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Abstract

This paper primarily aims to provide a citation-based method for exploring the scholarly net-

work of artificial intelligence (AI)-related research in the information science (IS) domain,

especially from Global North (GN) and Global South (GS) perspectives. Three research

objectives were addressed, namely (1) the publication patterns in the field, (2) the most influ-

ential articles and researched keywords in the field, and (3) the visualization of the scholarly

network between GN and GS researchers between the years 2010 and 2020. On the basis

of the PRISMA statement, longitudinal research data were retrieved from the Web of Sci-

ence and analyzed. Thirty-two AI-related keywords were used to retrieve relevant quality

articles. Finally, 149 articles accompanying the follow-up 8838 citing articles were identified

as eligible sources. A co-citation network analysis was adopted to scientifically visualize the

intellectual structure of AI research in GN and GS networks. The results revealed that the

United States, Australia, and the United Kingdom are the most productive GN countries; by

contrast, China and India are the most productive GS countries. Next, the 10 most fre-

quently co-cited AI research articles in the IS domain were identified. Third, the scholarly

networks of AI research in the GN and GS areas were visualized. Between 2010 and 2015,

GN researchers in the IS domain focused on applied research involving intelligent systems

(e.g., decision support systems); between 2016 and 2020, GS researchers focused on big

data applications (e.g., geospatial big data research). Both GN and GS researchers focused

on technology adoption research (e.g., AI-related products and services) throughout the

investigated period. Overall, this paper reveals the intellectual structure of the scholarly net-

work on AI research and several applications in the IS literature. The findings provide

research-based evidence for expanding global AI research.

Introduction

The development of the information science (IS) domain through the application of artificial

intelligence (AI) has had profound effects in numerous industries (e.g., finance, health care,
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manufacturing, retail, supply chain, logistics, and utilities). According to the literature, AI is

defined as “a system that perceives its environment and takes actions to maximize its ability to

achieve its goals” [1, 2]. Researchers have also suggested that the development of supercomput-

ing power has made AI the crucial emerging theme in the IS research domain [3]. For example,

Nishant et al. [4] highlighted five challenges to sustainability in AI research (e.g., overreliance

on machine learning for historical data, unpredictable human responses to AI interventions,

and difficulties in measuring the effects of AI interventions). Duan et al. [3] identified the chal-

lenges associated with the use and effect of AI on decision-making in IS research (e.g., theoreti-

cal development, technology–human interaction, and AI implementation). Recently, Dwivedi

et al. [5] presented a holistic view of AI research from the perspective of information science;

on the basis of the insights of experts, they categorized existing research into major themes

(e.g., decision making, application, and data), domains (e.g., governance, science, and technol-

ogy), and key challenges.

In addition, IS researchers have highlighted the key role of big data research in the develop-

ment of AI technology. For example, Surbakti et al. [6] identified factors that influence the

effective use of big data to provide guidance for organizations; they identified seven themes

that were divided into three groups, namely motivation (perceived organizational benefit),

operation (process management, human aspects, systems, and organizational aspects), and

supporting mechanisms (e.g., data quality, privacy, and governance). On the basis of an analy-

sis of 60 published articles, Lugmayr et al. [7] proposed a five-trait framework for cognitive

data; the five traits are sociotechnical systems, data space, data richness, decision-making, and

visualization. Baig et al. [8] identified theoretical models and factors that influence big data

adoption; they discovered that the diffusion of innovations and technology–organization–

environment are the most popular theoretical models and identified 42 antecedents in technol-

ogy, organization, environment, and innovation.

Scholars have also conducted bibliometric analyses to examine the knowledge structure of

AI-related applications in various research areas. For example, de Sousa et al. [9] conducted a

systematic literature review to identify research topics and trends relating to AI in the public

sector. Chen et al. [10, 11] performed a bibliometric analysis to investigate AI-related applica-

tions in the medical field, such as an AI-enhanced electroencephalogram method for conduct-

ing human brain research. Other educators have combined bibliometric and content analysis

to explore mainstream AI-assisted education research [12, 13]. Review studies have also

reported that comparing different research periods can help researchers to identify potential

trends in a research field. For instance, de Sousa et al. [9] reviewed AI studies that were con-

ducted in the public sector between 2000 to 2018 and compared each 3-year period within this

timeframe to identify changes in publication patterns. Chen et al. [10] compared the AI-assis-

ted brain research published between the years 2010 and 2014 and between the years 2015 and

2018. Hwang and Tu [13] conducted a three-stage (1996–2010, 2011–2015, 2016–2020) survey

to analyze AI trends in mathematics education. The aforementioned studies reviewed the

effects of AI-related technologies on mathematical learning and related research trends. Past

research has provided insights about the development of AI-related literature. However, to the

best of our knowledge, few studies have explored the intellectual structure of scholarly net-

works in AI-related literature by applying a citation network method and conducting a geo-

graphic region–based comparison, especially from the perspective of the Global North and

Global South.

