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ABSTRACT

Structure-guided drug design depends on the cor-
rect identification of ligands in crystal structures of
protein complexes. However, the interpretation of the
electron density maps is challenging and often bur-
dened with confirmation bias. Ligand identification
can be aided by automatic methods such as Check-
MyBlob, a machine learning algorithm that learns
to generalize ligand descriptions from sets of moi-
eties deposited in the Protein Data Bank. Here, we
present the CheckMyBlob web server, a platform
that can identify ligands in unmodeled fragments of
electron density maps or validate ligands in exist-
ing models. The server processes PDB/mmCIF and
MTZ files and returns a ranking of 10 most likely lig-
ands for each detected electron density blob along
with interactive 3D visualizations. Additionally, for
each prediction/validation, a plugin script is gener-
ated that enables users to conduct a detailed anal-
ysis of the server results in Coot. The CheckMy-
Blob web server is available at https://checkmyblob.
bioreproducibility.org.

GRAPHICAL ABSTRACT

INTRODUCTION

Many macromolecular crystal structures contain ligand
molecules that can reveal the function of the protein or nu-
cleic acid. Ligands are usually manually modeled by crys-
tallographers, which requires good judgment and expertise.
This process is time-consuming and prone to human error,
particularly when the resolution of the diffraction data is
not very high, there is local disorder, or the ligand is bound
to only a fraction of the molecules. The often-questionable
assignment of ligands to electron density ‘blobs’ (1) shows
that automatic methods for ligand recognition and valida-
tion are needed to streamline the interpretation and remove
potential cognitive bias (2).

Several approaches are used to automate fitting known
ligands to electron density maps. They are typically based
on recognition of the ligand’s core atoms followed by it-
erative element addition (3,4), Metropolis-type optimiza-
tion (5), or similar techniques (6–8). These methods can
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be adapted to identify unknown ligands by iteratively fit-
ting moieties from a predefined list of candidates, an ap-
proach (9) that was reported to achieve 48% accuracy in
recognizing instances of the 200 most frequently observed
ligands in structures stored in the Protein Data Bank (PDB)
(10). However, for thorough large-scale searches evaluating
tens or hundreds of ligands, these approaches can be pro-
hibitively slow. Alternatives to iterative fitting mainly use
mathematical descriptions of 3D electron density map frag-
ments (11–15). Although these methods are much faster
than iterative ligand fitting, the best approaches from this
group only achieve 30–32% accuracy in identifying the cor-
rect ligand from a list of the 100 most common ligands
(13,15).

CheckMyBlob (16) is a machine learning based algo-
rithm that identifies ligands in electron density maps. In
contrast to the methods mentioned above, CheckMyBlob
learns to generalize ligand descriptions from sets of moi-
eties deposited in the PDB, rather than comparing density
maps to theoretical models, graphs, or selected template
structures. Moreover, in contrast to other methods, the al-
gorithm does not require human intervention during the lig-
and recognition process, making it a completely automatic
approach for the initial interpretation of residual electron
density blobs after structure determination and preliminary
biopolymer refinement. In benchmark tests on portfolios of
up to 219 931 ligands, CheckMyBlob achieved 73% accu-
racy in recognizing instances of the 100 most popular lig-
ands and 56% accuracy in recognizing the 200 most popular
ligands, while requiring significantly less time than compet-
itive approaches (16).

Here, we present the CheckMyBlob web server, a tool
that helps users identify ligands in unmodeled fragments of
electron density maps or validate ligands in existing models.
The web server uses the CheckMyBlob algorithm trained
to recognize over 200 classes of ligands grouped accord-
ing to their geometry and molecular weight. Moreover, the
web server model was trained to recognize metal ions, wa-
ter molecules, and polymers (ligands that the PDB encodes
as several monomers). The server visualizes the detected
electron density blobs, and for each prediction/validation,
a plugin script is generated that enables users to analyze the
results in Coot (17). To the best of our knowledge, this is
the first online tool to automatically identify and predict
ligands in electron density maps.

