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Abstract

Background Cachexia is a multifactorial metabolic syndrome with high morbidity and mortality in patients with advanced
cancer. The diagnosis of cancer cachexia depends on objective measures of clinical symptoms and a history of weight loss,
which lag behind disease progression and have limited utility for the early diagnosis of cancer cachexia. In this study, we
performed a nuclear magnetic resonance-based metabolomics analysis to reveal the metabolic profile of cancer cachexia
and establish a diagnostic model.
Methods Eighty-four cancer cachexia patients, 33 pre-cachectic patients, 105 weight-stable cancer patients, and 74 healthy
controls were included in the training and validation sets. Comparative analysis was used to elucidate the distinct metabolites
of cancer cachexia, while metabolic pathway analysis was employed to elucidate reprogramming pathways. Random forest,
logistic regression, and receiver operating characteristic analyses were used to select and validate the biomarker metabolites
and establish a diagnostic model.
Results Forty-six cancer cachexia patients, 22 pre-cachectic patients, 68 weight-stable cancer patients, and 48 healthy
controls were included in the training set, and 38 cancer cachexia patients, 11 pre-cachectic patients, 37 weight-stable cancer
patients, and 26 healthy controls were included in the validation set. All four groups were age-matched and sex-matched in
the training set. Metabolomics analysis showed a clear separation of the four groups. Overall, 45 metabolites and 18 metabolic
pathways were associated with cancer cachexia. Using random forest analysis, 15 of these metabolites were identified as
highly discriminating between disease states. Logistic regression and receiver operating characteristic analyses were used to
create a distinct diagnostic model with an area under the curve of 0.991 based on three metabolites. The diagnostic equation
was Logit(P) = �400.53 – 481.88 × log(Carnosine) �239.02 × log(Leucine) + 383.92 × log(Phenyl acetate), and the result
showed 94.64% accuracy in the validation set.
Conclusions This metabolomics study revealed a distinct metabolic profile of cancer cachexia and established and validated
a diagnostic model. This research provided a feasible diagnostic tool for identifying at-risk populations through the detection
of serum metabolites.
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Introduction

Although the overall prognosis of cancer patients has
improved since the early 1990s, the 5 year survival rate of

cancer patients remains low.1,2 Cachexia is thought to be the
main cause of death in cancer patients, and its morbidity and
mortality are high without effective treatment.3,4 This condi-
tion occurs in nearly 80% of patients with advanced cancer
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and contributes to approximately 30% of cancer mortality.5 It
is associated with a reduced quality of life, reduced therapy
response, and reduced treatment tolerance.2,6 Recent clinical
and experimental evidence clearly indicates that cancer
cachexia is not an ineluctable occurrence,1,7–9 and an
international consensus on the definition of cancer cachexia
has been reached.10 However, there is nomolecular biomarker
with high sensitivity and specificity that can be employed for
the early and accurate diagnosis of cancer cachexia.

Cancer cachexia is characterized by weight loss, adipose tis-
sue wasting, muscle atrophy, and loss of appetite.11 A clinical
diagnosis of cachexia requires patient weight-loss history and
may be severely underestimated. As cachexia can develop
progressively through various stages, from pre-cachexia to
cachexia to refractory cachexia, early screening and staging
is particularly important to prevent or delay the onset of ca-
chexia.10 Consistent with its biochemical and molecular mech-
anisms, cachexia involves the secretion of tumour-derived
catabolic factors and host-derived proinflammatory cyto-
kines.12 These catabolic factors and cytokines lead to changes
in host metabolism and energy expenditure. Glucocorticoid
abnormalities and insulin resistance are also often present in
cancer patients and animal models of cancer cachexia.13–15

These metabolic disorders not only potentially underlie the
pathogenesis of weight loss but also result in multiple and se-
vere consequences, ranging from impairment of immune
function to poor outcome to chemotherapy, fatigue, muscle
weakness, and markedly reduced quality of life.12,16 More-
over, metabolic dysfunction occurs before weight loss and
muscle atrophy.17,18 Hence, metabolite changes have been
hypothesized as biomarkers for the diagnosis of cachexia.

Previous studies have shown an association between
cancer cachexia and hypoglycaemia, hyperlipidaemia, and
decreasing levels of branched-chain amino acids.17–19 How-
ever, these biomarkers have poor sensitivity and specificity.
Our previous studies of animal models revealed the dynami-
cally changing metabolic profile of cancer cachexia and identi-
fied the involvement of fivemetabolic pathways, including low
blood glucose, elevated ketone bodies, decreased branched-
chain amino acids, increased neutral amino acids, and high
levels of 3-methylhistidine and creatine.20–22 To validate these
results, a serum and urine metabolomics approach was
employed to reveal the metabolic profile of cancer cachexia
and establish a diagnostic model for cancer cachexia.