Co-citation network analysis is regarded as a well-established analytic method for exploring

the cited-and-citing relationships between two focal articles [14]. Researchers have adopted

the method to analyze the intellectual structure of various themes, including e-book-supported

learning [15] and virtual reality for education [16]. Garfield [17] suggested that citations can
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be treated as an index of science that provides evidence for measuring the effect of published

research articles and directions on how to extend published research. The more frequently two

focal articles are cited together, the higher the bibliometric similarity between the two articles

is. Small [14] defined the occurrence of co-citation as the citation of two or more previously

published focal articles together by a subsequent peer-reviewed article, which illuminates how

researchers evaluate previous publications in a field. Therefore, researchers have proposed that

co-citation analysis is a scientific measure that represents the intellectual structure of academic

problem spaces [18]. Moreover, we contend that a visualized co-citation network provides a

structural understanding of the IS scholarly network on AI research. Through an exploration

of highly co-cited articles, mainstream research patterns (e.g., keywords and research foci) can

be scientifically identified.

For global development research, North–South divisions are often based on the political

and socioeconomic dimensions of the literature (e.g., Martin, 1988). However, on the basis of

the high growth rate of a “scientific culture” in several countries [19], such as China and India,

several researchers have suggested that scientific development can be explored from the per-

spective of the Global North (GN) and Global South (GS) [19]. This typology meets the pri-

mary purpose of the present study, which is to explore global AI-related research

developments. Therefore, in accordance with the research conducted by Confraria et al. [19],

we defined the GN to include North America, Western Europe, and the developed regions of

East Asia and defined the GS to include Africa, Latin America, developing regions of Asia, and

the Middle East.

In the present study, a co-citation network analysis was conducted to compare the GN and

GS with respect to scholarly networks of AI research in the IS domain during the period from

2010 to 2020. Furthermore, to allow for research trend comparisons with the findings of other

studies [10–13], the research period for this study was divided into two intervals (i.e., 2010–

2015 and 2016–2020). Overall, the present study provides a fresh perspective on the global

research dynamics of the scholarly network of AI research in the IS field. The three research

questions are specified as follows:

• 1) Investigation of the publication patterns of AI research in the IS domain (RQ1): From the

bibliometric perspective, what are the publication patterns and the most productive coun-

tries in the investigated field between 2010 and 2015 and between 2016 and 2020?

• 2) Identification of the most frequently cross-referenced AI research articles in the IS

domain (RQ2): On the basis of follow-up citations, the present study performed a co-citation

analysis to determine the core articles of IS field. The main AI research foci of GN and GS

researchers were also analyzed.

• 3) Visualization of the global scholarly network on AI research in the IS domain (RQ3):

From the social networking perspective, what is the intellectual structure of the scholarly IS

network on AI research? Through the application of social network analysis and the cluster-

ing technique, the citation-based mapping of scholarly networks of AI research in the IS

domain was achieved.

Methods

Ethics statement

In the present study, a retrospective bibliometric analysis that focused on analyzing published

articles was conducted. No clinical trials were conducted in the present study.
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Research data: Inclusion and categorization

The process of including research data is crucial for a literature analysis. In accordance with

the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) state-

ment [20], a four-step procedure for data inclusion was applied in the present study to system-

atically identify, screen, select, and include the most relevant AI-related research articles in the

IS domain (Fig 1).

First, on the basis of review studies of the related literature [3–5], 32 AI-related keywords

(see S1 Appendix) were used to conduct an opening search to retrieve all relevant articles. In

line with the main research interest of the present study, a keyword search of the category of

“library and information science” was then conducted on the Web of Science (WoS) database.

Sixty-three out of the 87 journals (IS focused) in the WoS relevant to the aforementioned cate-

gory were included for the search. Second, a series of screening processes were performed. For

example, we used a topic search to systematically filter out irrelevant articles that did not con-

tain any search keywords in their article titles, keywords, and abstracts. We also used Boolean

functions to exclude redundant items from our searches and set a citation requirement to

maintain both the quality of our research and that of the subsequent citation-based analysis.

During the data search, 485 out of 677 articles with less-than-average citation frequency (3.9

times per year) were excluded. Third, on the basis of the aforementioned systematic check, 149

articles and a corresponding 8838 follow-up citing articles were identified as eligible sources;

they represented the intellectual structure of the field for the subsequent analysis. Only journal

citation records from the Science Citation Index Expanded (i.e., SCI-E) and Social Sciences

Fig 1. PRISMA diagram for inclusion of research data.

https://doi.org/10.1371/journal.pone.0266565.g001
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Citation Index (i.e., SSCI) databases were counted to maintain the quality of research. Finally,

the complete data on cited-and-citing relationships (i.e., 149 core articles and the correspond-

ing 8838 follow-up citing articles) were collected document by document. The search was con-

ducted on December 3, 2020, and the collection of data on citation relationships was

performed over 2 weeks and completed on December 17, 2020.