MATERIALS AND METHODS

Data collection and curation

To obtain training data for the ligand recognition model,
we downloaded all PDB entries as of 19 January 2020. We
converted the associated structure factors from mmCIF to
mtz format using the cif2mtz program from the CCP4 suite
(18). Due to the large number of water molecules in macro-
molecular structures, only a subset was added to the train-
ing data. In an attempt to sample water molecules from
a diverse set of structures, we divided the pool of avail-
able PDB deposits into 25 evenly-populated resolution bins.
Next, within each bin we chose deposits that were non-
redundant at a 50% pairwise sequence identity threshold, as
calculated by BLASTclust (19). Therefore, to sample water

molecules we chose structures of proteins that were signifi-
cantly different from each other. This procedure resulted in
241 709 water molecule blobs extracted from 10 726 struc-
tures, which were later filtered according to various quality
criteria (see below). In total, the data collection process re-
sulted in 957 855 blob descriptions.

As input to the ligand identification pipeline, we calcu-
lated Fo – Fc electron density maps, with 0.2 Å grid spacing,
based on data in the mtz files and on atomic coordinates
of the main-chain and side-chain atoms. Small-molecule
moieties and solvent molecules were excluded. The result-
ing partial models were refined with five cycles of REF-
MAC (20) to reduce the ‘memory’ and modeling bias of the
excluded molecules in the calculated structure factors and
maps. Next, blobs were automatically found by analyzing
all positive electron density peaks within the Fo– Fc map.
To mitigate the problem of ligands being divided into mul-
tiple blobs, the system detected local maxima, skeletonized
the electron density within each blob’s isosurface, and com-
bined adjacent blobs when the distance between the local
maxima or skeleton nodes was less than 2.15 Å (16). Any
fragments of electron density in the blob isosurface that
overlapped with the isosurface of the modeled biopolymer
atoms were cut out from the blob. Finally, each detected lig-
and was described by a set of numerical features, such as
3D shape descriptors, blob volume, map statistics, and PCA
eigenvalues based on positive peaks from Fo– Fc maps. A de-
tailed description of the data processing, ligand detection,
and ligand label assignment methods can be found in (16).

The final training data set consisted of ligands from X-ray
diffraction experiments of at least 4.0 Å resolution. We also
eliminated all suspicious deposits and ligands according to
various quality criteria, such as RSCC < 0.6, real space Zobs
(RSZO) < 1.0, real space Zdiff (RSZD) ≥6.0, R factor >0.3,
or occupancy <0.3. The details of the filtering process are
described in (16). The resulting training data set consisted
of 696 887 examples of blobs, which were assigned ligand
labels (clustered).

Ligand clustering

Several ligands are indistinguishable by electron density
alone. For example, for most resolution ranges, it is ex-
tremely challenging to distinguish between 6, 7 or 8 elec-
trons (carbon, nitrogen, oxygen) or distinguish between sin-
gle, double, or triple bonds in some configurations. To im-
prove the robustness of the classification algorithm, we de-
cided to cluster ligands based on the expected shape of
their electron density derived from their chemical defini-
tions. Namely, we considered the atom connectivity, chiral-
ity and significant differences in the number of electrons but
disregarded atom types and bond order in some equivalent
bond configurations. The clustering procedure was as fol-
lows:

1. Group molecules by matching number of atoms, rings,
and aromatic rings;

2. Group by connectivity (matching substructures using
generic atoms and generic bonds);

3. Check if the chirality of all matching combinations
agrees;
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Figure 1. Schematic of the ligand clustering procedure. Arrows depict example cluster splits based on different criteria at subsequent stages of the process.

4. Check if the following SMART patterns match in
equivalent positions: [!D1]#[!D1] (non-terminal triple
bond), [!D1]=*=[!D1] (subsequent non-terminal double
bonds), [D1]#[D2]-* or [D1]=[D2]=* (linear configura-
tion of three atoms);

5. Check if the equivalent atoms are in the same atomic
number group (<5, 5–13, 14–20, 21–31, 32–38, 39–49,
>50).

A schematic of the clustering procedure is presented in
Figure 1.