Materials and methods

Patient selection

Ethics approval was obtained from the Health Research Ethics
Board at Shanghai Jiao Tong University Affiliated Sixth
People’s Hospital. Patients were recruited between July

2013 and February 2017 at Shanghai Jiao Tong University
Affiliated Sixth People’s Hospital (n = 48), Shanghai
Traditional Chinese Medicine-Integrated Hospital, Shanghai
University of Traditional Chinese Medicine (n = 68), and First
People’s Hospital of Benxi (n = 68). All participants provided
written informed consent. Based on the diagnostic criteria
from the international consensus,10 we recruited cancer-
cachexic patients, pre-cachectic patients, weight-stable
cancer patients, and weight-stable healthy controls. Groups
were matched by age, gender, and primary cancer type.
Cancer cachexia was recognized in individuals as follows:
weight loss >5% in the past 6 months or weight loss >2% in
the past 6 months and a body mass index (BMI) <20 kg/m2.
Pre-cachexia was recognized as weight loss <5% in the past
6 months and a BMI >20 kg/m2. Weight-stable cancer
patients were considered to include those with a
BMI<25 kg/m2 and no marked weight change during the pre-
vious year. The weight-stable healthy controls were recruited
from among healthy subjects during an annual wellness visit.
Age, height, weight, cancer biomarkers, and biochemical
biomarkers were obtained from patient laboratory reports,
either from the date of diagnosis or from the date closest to
diagnosis. Exclusion criteria were as follows: chemotherapy
near the time of sample acquisition, kidney or liver failure,
acquired immunodeficiency syndrome, inflammatory bowel
disease, and systemic infection. Primary cancer types included
lung cancer, liver cancer, colorectal cancer, gastric cancer,
cardiac cancer, renal cancer, breast cancer, oesophageal
cancer, and pancreatic cancer. To identify the metabolic
profile and establish a diagnostic model of cancer cachexia,
independent serum and urine samples were collected to gen-
erate a validation set during the period from January 2015 to
February 2017. Sample collection and inclusion and exclusion
criteria were the same as for the training sets. Table 1 shows
the general characteristics of the patients in each group.

Sample collection

Morning fasting blood was collected in a Vacutainer tube, and
the last morning urine was collected midstream in a urine
tube. The blood samples were kept at room temperature for
30 min for clotting. Clotted blood samples were centrifuged
at 3000 × g at 4°C for 20 min to remove the supernatant
serum and quickly stored at �80°C until the 1H nuclear
magnetic resonance (NMR) analysis was conducted. Within
2 h of the urine sample collection, each mL of urine was mixed
with 50 μL of 0.42% sodium azide preservative. The pH of
urine was adjusted to 7.0 with 1M Tris-HCl (pH 7.0) and
biobanked at �80°C. To ensure robust and reproducible data,
all the samples were prepared according to the Bruker proto-
col.23 Briefly, the samples were thawed at 4°C for 2 h and left
at room temperature for 1 h. Thereafter, 300 μL thawed sam-
ples were mixed with 300 μL of phosphate buffer (pH 7.4)
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containing 10% of D2O. After vortex mixing and
centrifugation, 550 μL of the solution were transferred into
5 mm NMR tubes and kept at 4°C until the NMR analysis.

Collection of cancer biomarker and routine
biochemical analysis report

Clinical routine biochemistry tests and circulating tumour
biomarker measurements were performed according to the
manufacturer’s protocol by the hospital laboratory. The
results of the collected data were verified and recorded.
The assays for these biomarkers have demonstrated
satisfactory performance and reproducibility except for
interleukin-6. Repeated measurement was obtained for
interleukin-6 using a high-sensitivity chemiluminescent assay
(R&D Systems, Minneapolis, MN, USA). All the samples were
assayed in duplicate and averaged to calculate the concentra-
tions in the same analytic batch.

1H-NMR spectroscopy

All spectra were recorded using a Bruker AMX-600 NMR
(Bruker, Rheinstetten, Germany) spectrometer that was oper-
ated at a 600.13 MHz 1H resonance frequency. Quality con-
trol tests were performed at the beginning of every
measurement day. A representative sample was used for
NMR probe tuning and matching, determination of the trans-
mitter offset value for water-pulse pre-saturation, and 90
pulse adjustments. Each sample was locked and shimmed au-
tomatically; receiver gain was set to 90.5 and temperature to
310 K for all experiments. All spectra were acquired and per-
formed using TopSpin software package version 3.0 (Bruker
Biospin, Rheinstetten, Germany). The NMR spectroscopy of
urine samples was collected with a pre-saturation 1H - NOESY
pulse sequence (equation as relaxation delay -90° - t1-90° -
tm-90° acquisition, where the relaxation delay was 2 s, t1
was 4 μs, and tm was 100 ms). A total of 128 scans with a
spectral width of 5 kHz was collected for all NMR spectra.
All the signals were zero filled to 32 k before Fourier transforma-
tion. The NMR spectroscopy of serum samples was collected
with Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence
(equation as relaxation delay -90°-(t-180°-t) n - acquisition,
where the relaxation delay was 2 s, t was 400 μs).