Furthermore, we retrieved bibliometric data on the affiliations of first authors as provided

in the included articles. In accordance with other author co-citation studies [18], the affilia-

tions of first authors were used as the basis for determining the affiliated country for each arti-

cle. To present an overview of global research productivity in the investigated field, the most

productive countries were analyzed. The results indicated that all the first authors of the 149

articles were from 31 countries. A further categorization of the GN and GS was conducted

based on the definition proposed by Confraria et al. [19].

Co-citation network analysis

Based on a systematic screening process, the collection of 149 high-quality papers stands for

an invisible research community of IS scholarly network on AI research. According to the

WoS, 149 articles were cited 8838 times (date of search: December 23, 2020). The lens from the

great number of researchers that joint citing the 149 articles (i.e., 8838 follow-up studies) may

provide collective wisdom of self-reflection and the field’s view of itself to review the area.

Among the available bibliometric methods, the recent literature has suggested that co-citation

analysis provides citation-based evidence for measuring the relationships among scientific

publications [15, 16]. A co-citation network analysis was thus performed to examine the IS

scholarly network on AI research and determine how the aforementioned 149 core articles are

related to each other from the perspectives of all 8838 citing references.

The co-citation network analysis performed in the present study integrated the advantages

of document co-citation analysis (DCA) and social network analysis (SNA). In the context of

the present study, DCA was used to calculate the cross-referenced relationships among

selected articles, and SNA was used to visualize a networking structure on the basis of a co-

citation matrix to reveal the underlying structure of an IS scholarly network on AI research.

The co-citation network analysis was conducted in the two steps as follows. First, a DCA was

performed as the initial attempt to examine the co-citation relationships among the 149 core

articles. Originating from bibliometrics, DCA is a quantitative analytic method for identifying

the most frequently joint-cited research chain in a field. According to Small [14], when two

earlier documents (cited articles) are jointly referenced by a follow-up document (citing arti-

cles), an instance of co-citation has occurred. In the present study, a symmetric raw co-citation

matrix was formed to represent the co-citation relationships of 149 core AI-related research

articles in the investigated field. In addition, the core articles in the matrix were then paired

and matched if they were co-cited by citing articles. The higher the co-citation value of a given

pair of core articles was, the greater was the bibliometric similarity of these two core articles.

Second, an SNA was used to visualize the co-citation network of an IS scholarly network on

AI research, thereby establishing an overall social networking structure of the invisible col-

leagues in the field. Wasserman and Faust [21] indicated that the key value of SNA is as a

novel visualization method for mapping the most prominent documents in a network. More-

over, Fahmy and Young [22] suggested that analyzing co-citation networks provides research-

ers with opportunities to access other researchers who were previously unknown to them; this

is because the interactions that occur in a bibliometric context resemble a network of invisible

colleagues. Hence, in the present study, a raw co-citation matrix was used as the data input for

visualizing an AI research network. The bibliometric mapping method has been used to
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represent the “invisible colleagues” in various fields, including health literacy research [23] and

international workplace violence research [24], and for the representation of an open knowl-

edge network [25]. Researchers also proposed the use of SNA to detect social information in

scientific document databases to establish an intelligent recommendation system for research-

ers [26]. In the same vein, we referenced the aforementioned studies and adopted co-citation

network analysis to explore the research patterns of an IS scholarly network with an AI

research focus. In addition, the scholarly networks of GN and GS researchers were visualized,

thereby providing a contemporary IS research frontier for the investigated field.

Results

Publication patterns of AI research in IS domain (RQ1)

In terms of the research productivity of global researchers in the investigated field, the most

productive countries from the GN and GS were analyzed. The bibliometric results presented

in Table 1 reveal that researchers from the United States were the main contributors (48 arti-

cles) to the investigated field. The United States is also the most productive country in the GN

area for the two investigated periods (i.e., 2010–2015 and 2016–2020). The other high-ranked

GN countries included Australia and the United Kingdom, which each published seven articles

and were co-ranked at fourth place, and Canada, South Korea, Italy, Taiwan, and the Nether-

lands, which each published five articles and were co-ranked at sixth place. The most fre-

quently cited researchers in the field were from the United States and Canada; the total

number of citations of published articles from the United States and Canada was 4094 and

1167, respectively. In terms of productivity of countries in the GS area, the results revealed that

Table 1. Top 20 most productive countries in terms of AI research in information science domain.

# Country Total Articles Articles (2010–2015) Articles (2016–2020) Total Citations GN GS

1 USA 48 28 20 4094 V

2 China 20 4 16 610 V

3 India 9 1 8 260 V

4 Australia 7 0 7 272 V

4 UK 7 1 6 208 V

6 Canada 5 1 4 1167 V

6 South Korea 5 3 2 386 V

6 Italy 5 0 5 181 V

6 Taiwan 5 2 3 114 V

6 Netherlands 5 2 3 104 V

11 Malaysia 4 1 3 423 V

12 Denmark 3 1 2 185 V

12 Switzerland 3 0 3 60 V

13 Germany 2 2 0 181 V

13 Spain 2 0 2 118 V

13 Brazil 2 0 2 94 V

13 Portugal 2 0 2 64 V

13 France 2 0 2 53 V

13 Norway 2 0 2 33 V

13 Pakistan 2 0 2 11 V

Subtotal (top 20) 140 46 94 8618

Subtotal (others) 9 1 8 220

Total (31 countries) 149 47 102 8838 111 38

https://doi.org/10.1371/journal.pone.0266565.t001
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China and India were the two most productive countries. Researchers from China published

20 articles with 610 citations, following by India with nine articles published and 260 citations.

