistical analysis was performed with Python software
(v 3.7.5 Python software foundation, Beaverton, USA). Pathologic
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analysis was considered as the standard of reference. The results
for all models and all image datasets were exported to different
confusion matrix to allow receiver operating characteristic (ROC)
analysis. The sensitivity, specificity, accuracy, and the AUC ROC
for the differentiation between low- and high-grade tumors were
considered. The influence of the imaging modality, number of fea-
tures, and radiomics model on diagnostic performance was evalu-
ated considering all data available for each variable. One-way
ANOVA was used to evaluate the statistical significance of differ-
ences in accuracy and ROC AUC in the subgroups studied. A p
value of 0.05 was considered as the threshold of statistical signifi-
cance. Quantitative data are presented as mean § standard devia-
tion (range).

3. Results

3.1. Radiomics models and number of features

The choice of radiomics model (i.e., RFECV-SVC, ANOVA-SVC,
and LASSO-LR) significantly influenced the accuracy and ROC AUC
values for the differentiation between low- and high-grade
tumors (p = 0.001 and 0.01 for accuracy and ROC AUC, respec-
tively). The RFECV-SVC model yielded the best performance with
a mean accuracy and ROC AUC of 86% § 4% and 89% § 5%, respec-
tively. The performance was slightly lower with ANOVA-SVC and
LASSO-LR. A mean sensitivity and specificity of 90% § 4% and 69%
§ 12% could be reached with the RFECV-SVC model.

The number of features selected did not have a noticeable impact
on the performance for STS tumor grading (p = 0.9). The mean accu-
racy and ROC AUC for the analysis of five, 10, 15, and 20 features var-
ied from 81-82% § 4-5% and 84-85% § 6-7%.
Fig. 4. Sixty-six years old women with a 3 month history of a left forearm subcutaneous ant
rated (B), axial T2-weighted fat-saturated MR images (C), axial contrast-enhanced CT (D) sho
adjacent to the radiobrachialis muscle with irregular contours. On visual analysis, this tumo
gins. The texture analysis on T2-weighted fat-saturated with RFECV+SVC and 5 features class
tumor spindle cell sarcoma.
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3.2. Influence of imaging modalities

As the RFECV-SVCmodel presented the best performance for the dif-
ferentiation of low- and high-grade STS, the evaluation of the perfor-
mance of the different image modalities was performed with this
model only using five features. The imaging modality significantly influ-
enced accuracy and ROC AUC for the differentiation between low- and
high-grade STS (p < 0.0001). FS T2w images alone presented the best
overall performance with an accuracy and ROC AUC of 89% § 12% and
94% § 11%, respectively. The five following features from FS T2w MR
images, shape flatness, GLSZM size zone nonuniformity, GLDM large
dependence high gray level emphasis, GLCM informational measure of
correlation 2, and 1st order minimum were identified (for detailed for-
mula and definition of each features, please refer to [11]). The perfor-
mance of CE CT only and of FS CE T1w only was slightly lower than that
of FS T2w. Merging imaging modalities did not improve the overall per-
formance for the differentiation between low- and high-grade STS. The
best overall sensitivity (93% § 7%) was reached when all image sets
were merged, and the best overall specificity (85% § 24%) was reached
when the MR image sets were merged.
3.3. Visual evaluation

Regardless of the image set evaluated, radiomics analysis yielded
better performance than visual tumor grading, which presented an
accuracy of 67%. The sensitivity and specificity of the radiomics analy-
sis of T2w FS images were also higher than that of visual tumor grad-
ing (Fig. 4).