Metabolite identification and chemical signal
assignment

Chenomx NMR Suite software version 8.1 (Chenomx, Inc.,
Alberta, Canada) was used for the identification of metabo-
lites in the 1H-NMR spectra of biological samples. Owing to
the overlap of signals in the 1H-NMR spectrum, two-

dimensional (2D) J-resolved and heteronuclear single bond co-
herence (HSQC) spectra were used for metabolite identifica-
tion and signal assignment. 2D J-resolved spectra were
acquired using 16 transients per increment for a total of 32 in-
crements that were collected into 16 k data points with spec-
tral widths of 6 kHz along the direct chemical shift axis and
50 Hz along the spin–spin coupling axis. Prior to Fourier trans-
formation, datasets were zero-filled to 128 points in the spin–
spin coupling axis and 32 768 points in the chemical shift axis.
HSQC spectra can provide excellent spectral dispersion along
the indirect 13C dimension and allow the separation of many
of the peaks that overlap in a 1D NMR spectrum.

Statistical analysis

NMR data reduction
After the Fourier transformation, phase correction and
baseline correction were carefully performed. The 1H
chemical shifts referred to the methyl doublet signal of
lactate (δ1.33). The corrected NMR spectra, corresponding
to the chemical shift range of δ 0.2–10.0, were imported into
AMIX 3.9.5 (Bruker Biospin, Rheinstetten, Germany), and all
the spectra were reduced into integral regions of equal
lengths of 0.005 p.p.m. Regions of δ 4.7–5.1 that contained
the resonance from residual water were set to zero. To
reduce the concentration differences between the samples,
the data were normalized to the total spectral area (100%).

Metabolomics analysis
The dataset was analysed with pattern-recognition methods
using the software package Simca version 14.1 (UmetricsAB,
Umeå, Sweden). The response variables were centred and
scaled to Pareto variance, and the base weight was computed
as 1/squareroot (standard deviation of the response
variables). Moreover, to normalize the skewed distributions,
log transformations were used for non-linear conversions of
the data. To eliminate the effect of inter-subject variability
and to identify endogenous metabolites that contributed
significantly to the classification, linear combinations of X
variables orthogonal to the Y vector were removed by
orthogonal projections to latent structures (OPLS)-discrimi-
nant analysis (DA).24,25

Metabolic network analysis
To identify the most relevant metabolic pathways in cancer
cachexia, pathway analysis was used for pathway-enrichment
analysis and pathway-topology analysis. The metabolites with
variable importance in the projection (VIP) scores >1.0 in PLS
or p1 ≥ ± 0.05 in S-Plot were examined and selected for
discrimination power according to multiple statistical criteria.
GlobalTest was used to analyse the concentration values and
identify subtle changes, and a relative-betweenness central-
ity was used to establish metabolite importance.
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Selection of biomarker candidates
Establishing a diagnostic model to predict the presence of
cachexia through the distinct metabolic profile was difficult
because of the high-dimensional dataset. To improve the
prediction of cachexia, random forest analysis was performed
to determine whether the metabolic data could successfully
differentiate the four groups. Then, a forward stepwise logis-
tic regression model was constructed on the training sample
set to design the best metabolite combination. Receiver
Operating Characteristic (ROC) curves were used to evaluate
the accuracy of this model in the validation sets following
the DeLong method. The global performance of each
biomarker model was evaluated using the Area Under the
Curve (AUC) and the determination of sensitivity and specific-
ity at the optimal cut-off point defined by the minimum
distance to the top-left corner.

General statistical analysis
Data entry and analysis were performed with MedCalc soft-
ware version 13.0.6.0 (Broekstraat, Mariakerke, Belgium). Af-
ter data collection, the data were checked manually for
completeness and inconsistencies. The attribute data were
expressed as counts and analysed using non-parametric tests.
The measurement data are expressed as the mean ± standard
deviation. For the normal distribution data, the differences
between two groups were analysed using Student’s two-
sided t-test, and differences involving more than two groups
were analysed using one-way ANOVA followed by Tukey’s
post-hoc test. For the non-normal distribution data, the likeli-
hood ratio chi-square statistical method was used to assess
the differences. The correlation between weight loss and
the metabolite levels was analysed with correlation analysis
and regression analysis. The level of significance was set at
P < 0.05.