The other GS countries in the top 20 list were Malaysia, which published four articles and was

ranked at 11th place, and Brazil and Pakistan, which each published two articles and were co-

ranked at 13th place. Overall, the top 20 countries accounted for more than 94% of the pub-

lished articles and 97% of the total citations in the field.

On the basis of the aforementioned results, several changes in publication patterns relating

to AI research in the IS domain were identified. First, 47 articles were published in the earlier

investigated period (2010–2015), and the number of published articles increased to 102 during

the subsequent five years (2016–2020). This result revealed an increasing trend in terms of the

number of AI-related articles published globally in recent years. Specifically, during the earlier

investigated period, the 41 published articles (87%) were mainly written by GN researchers,

and only six articles (13%) were published by GS researchers. In the subsequent period (2016–

2020), GN researchers published 70 articles, representing 73% of the increase in the number of

articles published in the investigated field. However, GS researchers published 32 articles in

the subsequent period, which was equivalent to a considerable increase of 433% relative to the

earlier investigated years (2010–2015). From the GN and GS perspective, the change in publi-

cation patterns indicates the increasing presence of GS researchers in AI research; this finding

echoes that of Confraria et al. [19], who reported the high growth of “scientific culture” in sev-

eral GS countries.

Concerning the trends among influential journals for AI research in the IS domain, the

present study also analyzed and compared international journal publications in the investi-

gated field. Overall, the results revealed that the top four journals published at least 10 articles

relating to the investigated field, whereas the journals ranked between fifth and tenth place

published 5.5 articles on average. Notably, the top four journals were the International Journal
of Information Management (IJIM; n = 32,), Journal of the American Medical Informatics Asso-
ciation (JAMIA; n = 26), Information &Management (n = 14), and Journal of Knowledge Man-
agement (n = 10). Our results revealed that the articles published in the IJIM and JAMIA were

cited approximately 4000 times.

On the basis of a comparison of the articles published by GN and GS researchers, we dis-

covered that two-third of the articles (21 out of 32) published in the IJIM were mainly contrib-

uted by GN researchers. Most of JAMIA articles (25 out of 26) in the field was authored by GN

researchers. Similarly, the articles published in theMIS Quarterly (n = 5) and theMIS Quar-
terly Executive (n = 5), which were co-ranked at seventh place, were mostly written by GN

researchers. However, GS researchers outperformed GN researchers with respect to the publi-

cation of articles concerning the investigated field in the journals Information Processing &
Management (4 out of 7), International Journal of Geographical Information Science (4 out of

5), and Scientometrics (5 out of 5). Overall, the top 10 journals had a total of 115 published arti-

cles (77%) on AI-related research in the IS domain, and these articles were co-cited 7655 times

(87% of total citations). In terms of publication performance, the results of the bibliometric

analysis suggested that the top 10 journals were the most influential IS journals on AI research.

Top cross-referenced articles on AI research in IS domain (RQ2)

The aforementioned bibliometric analysis results provided a macrolevel overview of the devel-

opment of AI research. This section discusses the results of the co-citation analysis conducted

in the present study to identify the bibliometric relationships among 149 selected articles, on

the basis of which a microlevel understanding of the most influential articles in the investigated

field can be established. The co-citation analysis drew from the collective wisdom of numerous
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citing scholars (i.e., 8838 citing references) and provided a scientific measurement model for

counting co-citations to evaluate the relationships between focal article pairs [14]. In the pres-

ent study, the 8838 references that cited the 149 core articles were treated as the field’s view of

itself and considered to reveal the most influential AI-related research in the IS domain. In the

co-citation analysis, the information of all 149 core articles was tabulated to create an asym-

metric co-citation matrix. Each cell in the matrix was counted by matching the frequency of

co-citation with the 8838 references. Co-citations represented the level of bibliometric similar-

ity between two focal articles of interest that were referenced by the citing researchers.

On the basis of the co-citation analysis, 8976 co-citations were counted. Overall, each top-

10 article was co-cited with another of the 149 selected articles more than 100 times (between

166 and 912 times) by the follow-up citing articles. The total number of co-citations received

by the top 10 co-cited articles was 3739, which accounted for approximately 42% of the total

number of co-citations (n = 8976). Table 2 presents that most of the frequently referenced arti-

cles were mainly written by GN researchers; nine out of the top 10 articles were written by GN

researchers (e.g., Chen et al. [27]), and only one was from the GS researchers (e.g., Rehman

et al. [28]). In the present study, highly co-cited articles in the matrix were identified on the

basis of GS/GN information, authorship, and year of publication. The two articles, for

instance, were labeled as “GN-ChenCS2012”, and “GS-RehmanCBT2016”. From the perspec-

tive of follow-up researchers, the aforementioned finding regarding citations indicated that

the top 10 articles were frequently referenced together by field researchers, and thus, they rep-

resented the central research in the investigated field.