Clustering was performed using RDKit with PostgreSQL
and Python interfaces (https://www.rdkit.org). Chemical
descriptions of ligands were based on the SMILES and
InChI descriptors provided by the PDB.

Classification model

The primary classification model was trained to recognize
the 219 most popular ligand groups (clusters). This num-
ber was achieved by limiting the training to classes with at
least 100 examples in the training set. All the ligands that
were not in those 219 groups were labeled as a separate class
called rare. When the primary classification model predicts
rare, the example is additionally processed by a secondary
model trained only on ligands in the rare group.

The server’s primary classification model was trained us-
ing the gradient boosting machine (GBM) algorithm (21).
The classifier used the same features and hyperparameters
as described in (16). To preprocess the data, the server uses
the scikit-learn library v.0.20.4, whereas the GBM imple-
mentation was taken from Microsoft’s LightGBM package
v.2.3.0. The secondary model that provides predictions for
the class rare was a 1-NN classifier (22). By using a 1-NN
classifier as a secondary model, even ligands that occur only
once in the PDB have a chance of being predicted.

Model evaluation results

The resulting machine learning model was first validated
in a stratified 10-fold cross-validation experiment involving
the gathered 696 887 training ligand instances with a mean
resolution of 2.2 Å. The model achieved 71% accuracy and
95% top-10 accuracy (the chance that the correct ligand

Table 1. Basic statistics and average predictive performance metrics with
standard deviations (in parentheses, in the unit of the last significant digit
of the mean value) on the cross-validated (10-fold CV) training set and the
holdout test set

10-fold CV Holdout set

Ligand instances 696 887 17 150
Mean resolution (Å) 2.2 2.5
Accuracy (%) 71.2(9) 58.9
Top-5 accuracy (%) 90.7(5) 87.2
Top-10 accuracy (%) 94.9(2) 92.5
Micro-averaged recall (%) 71.2(9) 58.9
Micro-averaged precision (%) 69.3(11) 62.7
Micro-averaged F1 (%) 69.3(11) 55.7
Cohen’s kappa (%) 64.6(12) 46.2

group is within the server’s suggestion of 10 ligands). After
the model was created, we processed additional (held out)
PDB deposits with the same pipeline and created a separate
test set. The test set included 17 150 ligand instances with
a mean resolution of 2.5 Å, on which the model achieved
59% accuracy and 93% top-10 accuracy. The holdout test
set was more challenging because it contained lower reso-
lution structures, but the results are still superior to those
reported for non-clustered ligands with at least two non-
hydrogen atoms (16). A summary of the model’s perfor-
mance, according to different evaluation measures (23), is
presented in Table 1. The ‘About’ page of the CheckMyBlob
web server contains an interactive calibration plot and a
confusion matrix that describes the predictive performance
for particular ligands.

Server implementation

The web server was developed in Python using the Django
framework (https://www.djangoproject.com) with a Post-
greSQL database (https://www.postgresql.org) to store lig-
and definitions and job processing data. The submitted jobs
are queued using Celery (https://docs.celeryproject.org/)
with a RabbitMQ message broker (https://www.rabbitmq.
com/). All the website pages are formatted with Bootstrap
(https://getbootstrap.com), and the result views are dynami-
cally created using the doT templating engine (https://olado.

https://www.rdkit.org
https://www.djangoproject.com
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Figure 2. Schematic representation of the CheckMyBlob workflow and screenshots of the interactive results visualization page and Coot ligand analysis
script. The user provides input files (an MTZ file and PDB or mmCIF file) and chooses to either detect unmodeled ligands or validate existing ligands.
Next, blobs are detected, extracted from electron density maps, and described by a set of numerical features. The obtained numerical features are input
to a machine learning model, which outputs a ranking of the ten most likely ligands for each blob. This probability-based ranking can be viewed on the
interactive results visualization page and tested in Coot through a downloadable script.

github.io/). The website also uses the NGL JavaScript li-
brary for electron density visualization (24,25).