Results

Baseline clinical characteristics of patients in the
training and validation sets

The demographic and clinical data of all the study participants
are summarized in Table 1. Forty-six cancer cachexia patients,
22 pre-cachectic patients, 68 weight-stable cancer patients,
and 48 healthy controls were included in the training set,
while 38 cancer cachexia patients, 11 pre-cachectic patients,
37 weight-stable cancer patients, and 26 healthy controls
were included in the validation set. In the training set, all
participants were age-matched and sex-matched. The base-
line clinical characteristics of patients in the training were
showed in Table S1 in the Supplemental Materials. Moreover,
there was no significant difference in primary cancer type
between the cancer cachexia patients and the weight-stable

cancer patients in the training set (P = 0.59). However, in the
validation set, the cancer cachexia patients were older than
the weight-stable cancer patients. The difference among
primary tumour types was also significant (P = 0.02). Inclusion
of different tumour types in the validation set gave insight
into the common metabolic profile of cancer cachexia.

Most cancer biomarkers were elevated in the cancer
cachexia group relative to the weight-stable cancer group in
the training set. The elevated biomarkers included
α-fetoprotein, carcinoembryonic antigen, carbohydrate anti-
gen 19–9, carbohydrate antigen 72–4, carbohydrate antigen
12–5, carbohydrate antigen 15–3, carbohydrate antigen
242, carbohydrate antigen 50, cytokeratin 19 fragments,
procalcitonin, and interleukin-6. Although interleukin-6 was
thought to be a biomarker of cancer cachexia,26 our results
did not indicate that it was a specific biomarker for the diag-
nosis and classification of cancer cachexia.

The serum biochemical characteristics of the cancer
cachexia, pre-cachexia, and weight-stable cancer patients are
listed in Table 2. There were no significant differences in total
protein or albumin levels. In contrast, low-density lipoprotein
and free fatty acids were significantly elevated in the cancer
cachexia group, while glucose was decreased. Moreover, the
hepatic function and bile metabolism were affected, as
indicated by altered levels of direct bilirubin, total bilirubin,
total cholesterol, total bile acid, alkaline phosphatase,
γ-glutamyltransferase alanine aminotransferase, aspartate
aminotransferase, α-hydroxybutyric dehydrogenase, and
lactate dehydrogenase. Kidney dysfunction was reflected by
elevated serum urea and uric acid in the cancer cachexia
patients. Although patients with liver failure were excluded,
some patients showed significant variations in relevant bio-
chemical biomarkers, such as direct bilirubin, total bilirubin,
total bile acid, alkaline phosphatase, γ-glutamyltransferase,
aspartate aminotransferase, α-hydroxybutyric dehydroge-
nase, and lactate dehydrogenase.

Overall metabolomics analysis of serum samples

Representative NMR spectra of the identified metabolites are
shown in Figure 1A. Owing to the overlap in each 1D
spectrum, the splitting patterns and coupling constants of
each signal could not be recognized. Thus, 2D experiments
using J-resolved and HSQC spectra were used for the accurate
identification and assignment of metabolites in crowded
regions (Figure S1 in the Supplemental Materials). The serum
spectra contained high-intensity signals at δ1.18, with a wide
peak in the spectrum representing the lipid CH3 of lipoprotein
(VLDL and LDL), as previously reported.20 In addition, the
spectra contained numerous signals from the following small
molecules: lactate, alanine, creatine, taurine, glycine, and glu-
cose. The identification, assignment, and source of metabo-
lites are listed in Table S2 in the Supplemental Materials.
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Although the overall signals were similar among the four
groups, there were seemingly specific signals in each group.
The statistical evaluation by PCA (Principal Component Anal-
ysis) showed separation of healthy control from the other
three groups. The widespread of the samples in the PCA
was caused by different levels of metabolic manifestations
within subjects and/or by the date of subsequent sampling.
To exclude possible confounding variables that were not re-
lated to the group differences and to evaluate the statistical
significance of those signals, OPLS were applied (Figure 2A).
The result was encouraging as the discrimination model could
differentiate the healthy control, tumour, and cachexia groups.
The multiple testing results of the identified metabolites are
listed in Table S3 in the Supplemental Materials. The heat
map of samples and metabolites were analysed with
Metaboanalyst 3.0. The distance measure was Euclidean, and
the clustering algorithm was average. The samples clustered
according to their natural affiliation as four groups (Figure S2
in the Supplemental Materials). Although the distributions of
pre-cachexia overlapped with tumour and cachexia samples,
the models showed high cross-validation predictability and
goodness-of-fit values, with R2Y (cum) = 0.738 andQ2 (cum) = 0.
697, indicating reliable differentiation between the groups.27