Table 2 lists the highly co-cited articles on AI research in the IS domain, and it reveals that

60% (6 of 10) of such articles were published during the earlier investigated period (2010–

2015); the 60% comprised Chen et al. (#1) [27], Gandomi and Haider (#2) [29], Chen et al.

(#4) [30], Kwon et al. (#5) [31], Constantiou and Kallinikos (#6) [32], and Loebbecke and

Picot (#10) [33]. The other 40% of the highly referenced articles were published in the recent

five years (2016–2020); they comprised Gupta and George (#3) [34], Raguseo (#7) [35], Reh-

man et al. (#8) [28], and Grover et al. (#9) [36]. Of note, these highly referenced articles mainly

focused on big data–related research, including big data analytics (n = 7; e.g., Chen et al. [27]),

big data technologies [29], and big data capabilities [34].

For the most researched AI-related keywords, the author-defined keywords that appeared

in the 149 articles included in the present study were collected and counted. Table 3 lists the

top five keywords and provides information on the number of articles in which each keyword

is used. An overall comparison of the frequency of keyword use during the two investigated

periods (2010–2015 and 2016–2020) revealed that “big data” was the most studied topic (used

Table 2. Co-citation matrix of top 10 cross-referenced articles.

# ID 1 2 3 4 5 6 7 8 9 10 Co-Citations

1 GN-ChenCS2012 [27] 0 912

2 GN-GandomiH2015 [29] 160 0 733

3 GN-GuptaG2016 [34] 55 32 0 409

4 GN-ChenPS2015 [30] 50 30 27 0 382

5 GN-KwonLS2014 [31] 60 57 22 21 0 357

6 GN-ConstantiouK2015 [32] 35 9 16 14 7 0 209

7 GN-Raguseo2018 [35] 14 29 7 7 12 1 0 194

8 GS-RehmanCBT2016 [28] 18 25 7 13 8 1 9 0 196

9 GN-GroverCLZ2018 [36] 21 10 16 10 7 7 1 1 0 181

10 GN-LoebbeckeP2015 [33] 33 9 8 12 4 13 1 1 2 0 166

https://doi.org/10.1371/journal.pone.0266565.t002
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by 105 articles), especially during the later five years (increase from 21 articles between 2010

and 2015 to 84 articles between 2016 and 2020). In addition to “big data,” the other top five

keywords were “machine learning (20),” “text/data mining (19),” “natural language processing

(14),” and “neural network (7).” Although the keywords “machine learning” (increase from 7

to 13) and “neural network” (increase from 1 to 6) exhibited increasing trends in terms of fre-

quency of use, the keywords “natural language processing” (decrease from 12 to 7) and “neural

network” (decrease from eight to six) exhibited slight downward trends from the first to the

second investigated periods.

For the top five most researched topics pertaining to AI, both GN and GS researchers col-

lectively published 49 articles in the earlier investigated period (2010–2015), and this number

increased to 116 in the second investigated period (2016–2020), exhibiting a 137% overall

growth rate. From a global development perspective, the GN researchers achieved a low

growth rate (88%) but a considerable increase in the number of published articles between the

two periods (from 43 to 82 articles). By contrast, the GS researchers achieved considerable

growth in the number of AI-related articles published between the two periods (growth of

483%: 6 to 35 articles). GN and GS researchers both contributed to big data and machine

learning research pertaining to AI. However, for research topics related to data mining, natural

language processing, and neural networks, the GN researchers outperformed the GS

researchers.

After the co-citation matrix and the keywords of the analyzed articles were obtained, the

VOSviewer [37] was used to visualize the co-citation structure of the IS scholarly network for

AI research for the period from 2010 to 2020 to establish a global intellectual structure of AI

research in the IS domain. Inn line with previous review studies [13, 15, 16], VOSviewer was

used in the present study because it provides for both the visualization and clustering of sub-

networks and thus meets the purpose of the present study. In addition, the subgroup structures

of the scholarly network were performed by the VOS clustering algorithm. The obtained clus-

tering results yielded a comparative understanding of the main foci of GN and GS researchers

in the investigated field.

Global scholarly network on AI research in IS domain (RQ3)

The SNA was conducted to visualize the co-citation matrix into a network diagram. On the

basis of the clustering results, the intellectual structures of subnetworks (i.e., GN and GS net-

works) were further interpreted and compared. Through the co-citation network ananlysis, we

profiled the developmental overview of the IS scholarly network on AI research. Mapping the

Table 3. Most researched AI-related keywords among Global South and Global North scholars (2010–2020).