RESULTS

Workflow

The CheckMyBlob protocol is presented as a workflow in
Figure 2.

Input. Users can choose between two tasks that the server
can perform: 1) the Identify task, where the server looks
for unmodeled ligands and 2) the Validate task, where the
server compares existing ligands with CheckMyBlob’s pre-
dictions. To perform these tasks, users must submit a struc-
tural model in the form of a PDB or mmCIF file and MTZ
map coefficients. In the Validate task, users can also provide
the PDB code of an existing deposit. In both cases, the user
can optionally choose to evaluate water molecules, which
can be used to verify whether a set of water molecules was
inserted instead of a potential ligand.

Processing and prediction. The input files are first prepared
for blob detection. In the Identify task, this means running a
zero-cycle of refinement and in the Validate task this means
removing all the small-molecules from the model and run-
ning five cycles of refinement. Following data preparation,
the blobs are detected, described by numerical features, and

fed to the classification model. In the identification task,
the classifier is a model trained on the entire PDB. In con-
trast, during the validation of an existing PDB deposit, the
server uses a model that was trained on 90% of the PDB,
excluding the deposit in question. Therefore, the validation
of existing PDB deposits is always done using a model that
was not trained on the structure being validated. Following
model inference, a ranking of ten ligand predictions is pre-
pared. If the primary classification model predicts the rare
class within the top 10 most probable ligand groups, the sec-
ondary model is used to predict a set of 10 rare ligands.

Result presentation. CheckMyBlob predictions are dis-
played as an interactive report (Figure 2). Each detected
blob has a separate section containing a ranking of 10
ligand predictions and a visualization panel. In the rank-
ing, each ligand prediction is accompanied by a probabil-
ity score. Higher probabilities mean greater chances of cor-
rect predictions. On the other hand, if the probability is low,
users should treat the prediction with more caution even if it
is at the top of the ranking. Each blob prediction or valida-
tion is additionally color-coded to indicate CheckMyBlob’s
certainty level. Based on the calibration plot of the clas-
sification model, validation probabilities above 90% were
set to be color-coded with a green icon, between 50–90%
with orange, and below 50% with red. Ligand identification
color coding uses a 65% unsure threshold instead of 50% to
take into account the higher difficulty of this task. To help

https://olado.github.io/


W90 Nucleic Acids Research, 2021, Vol. 49, Web Server issue

users navigate the large number of potential ligands, hover-
ing on a ligand’s PDB ID shows the compound’s full chem-
ical name and diagram. Clicking on a ligand ID opens the
ligand’s page at the PDB website. In the visualization panel,
users can zoom, pan, rotate the view, and hide different
parts of the electron density map to analyze the blob. If the
set of blobs needs a more in-depth inspection, a script can
be downloaded that creates a CheckMyBlob report window
in Coot. The report window contains tabs that allow a user
to jump to different blobs in the map and display predic-
tions. When the user clicks the button of a possible ligand,
Coot performs a simple jiggle fit to fit the ligand into the
electron density.

Case studies

Ligand validations. CheckMyBlob was successfully used
to recognize ligands in a set of example structures, including
the PDB entries:

• 1OGV, 3MB5 and 4IUN, which represent medium and
large moieties that were examined in previous ligand pre-
diction studies (9,15);

• 5N0H, which illustrates the recognition of buffer compo-
nents;

• 2PDT, 1FPX, 4RK3 and 1KWN, which showcase correct
predictions of ligands that were misidentified in the orig-
inal PDB deposits.