Typical cachexia-related serum metabolites

To identify distinct biomarkers that may be associated with
cancer cachexia among thousands of variables, a pairwise
comparison was conducted between the cancer cachexia
group and weight-stable cancer patients (Figure 2B). The
model for classification of these groups obtained satisfactory

validation, with R2Y (cum) = 0.968 and Q2 (cum) = 0.907. To
identify the most reliable discriminating variables (those that
were highly diagnostic for group separation), a visualized S-
plot (Figure 2C) was employed, with p1 and p1 (corr) set as
> ± 0.05. Using this method together with the VIP from the
OPLS-DA model described above, a total of 15 metabolites
with VIP > 1 were selected, including elevated levels of pyru-
vate, lysine, succinate, choline, isoleucine, 5-hydroxylysine,
tyrosine, creatine, myo-inositol, glycocholate, 1-methyl-
histidine, and glucose and decreased levels of lactate, fatty
acid, leucine, n-acetylglutamate, glutamate, carnitine, citrate,
4-hydroxyproline, malate, and alanine.

To reduce the false-positive risk in the metabolite selection
procedure, another pairwise comparisons between the can-
cer cachexia and normal control groups were conducted.
The score plot (Figure 2D) also showed clear separation of ca-
chexia and normal control groups, with R2Y (cum) = 0.986 and
Q2 (cum) = 0.970. The visualized S-plot (Figure 2E) and the
variables with high VIP indicated 21 differential metabolites,
including elevated levels of lysine, citrulline, cis-aconitate,
methionine, succinate, pyruvate, glutamate, n-acetylcysteine,
alanine, 1-methylhistidine, n-acetylglutamate, anserine, 5-
hydroxylysine, creatine, tyrosine, myo-inositol, glycocholate,
2-hydroxyisovalerate, and glucose and decreased levels of
choline, carnitine, fatty acids, leucine, citrate, 4-hydroxy-
proline, and valine.

Pre-cachexia-related serum metabolites

To reveal pre-cachexia-related serum metabolites, pairwise
comparisons between the cancer cachexia and pre-cachexia

Table 2 Serum biochemical characteristics of cancer cachexia patients, cancer patients, and healthy controls in the training set

Item Cachexia Pre-cachexia Cancer

Total protein 60.63 ± 9.40 63.38 ± 14.53 61.18 ± 7.34
Albumin 31.47 ± 5.71 38.15 ± 9.45 34.02 ± 7.99
Pre-albumin 0.15 ± 0.14 0.24 ± 0.14*# 0.13 ± 0.07
Direct bilirubin 38.50 ± 84.32# 32.62 ± 43.33*# 22.99 ± 32.13
Total bilirubin 52.72 ± 102.21* 56.47 ± 81.19*# 36.3 ± 41.84
Total cholesterol 4.55 ± 0.98* 4.24 ± 2.67 4.13 ± 1.28
High-density lipoprotein cholesterol 1.20 ± 0.28 1.56 ± 0.33*# 1.04 ± 0.27
Low-density lipid cholesterol 2.38 ± 1.40 3.08 ± 1.09*# 2.51 ± 1.16
Total bile acid 25.39 ± 49.53* 24.38 ± 28.75* 16.81 ± 18.92
Triglycerides 1.74 ± 1.03* 1.29 ± 0.78# 1.30 ± 0.65
Free fatty acids 0.72 ± 0.35 0.52 ± 0.24*# 0.75 ± 0.21
Glucose 5.95 ± 2.25 5.04 ± 2.94*# 6.06 ± 1.62
Creatinine 70.12 ± 32.74 66.40 ± 37.51 65.67 ± 17.30
Urea 6.41 ± 4.76* 7.81 ± 3.51*# 5.04 ± 1.49
Uric acid 283.54 ± 131.26* 222.27 ± 110.84*# 247.44 ± 90.67
Homocysteine 11.52 ± 6.41* 13.92 ± 5.82*# 12.51 ± 7.60
Alanine aminotransferase 34.26 ± 45.35* 22.71 ± 43.67# 25.00 ± 18.08
Aspartate aminotransferase 54.29 ± 84.49* 43.97 ± 83.92*# 32.78 ± 19.34
Alkaline phosphatase 224.84 ± 231.31 162.84 ± 110.29*# 242.65 ± 269.46
α-Hydroxybutyric dehydrogenase 260.30 ± 292.64* 200.15 ± 142.76*# 170.13 ± 35.49
γ-Glutamyltransferase 167.15 ± 266.37* 116.75 ± 164.22# 119.73 ± 160.01
Lactate dehydrogenase 322.72 ± 410.64* 223.20 ± 210.20*# 209.56 ± 46.02