# Year 2010–2020 2010–2015 (P1) 2016–2020 (P2)

Total GS GN Sub-total1 GS GN Sub-total2

1 Big data / Big data analytics 105 2 19 21 27 57 84 (")

2 Machine learning 20 1 6 7 5 8 13(")

3 Text mining / Data mining 19 2 10 12 1 6 7(#)

4 Natural language processing 14 0 8 8 1 5 6(#)

5 Neural network 7 1 0 1 1 5 6(")

Total 166� 6 43 49 35 82 116

Increase (%) 483% 88% 137%

�Researchers may use multiple keywords to characterize the focal interest of their article. Therefore, the total number of times the top five keywords may exceed the

number of analyzed articles (n = 149); however, the maximum number of times each keyword was used was 149 in the present analysis.

https://doi.org/10.1371/journal.pone.0266565.t003
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entire relational structure onto a networking diagram revealed several notable findings relating

to multiple perspectives—for example, the main research foci of the GN and GS researchers

can be compared. Moreover, all the articles were categorized by author-defined keywords to

highlight the main characteristics of AI-related research in the IS domain.

Fig 2 presents a full scholarly network of all 149 articles and the corresponding 8838 citing

references, representing the full overview of the contemporary IS scholarly network on AI

research from 2010 to 2020. The main interests of the 149 core articles are labeled as nodes

with numbers, and each line between two nodes represents a co-citation link indicating the

co-citation of two focal articles by a citing article (n = 8838). The thickness of the link repre-

sents the weight of the co-citation link. The results suggest that the scholarly network consists

of two subnetworks. One loose network is scattered across the upper area of the diagram,

whereas the other network, which is dense, is focused in the central area. For example, the

most cross-referenced articles (e.g., top co-cited articles [#1–#10], see Table 2) in the central

network are indicated by a solid arrow (Fig 2).

Findings from GN network

The VOS clustering results indicated that all 111 articles written by the GN researchers can be

clustered into nine subgroups (Fig 3). The first cluster (N1) consists of 22 articles that are

mainly position or review papers. Although several studies have discussed the growth of big

Fig 2. Full network diagram of information science scholarly network on AI research.

https://doi.org/10.1371/journal.pone.0266565.g002
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data in society and business (#10 and #19) [33, 38], other studies have emphasized concerns

pertaining to privacy and ethical judgment (#38, #42, #145, and #87) [39–42]. Other scholars

have highlighted the application of big data in various contexts, such as the clinical (#120) [43]

and biomedical fields (#55) [44], social media (#79, #126, and #124) [45–47], and mobile appli-

cations (#93) [48]. Notably, the main keywords used in this group are “big data” and “big data

analytics” (total count of 22); among the top 10 most frequently co-cited articles, two articles

in this group (#6 and #10) [32, 33] focused on research on the transformation of businesses

and strategies through AI-enhanced technologies.

Consisting of 22 articles, the second cluster (N2) is focused on AI-enhanced clinical

research (mainly published in the JAMIA). This cluster exhibits two research foci, namely the

analysis of data from pathology reports or that from clinical trials and social media texts. The

main keywords in this group are “natural language processing,” “health records,” “machine

learning,” and “text mining.” For the investigation of clinical documents, researchers have

attempted to develop machine learning–based, text mining, or natural language processing

methods for extracting clinically relevant medical problems, tests, and treatments that improve

performance in various situations such as cancer diagnosis and treatment (#90, #75, #80, #83,

and #99) [49–53] and influenza detection (#108) [54]. Social media was also revealed to pro-

vide an extensive data repository of consumer experiences and information. Several well-

designed neural network methods can be used to extract e-cigarette adverse events (#118) [55]

and adverse drug reactions (#104) [56].

Fig 3. Global North network perspective of information science scholarly network on AI research.

https://doi.org/10.1371/journal.pone.0266565.g003
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The third cluster (N3) consists of 20 articles that were published between 2015 and 2020. In

this cluster, the main research focus relates to big data, including big data analysis, big data,

dynamic functions, and business value. For research content, the main topic concerns the

effective use of big data in organizations, with studies focusing on the resource-based view (#3

and #29) [34, 57], firm performance (#11) [58], supply chain management (#4, #15, and #44)

[30, 59, 60], business value (#9) [36], automation (#20 and #24) [3, 61], customer relationship

management (#58) [62], and human relationships (#61, #67, and #97) [63–65]. Two frequently

co-cited articles, namely Gupta and George (#3) [34] and Chen et al. (#4) [30], have verified

the benefits of using big data analytics to improve firm performance and create organizational

value.

The fourth cluster (N4) contains 13 articles that were published between 2014 and 2019. In

this cluster, the major keywords are “big data,” “big data analytics,” “machine learning,” “deep

learning,” and “data quality.” The main topics are related to marketing research, including

marketing resource allocation (#41) [66], word of mouth in social media (#129) [67], storytell-

ing (#110) [68], identification of crucial sellers through a text mining system (#102) [69], cus-

tomer relationships (#26) [70], and privacy concerns about sharing data in large transactional

databases (#65) [71].