The last four of the above-mentioned structures were
cases where CheckMyBlob identified the ligand correctly,
but the original authors of the PDB deposit either misla-
beled a molecule or modeled it incorrectly. In 2PDT, flavin-
adenine dinucleotide was reinterpreted by CheckMyBlob as
flavin mononucleotide. In 1KWN, the modeled atoms of
the ligand had the configuration of L(+)-tartaric acid (TLA)
as identified by CheckMyBlob, whereas the deposition au-
thors labeled this moiety (inconsistently with the configu-
ration of the ligand) as D(–)-tartaric acid (TAR). In 1FPX,
the modeled S-adenosyl-L-methionine (SAM) was reinter-
preted as S-adenosyl-L-homocysteine (SAH). In 4RK3, dis-
ordered glycerol was reinterpreted as a TRIS buffer. The
above cases can be viewed as interactive visualizations in
Molstack (26,27) at http://molstack.bioreproducibility.org/
collection/view/YskIjr2eiLoQelKrwnIG/. The authors of
these four deposits (2PDT, 1FPX, 4RK3, 1KWN) agreed
with the CheckMyBlob reinterpretation, and the structures
were corrected, re-refined, and re-deposited jointly with the
original authors into the PDB. In some cases, the improve-
ments of model quality were as large as a 5% reduction of
Rfree or a drop of the clashscore by 20 points. This demon-
strates that CheckMyBlob can correctly identify ligands,
even in sub-optimally modeled structures. Details of this
case study can be found in (16).

Missed polypeptide and ligands masked by water. The
CheckMyBlob web server attempts to recognize not only
unmodeled single-molecule ligands but also polymers, i.e.,
ligands that the PDB encodes as several monomers, and
ligands ‘masked’ by water molecules. Figure 2 presents
such a case for the validation of PDB deposit 6SYH.
CheckMyBlob shows that the deposition authors improp-
erly modeled part of the protein main-chain and did

Table 2. CheckMyBlob’s predictive performance on metal ions validated
by CMM (28,29). Total number of ligands: 34 932. Total classification ac-
curacy on this dataset: 92.3%

Ligand
group

Precision
(%)

Recall
(%)

F1-score
(%)

Ligand
instances

MG-like 88.8 87.4 88.1 7 063
CA-like 89.9 93.0 91.4 12 682
ZN-like 96.4 95.2 95.8 14 686
SR-like 0.0 0.0 0.0 19
CD-like 85.1 59.6 70.1 441
HG-like 40.5 41.5 41.0 41

MG-like: Mg, Na, Al; CA-like: Ca, K; ZN-like: Zn, Mn, Cu, Fe, Ni, Co,
Cr, Ga, Ti, V; SR-like: Sr, Rb; CD-like: Cd, Ag, Mo, Ru, Pd, Y, Rh, Zr, In;
HG-like: all metals with atomic number 55 (Cs) or higher.

not model two molecules of the crystallization buffer
components––HEPES or MES and sulphate or phosphate
(the exact nature of the buffer molecules is not possible to
determine due to the lack of metadata for this deposit).
The significance of this CheckMyBlob use case is twofold.
First, our validation procedure is sensitive to some classes
of macromolecule modeling errors. In this case, the part of
the protein’s main-chain (B289-B293) was assigned a wrong
sequence and effectively was not bonded to the rest of the
protein. Second, when the user chooses to remove waters be-
fore the analysis, CheckMyBlob can determine the nature of
the ligand even if the density was previously ‘masked’ by the
addition of waters in place of the ligand. Both of these types
of errors happen frequently during the automatic stages of
structure modeling and this example demonstrates the ben-
efit of using the CheckMyBlob server as an aide for crystal-
lographers during the early modeling phase. To facilitate ac-
tionable analysis of the server’s predictions, CheckMyBlob
generates a script for Coot, which lets users jump between
blobs and quickly test different ligand fits.