*Significant difference from cancer patients.
#Significant difference from cachexia patients
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groups were conducted. The score plot (Figure 3A) of the
OPLS-DA model showed clear separation, with R2Y
(cum) = 0.978 and Q2 (cum) = 0.882. The S-plot (Figure 3B)
indicated the changed metabolites. Compared with pre-
cachexia, cachexia showed increased glycocholate, myo-
inositol, creatine, 1-methylhistidine, 5-hydroxylysine,
tyrosine, and succinate and decreased lactate, fatty acids,
leucine, N-acetylglutamate, glutamate, citrate, carnitine,
methylmalonate, 3-hydroxybutyrate, malate, N-acetylcys-
teine, alanine, glutamine, methionine, 4-hydroxyproline, gly-
cine, and threonine.

To reveal pre-cachexia-related serum metabolites, two
other pairwise comparisons were conducted. The score plot
(Figure 3C) of the OPLS-DA model from pairwise compari-
son between pre-cachectic patients and weight-stable

tumour patients showed partial separation, with R2Y
(cum) = 0.647 and Q2 (cum) = 0.570. The S-plot (Figure 3
D) and the variables with high VIP revealed the metabolic
effect of pre-cachexia, including elevated levels of lactate,
tyrosine, N-acetylglutamate, N-acetylcysteine, glutamate, 5-
hydroxylysine, glutamine, methionine, alanine, myo-inositol,
creatine, carnitine, leucine, glycine, isoleucine, anserine,
threonine, malate, choline, fatty acid, glycocholate, pyru-
vate, lysine, and citrate and decreased levels of glucose,
3-hydroxybutyrate, cis-aconitate, 4-hydroxyproline, methyl-
malonate, acetone, 1-methylhistidine, and taurine. The
score plot (Figure 3E) of the OPLS-DA model from the
pairwise comparison between pre-cachectic patients and
weight-stable healthy controls revealed clear separation,
with R2Y (cum) = 0.972 and Q2 (cum) = 0.942. The S-plot

Figure 1 Typical 600 MHz
1
H-NMR spectra of (A) sera and (B) urine from cancer cachexia patients, pre-cachectic patients, weight-stable cancer pa-

tients, and healthy controls. The metabolites are assigned and marked.
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Figure 2 Overall serum metabolic profile of four groups and the metabolic profiles associated with cancer cachexia. The OPLS-DA score plot of the four
groups revealed the clustering of samples in the training set (A). To identify the unique metabolites associated with cancer cachexia, two comparison
analyses were conducted. OPLS-DA score plots (B, D) showed strong clustering of each group, with little difference within the subjects, while an S-plot
(C, E) identified the metabolites. The metabolites with p1 and p1 (corr) > ± 0.05 were marked by the first component in the S-plots. Comparisons
between cancer cachexia and cancer patients (B, C) and between cancer cachexia patients and healthy controls (D, E).
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(Figure 3F) and the variables with high VIP revealed the
metabolic effect of pre-cachexia, including elevated levels
of lactate, leucine, fatty acid, glutamate, N-acetylglutamate,

1-methylhistidine, alanine, N-acetylcysteine, methylma-
lonate, anserine, tyrosine, myo-inositol, methionine, 5-
hydroxylysine, taurine, glutamine, citrate, malate, pyruvate,

Figure 3 Serum metabolic profiles associated with pre-cachexia. OPLS-DA score plots (A, C, E) showed clustering, while an S-plot (B, D, F) identified the
metabolites. Comparisons between cancer cachexia and pre-cachectic patients (A, B) between pre-cachexia and cancer patients (C, D) and between
pre-cachectic patients and healthy controls (E, F) revealed metabolites associated with pre-cachexia.
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3-hydroxybutyrate, succinate, creatine, glycocholate, acetone,
cis-aconitate, threonine, and citrulline and decreased levels
of 4-hydroxyproline, glycine, carnitine, glucose, and choline.

Cancer-related serum metabolites

To reduce the interference from cancer, pairwise comparison
between cancer patients and weight-stable healthy controls
were conducted. The R2Y (cum) = 0.970 and Q2 (cum) = 0.955
of the OPLS-DA model were close to 1, indicating an excellent
model. The score plot (Figure 4A) and S-plot (Figure 4B) re-
vealed the metabolic effect of tumours, including elevated
levels of glycocholate, citrulline, succinate, cis-aconitate, malate,
glutamine, pyruvate, methionine, citrate, tyrosine, myo-inositol,
acetone, valine, isoleucine, n-acetylcysteine, anserine, alanine,
methylmalonate, taurine, glutamate, n-acetylglutamate, fatty
acid, leucine, lactate, and 1-methylhistidine and decreased
levels of choline, glucose, carnitine, and glycine. These metabo-
lites revealed a highly unique metabolic cancer phenotype char-
acterized by glycolysis, the mitochondrial citric acid cycle,
choline, and altered fatty acid metabolism.