The fifth cluster (N5) consists of 10 articles that were published between 2012 and 2020. In

addition to the term “big data,” other keywords include “social network analysis,” “text min-

ing,” “technology acceptance model (TAM),” and “behavioral intention.” On the basis of key-

words and article content, we determined that the articles in N5 were related to the acceptance

of big data analytical tools, such as the modeling of users’ adoption of big data (#46) [72],

mobile commerce (#59) [73], and data mining tools (#81 and #74) [74, 75]. Among them, the

TAM is still the most widely adopted theory (#59, #81, and #74) [73–75]. For analyzing big

data, most researchers in this subgroup adopted social network and neural network methods

(#59, #98, #127, and #149) [73, 76–78] as the data/text mining tools.

The sixth cluster (N6) consists of nine articles, most of which were published after 2017.

The main keywords include “big data,” “knowledge management,” “business analytics,” and

“business intelligence.” We can describe this cluster as a knowledge management–themed

cluster. The related research topics include research review (#12) [79], large-scale cognitive

data (#70, #27, and #33) [7, 80, 81], knowledge management systems (#28) [82], personal

knowledge management (#130) [83], and human resources with big data professions (#25)

[84]. The last cluster (N7) contains six articles published between 2013 and 2019. The main

keywords are “big data,” “predictive analytics,” and “tourism.” In addition to a review study on

customer relationship management, the other studies in this cluster were related to hospitality

research and covered topics such as tourism behavior (#32) [85], smart tourism designation

(#31) [86], social media in the hotel industry (#63) [87], and the pizza industry (#21) [88].

Notably, the subgroups in the final two clusters all contained fewer than five articles and were

not characterized and named. The seven clusters of the GN network accounted for 92% of the

GN research articles that were included in the present study. Table 4 summarizes the name of

each cluster, the time period during which articles were published, and the author-defined key-

words of each article.

Findings from GS network

Fig 4 illustrates the GS researchers’ scholarly network on AI research. The VOS clustering

results indicated that all 39 articles published by the GS researchers can be clustered into eight

subgroups. The first emerging group (S1) consists of the seven latest articles that were pub-

lished between 2017 and 2019. Their main research topics are machine learning and big data
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analytics. Several articles in this category were position or review papers on big data analytics

(#34) [89] and big data adoption (#54) [8], and other studies investigated the adoption of big

data among managers (#14 and #40) [90, 91]. The second cluster (S2) of GS research consists

of seven articles that were published between 2014 and 2019. The keywords in S2 are “big

data,” “knowledge,” “oil and gas,” and “co-creation.” The articles in S2 addressed the value cre-

ation of applying big data in various contexts, such as in the fashion industry (#18) [48], the oil

and gas industry (#39 and #106) [92, 93], health-care services (#51) [94], taxi services (#111)

[95], stock markets (#76) [96], and big data in smart cities (#22) [97]. Table 5 summarizes the

research foci of the GS network.

Conclusion and limitations

The present study revealed the IS scholarly network on AI research from 2010 to 2020. On the

basis of systematic searches of and data retrieved from the WoS, 149 core articles and a corre-

sponding 8838 follow-up citing articles were identified. In accordance with the definition pro-

vided by Confraria et al. [19], the identified articles were classified into GN and GS networks.

Table 4. Summary of research foci in Global North network.

Cluster (articles) Name of sub-network Active years Main research foci (number of articles)

N1 (22) Research review 2013–2020 • big data (15)

• privacy (3)

• big data analytics (2)

• social network analysis (2)

• social data (2)

N2 (22) Clinical research 2011~2018 • natural language processing (9)

• health records (8)

• machine learning (6)

• text mining (4)

• extraction (3)

• recurrent neural network (2)

N3 (20) Organization, Customer relationships management 2015~2020 • big data analytics (11)

• big data (7)

• dynamic capabilities (4)

• artificial intelligence (3)

• business value (3)

• machine learning (2)

• firm performance (2)

• resource-based view (2)

N4 (13) Marketing 2014~2019 • big data (6)

• big data analytics (2)

• machine learning (2)

• deep learning (2)

• data quality (2)

N5 (10) Acceptance modeling 2012~2020 • big data (6)

• social network analysis (2)

• text mining (2)

• TAM (2)

• Behavioral intention (2)

N6 (9) Knowledge management 2012~2020 • big data (6)

• knowledge management (4)

• business analytics (3)

• business intelligence (2)

• Human resource management (2)

• information management (2)

N7 (6) Hospitality 2013~2019 • big data (3)

• predictive analytics (2)

• tourism (2)

https://doi.org/10.1371/journal.pone.0266565.t004
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A co-citation network analysis was performed to reveal the citation-based networking struc-

ture of the literature.

Three key findings regarding the scholarly network of AI research in the IS domain were

made. First, in terms of publication patterns, the United States, Australia, and the United

Fig 4. Global South network perspective on information science scholarly network on AI research.

https://doi.org/10.1371/journal.pone.0266565.g004

Table 5. Summary of research foci in Global South network.