Analysis of metal ion predictions. We have also validated
the predictive performance of CheckMyBlob on metal ions.
Since a significant fraction of structures in the PDB con-
tains poorly modeled metal binding sites (28), we have fo-
cused on a high-quality subset of metal ligands. The subset
was created by selecting metals that were favorably validated
by the CheckMyMetal (CMM) web server (28,29). A metal
ion in a structure was considered valid if all CMM valida-
tion criteria could be calculated and none of them were re-
ported as an outlier. This procedure resulted in a dataset
of 34 932 metal ion ligands, which were passed through
CheckMyBlob’s validation procedure. The overall classifi-
cation accuracy on this dataset was 92.3%, although with
varying precision and recall for different metal groups (Ta-
ble 2). The best performance was observed for Zn-like met-
als (Zn, Mn, Cu, Fe, Ni, Co, Cr, Ga, Ti, V), which are also
the most populous metal ligand group. On the other hand,
CheckMyBlob was not able to recognize any of the Sr-like
metals (Sr, Rb). It is worth noting that CheckMyBlob was
not specifically trained to predict metal ions. The prediction
of metals could be improved in the future by training a clas-
sifier on groups of metals with similar conformations and
using additional knowledge about the expected properties
of the binding pocket.

http://molstack.bioreproducibility.org/collection/view/YskIjr2eiLoQelKrwnIG/
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Limitations

The performance of machine learning systems relies on the
number and quality of training examples. Indeed, Check-
MyBlob requires training data in the form of previous ob-
servations of any particular target ligand. Therefore, to de-
tect ligands without examples in the PDB, one can only pre-
dict moieties that are structurally similar to the target lig-
and. Moreover, even though the ligand instances used for
training were selected based on several quality criteria, it is
impossible to eliminate all noisy examples without remov-
ing most of the training data. X-ray electron density maps
are noisy by nature and, as evidenced by the case studies,
PDB deposits can contain mislabeled ligands. Nevertheless,
as the number and quality of PDB deposits grow, it will be
possible to tighten the ligand selection criteria for training
data even further.

It must also be noted that each prediction should be an-
alyzed on a case-by-case basis. CheckMyBlob’s prediction
is based solely on the electron density map, and the knowl-
edge about all ligands that might be present in the crystal
should be used to select the most probable suggestions, even
if they are not at the top of the prediction list. One should
consider crystallization conditions, protein buffer compo-
nents, compounds potentially retained during protein pu-
rification, and any potential chemical reactions in between.
Moreover, as our study discussing the classification model
has shown (16), higher resolution structures have, on aver-
age, higher chances of yielding correct predictions.

The current version of the server also has a technical lim-
itation of not being able to fully automatically process mod-
els that contain residues that are not present in REFMAC’s
standard monomer dictionary. Both ligand validation and
identification require a REFMAC run to standardize the
map. If the analyzed model contains non-standard or un-
conventionally named residues, the re-refinement step of the
processing pipeline can fail. Currently, the PDB does not
host restraint libraries used during refinement; therefore,
this might be a problem even during the validation of some
PDB deposits. To alleviate this issue, future versions of the
server will use automatically generated restraints for moi-
eties that are not present in the standard monomer dictio-
nary.

DISCUSSION

Here, we have presented an intuitive, easy-to-use web server
that aids users in predicting small-molecule ligands in un-
modeled fragments of electron density maps and helps val-
idate ligands in existing models. The CheckMyBlob web
server is free and open to all users, and there is no login re-
quirement. This work builds on previous efforts to predict
ligands using machine learning algorithms (16) and extends
that approach by clustering ligands into groups and by tak-
ing into account water molecules and metal ions. In case
studies, we have shown how CheckMyBlob can be used to
find errors in PDB deposits and identify missing ligands.
We feel that this work is a valuable contribution to the
scientific community by providing a way of ligand valida-
tion that is complementary to density fit metrics. Moreover,
CheckMyBlob is complementary to structure-remediation

servers, such as PDB REDO (30), which do not handle lig-
and misinterpretation. Finally, CheckMyBlob can help find
ligands that were unmodeled or masked by water molecules.
By providing a method for autonomous detection of blobs,
the presented method has the potential of being another
step toward fully automated model building.

DATA AVAILABILITY

The ligand clustering code and prediction eval-
uation scripts are available at GitHub (https:
//github.com/dabrze/cmb server validation). The
ligand datasets used for evaluating CheckMy-
Blob are hosted at bioreproducibility.org (https:
//bioreproducibility.org/test-data-checkmyblob-server)
and Zenodo (10.5281/zenodo.4554473).
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