Typical cachexia-related urine metabolites

The urine 1H-NMR spectrum and metabolite biomarkers are
shown in Figure 1B. The differences between cancer cachexia
patients and controls were also assessed using a PCA model,
which showed clear separation. To exclude unfit variables
from the candidate list, OPLS-DA was applied (Figure 5A).
The first two principal components were able to differentiate
cancer cachexia patients from the control groups. The

potentially significant-related metabolites were identified fol-
lowing the same procedure that was used for serum metabo-
lites. By combining the variables with high VIP with the S-Plot
(Figure 5B), 22 metabolites were finally identified as potential
biomarkers, including increased levels of 3-hydroxybutyrate,
phenylalanine, 1-methylhistidine, glycine, glycerol, N-
acetylglutamate, acetoacetate, tryptophan, creatine, and 3-
aminobutyrate and decreased levels of uridine, fatty acids, iso-
leucine, leucine, methylmalonate, serine, carnosine, valine,
anserine, 5-hydroxylysine, and phenyl acetate. As listed in Sup-
plemental Table S2, 12 metabolites are found both in serum
and urine samples, 3-hydroxybutyrate, 1-methylhistidine, 5-
hydroxylysine, anserine, citrulline, creatine, glycocholate,
methylmalonate, glycine, leucine, isoleucine, and valine. The
overlapping amino acids and their intermediate metabolites
might reflect a common metabolic reprogramming.

Metabolite profiling and cancer cachexia-related
pathways

The altered metabolites in serum and urine were pooled for
analysis, giving a total of 45 metabolites. Correlation analysis
was employed to show the relationships among the metabo-
lites. A heat map of the correlation analysis revealed that the
metabolites could be divided into four categories (Figure S3
of the Supplemental Materials). All 45 identified metabolites
were analysed using Metaboanalyst 3.0. The concentrations
of the examined metabolites in the four groups are shown in
Figure S4 of the Supplemental Materials. The pathway analysis
showed the detailed impacts of cancer cachexia-related alter-
ations in metabolic networks (Figure 6). The most influential
metabolic pathway had a pathway impact >0.05 and log

Figure 4 Serum metabolomics between cancer patients and healthy controls (A, B) revealed metabolites associated with cancer. OPLS-DA score plots
of cancer patients and healthy controls (A) showed clear distinction. S-plots revealed metabolites with p1 and p1 (corr) > ± 0.05 from the first com-
ponent (B).
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(p) > 20. Eighteen metabolic pathways were defined as dis-
turbed in the plasma and urine profiles of cancer cachexia pa-
tients, including the synthesis and degradation of valine,
leucine and isoleucine, lysine, and ketone bodies; the citrate
cycle; the metabolism of glycine, serine, threonine, glutamine,
glutamate, taurine, pyruvate, alanine, aspartate, glutamate,
glycerolipids, phenylalanine, butanoate, glycerophospho-
lipids, inositol phosphate, arginine, proline, cysteine, and me-
thionine; and aminoacyl-tRNA biosynthesis.

Selection of biomarkers and validation of the
diagnostic model

Using the metabolic profile of cancer cachexia with the 45
differential metabolites, it was difficult to establish a diagnos-
tic model to predict the presence of cachexia in cancer
patients. Random forest analysis was executed to estimate
the importance of each metabolite in the training dataset.19

As presented in Figure 7A, we found the15 metabolites
clearly achieved higher significance than the other metabo-
lites. To screen cachexia, we use a logistic regression to
establish a diagnostic model based on three metabolites.
The diagnostic regression equation was as follows: Logit
(P) = �400.53 – 481.88 * log (Carnosine) �239.02 * log
(Leucine) + 383.92 * log (Phenyl acetate). The corresponding
ROC curve had an AUC of 0.991 (95% CI: 0.938–1.000) with a
Youden index J of 0.895 (Figure 7B). To validate the results,
we analysed the association of the samples in the validation
datasets. Only six samples in the validation set were ambigu-
ous, and the accuracy was 94.64%. It should be noted that
the AUC of the combined diagnostic model was better than
that for each metabolite, indicating that the diagnostic equa-
tion based on three metabolites yielded the highest AUC
value and could significantly improve the diagnostic perfor-
mance with respect to cancer cachexia.