Cluster (articles) Name of sub-network Active years Main research foci (number of articles)

S1 (7) Adoption literature 2017~2019 • machine learning (3)

• big data analytics (3)

• big data (2)

• technology-organization-environment (2)

S2 (7) Big data applications 2014~2019 • big data (4)

• knowledge (4)

• oil and gas (2)

• co-creation (2)

S3 (5) Review 2012~2017 • big data (4)

• internet of things (2)

• big data research (2)

S4 (4) Innovation and performance 2020 • big data (4)

• innovation performance (2)

• high-tech enterprises (1)

S5 (3) Geospatial big data 2017–2019 • geospatial big data (2)

• social sensing (1)

• population mapping (1)

https://doi.org/10.1371/journal.pone.0266565.t005
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Kingdom were the most productive GN countries with respect to AI research in the IS domain,

and China and India were the most influential countries among the GS countries in the inves-

tigated field. Next, the top 10 most frequently co-cited AI research articles in the IS domain

were identified. Although 9 of the top 10 articles were contributed by GN researchers, one fre-

quently co-cited article from the GS was also identified. The global scholarly network of AI

research in the IS domain and the two subnetworks in the GN and GS were visualized using

co-citation network analysis. The results of the scholarly network provide a geographic under-

standing of the global development of AI research.

A comparison of the applications of AI research in the GN and GS networks revealed sev-

eral findings. First, most AI research in the GN network focused on AI applications in the

areas of organization, customer relationship management (N3), marketing (N4), knowledge

management (N6), and hospitality (N7). In particular, the latest trends in AI applications relate

to business performance and organizational value creation. This finding is meaningful because

most GN countries (e.g., USA and Japan) are known for their service industries. Therefore, AI

research and applications in marketing and hospitality are expected to continue growing in

the future. By contrast, most GS researchers focused on AI-related big data applications. We

also discovered that the latest trend in the GS network relates to innovative technology and its

outcomes, such as GIS big data analysis (S5) and performance research (S4), which are

expected to dominate future AI research trends. Finally, a research focus shared in common

by GN and GS researchers was technology adoption research, which includes topics such as

AI-related products and services.

Several changes in research trends between the two time periods (2010–2015 and 2016–

2020) are evident. First, GN researchers conducted research in the AI field earlier and pub-

lished more research articles than GS researchers did during the first research period (2010–

2015). During this period, GN scholars laid a solid foundation for AI research concerning its

application to traditional business functions (e.g., supply chain management, knowledge man-

agement, marketing, and decision support systems) and established several notable theories

(e.g., the TAM and resource-based theory [RBT]). During the second investigated period

(2016–2020), the number of articles published by GS countries (e.g., China and India, whose

economies were growing rapidly) increased rapidly, and GS scholars focused on specific

research topics (e.g., innovation and performance). On the basis of the aforementioned results,

several suggestions are proposed for future research in terms of research themes, contexts, and

theories; business activities; and types of research (Fig 5).

First, among the research themes, big data (big data analytics) accounted for the largest pro-

portion of AI research, followed by machine learning, natural language processing, and text

mining. This finding echoes the suggestions of field researchers that the capacity for handling

big data (e.g., big data management [6], data richness [7], and bag data adoption [8]) has

become a competitive advantage for today’s businesses and companies. Second, with respect to

research context, the development of technology applications has increased the role of social

media not only in the daily lives of individuals but also in research, especially in terms of the

ability to collect tremendous volumes of consumer data. Therefore, clinical records, privacy

problems, and financial or banking services are the key research topics for future AI research.

Third, in terms of business activities, marketing-related activities accounted for the largest por-

tion of AI research, followed by decision support systems and supply chain management. In

future studies, researchers should develop AI-based applications for managing marketing

intelligence and supporting decision-making in various business activities. Finally, in terms of

supported theories, the TAM and RBT are the most widely used theoretical frameworks. The

TAM can be applied for research-based empirical surveys, especially concerning the accep-

tance of big data analytical tools, whereas the RBT can be applied to improve the
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competitiveness and performance of a company. For future research, the aforementioned the-

ories can serve as research frameworks that provide further theoretical support for empirical

surveys and case studies in AI research. Overall, the proposed framework can provide a foun-

dation and guidance for future researchers who are interested in AI research.

Several suggestions pertaining to the methodology of future studies can be provided. First,

for data sets, we only collected articles from the WoS, which is regarded as a database with a

highly rigorous collection of articles. To expand the sources of research articles, future research

should collect articles from other reputed databases (e.g., Scopus and IEEE Xplore). Further-

more, for the author co-citation analysis of the literature, the present study used the affiliations

of first authors as the basis for analysis. Future researchers should conduct further analysis

using the full list of authors of investigated articles as the basis for categorizing GN and GS net-

works in other research fields. Finally, for research scope, the present study mainly focused on

the IS domain. Future studies should consider the development of more AI-related applica-

tions for other fields such as deep learning architecture and algorithm development.
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