The detailed results for all the analysis are presented in Table 3.
ero lateral mass. Axial T1-weighted (A), axial contrast-enhanced T1-weighted fat-satu-
wing a deep subcutaneous fusiform mass fusing along the the deep fascia of the forarm
r was classified as a low-grade with a single agressive criterium : irregular tumor mar-
ified this tumor in high grade and the final histologic diagnosis was that of a high grade



Table 3
Diagnostic performance of the radiomics for the differentiation between low- and high-grade STS. Best results in bold letters and in dark grey background.
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4. Discussion

The radiomics (RFECV-SVC model on T2w FS images) yielded
an overall performance for the differentiation between low- and
high-grade STS (89% accuracy) and was better than that of visual
evaluation of STS grading using the most commonly reported
indicators of high-grade tumors (67% accuracy)(26−28). Com-
pared to the literature, the radiomics performance was compa-
rable to that reported by Zhang et al. [10] and superior to that
reported by Peeken et al. [12], which could be related to the
fact that a larger population was evaluated by the latter authors
reducing the probability of an overtraining effect. This indicates
a potential benefit of radiomics for non-invasive tumor grading,
which might have implications in patient management.

The radiomics model and the imaging modality influenced
the diagnostic performance of radiomics for the grading of STS
(p < 0.01). The RFECV-SVC model yielded the best diagnostic
performance for sarcoma grading in the study population. The
radiomics model is a mathematical process that is influenced
directly feature selection and sample classification, both para-
mount components of radiomics analysis. However, in the studied
population the overall diagnostic performance was not influenced
by the number of features evaluated. Using this model the best
performance was obtained with FS T2w images, whereas the best
sensitivity and specificity results were obtained using a combina-
tion of various imaging modalities. Although further confirmatory
studies are necessary, the use of a single image modality (FS T2w
images) with the RFECV-SVC model and any number of features
can be proposed for non-invasive STS grading based on radio-
mics.

Contrary to what might be expected, radiomics based on CE FS
T1w images yielded similar or worse results than the other image
modalities evaluated. This could at least partially be explained by
signal saturation effects in highly vascularized tumors artefactu-
ally reducing voxel heterogeneity. As CT is less sensitive to con-
trast saturation, this could also explain the differences in
performance with respect to CE FS T1w images. The histological
subtype could also have an distinct influence on the radiomics
phenotype of each imaging modality, which could translate to dif-
ferences in performance [12]. Although CE FS T1w MRI might not
be the best option for a radiomics based tumor grading, contrast-
enhanced MRI remains paramount for local staging and biopsy
planning of soft tissue sarcoma [29].

There are several limitations to this work. Firstly, the number
of STS evaluated was small and comprised tumors with various
histologic subtypes. However, the main objective of this work
was not to evaluate the diagnostic performance of radiomics in
STS grading, but to evaluate the impact of the imaging protocol
to radiomics models. Although the SMOTE technique was used to
overcome this limitation [30], it has to be admitted that a bigger
multi-centric study is necessary to generalize the conclusion in
which other techniques such as balanced accuracy should be con-
sidered. Segmentation was not fully automatic and was time-con-
suming procedure, and can introduce subjective bias [31]. Other
commonly used MRI sequences for the evaluation of soft-tissue
tumors, such as T2 STIR, non contrast enhanced T1-weighted and
post-contrast T1-weighted or T2-weighted sequences without fat
saturation, were not evaluated in this study. The histological sub-
types and the prognosis of pediatric soft tissue sarcoma is differ-
ent than that of adults and were not evaluated in this study [32].
Pathological analysis was performed on core biopsy material
instead of incisional biopsy which could have led to an underesti-
mation of the tumor grade [33]. The influence of this issue was
limited by the fact that tumors graded II and III were evaluated
in association.
7

5. Conclusion

Radiomics analysis performed better than visual evaluation for
the non-invasive grading of STS, confirming the potential role of this
technique. The RFECV- SVC model applied to FS T2w images yielded
the best overall performance to grade STS among the three imaging
sets evaluated, even though the best sensitivity and specificity values
were reached by merging these image sets. This information might
have a positive impact on protocol optimization and post-processing
for radiomics analysis of STS, potentially increasing the performance
of non-invasive tumor grading.
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