Discussion

In this study, we performed a 1H-NMR-based metabolomics
analysis to reveal the metabolic profile of cancer cachexia
and to establish a diagnostic model. Overall, 84 cancer
cachexia patients, 33 pre-cachectic patients, 105 cancer

Figure 5 Urine metabolomics analysis identified metabolites associated with cancer cachexia. OPLS-DA score plots of cancer cachexia patients and
healthy controls (A) showed clear distinction. S-plots revealed metabolites with p1 and p1 (corr) > ± 0.05 from the first component (B).

Figure 6 Cachexia triggers metabolic pathway reprogramming. Plots de-
pict the computed metabolic pathways as a function of �log(p) (y-axis)
and the pathway impacts of the key metabolites (x-axis) that differed be-
tween the cancer cachexia and non-cachexia groups.
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patients, and 74 healthy controls were included in the
training and validation sets. Metabolomics analysis revealed
clear separation based on metabolic profiling. To predict
the presence of cachexia, a diagnostic model was established
based on three metabolites, namely, carnosine, leucine, and
phenyl acetate, with high accuracy and confirmation by the
validation set (94.64% by diagnostic feature).

In the metabolic profile, decreased levels of glucose and
elevated levels of lactate were observed in the cachexia
patients’ sera, consistent with previous reports.17,18

Enhanced glucose metabolism in cancer has been associated
with glycolysis, leading to greater pyruvate and lactate forma-
tion via non-oxidative pathways. However, the disruption of
glucose metabolism and its intermediatemetabolites is similar
to certain characteristics of cancer cell metabolism, and its
specificity to cancer cachexia is limited. Comparative analysis
andmetabolic pathway analysis were employed to identify dis-
tinct metabolites and pathway changes of cancer cachexia. A
total of 45metabolites and 18metabolic pathways were found
to be associated with cancer cachexia. Because the metabo-
lites were collinear, we employed random forest and logistic
regression analyses to establish a diagnostic model. In the se-
lection of biomarkers and validation of the diagnostic model,
random forest analysis identified the 15 highly discriminating
metabolites among 45metabolites; logistic regression analysis
revealed a distinct diagnostic equation based on 3 metabo-
lites, and ROC analysis elucidated that the diagnostic perfor-
mance of the equation was higher than each metabolite.

Carnosine levels were decreased in cancer patients and
elevated in cachexia patients. ROC analysis was conducted
and showed an AUC of 0.932, implying high specificity and sen-
sitivity. Carnosine is a dipeptide of histidine and alanine that is
present at high concentrations in skeletal muscle and brain tis-
sue.28 Previous studies showed that carnosine supplementa-
tion can regulate brain function in some patients and elevate
plasma corticosterone concentrations via the hypothalamic-

pituitary-adrenal axis.29 Recent research has demonstrated
that carnosine has the potential to suppress the multiple bio-
chemical changes of protein oxidation, glycation, and cross-
linking.30 Low carnosine dipeptidase-1 levels have also been
associated with poor cancer prognosis, including weight loss,
malnutrition, lipid breakdown, low circulating albumin, IGF1
levels, and poor quality of life in gastrointestinal cancer.31

These results, together with other recently published data, in-
dicate that carnosine contributes to body-weight regulation.22

Leucine is a branched-chain amino acid (BCAA). BCAAs
such as valine, isoleucine, and leucine are essential amino
acids whose carbon structures are marked by a branch point.
They are essential to human life and are particularly involved
in nutrient and energy metabolism. Consistent evidence has
shown that BCAAs are not only important energy substrates
but also act as precursors that improve nitrogen retention
and protein synthesis.32 Research has also shown that nutri-
tional leucine supplementation can stimulate muscle protein
anabolism, inhibit catabolism, and modulate glucose homeo-
stasis.33,34 Infusion of leucine can promote the synthesis of
glutamine and alanine. Moreover, BCAAs are primarily catab-
olized in skeletal muscle, and they have been proposed for
the treatment of catabolic disease states involving skeletal
muscle wasting.35,36 Despite their structural similarities, the
branched-chain amino acids belong to different metabolic
pathways, with leucine going solely to fats, valine solely to
carbohydrates, and isoleucine to both. In our study, the
changes in valine and isoleucine levels were different from
those in leucine levels. Our correlation analysis of metabo-
lites also revealed different effects on these three amino
acids. Leucine was elevated in cancer patients and decreased
in cachexia patients. The AUC in the ROC analysis was 0.909,
suggesting a high-predictive value of leucine for the diagnosis
and classification of cancer cachexia.

Phenyl acetate was found to be decreased in cancer
patients and increased in cachexia. Phenyl acetate can be

Figure 7 Random forest analysis revealed the 15 most important metabolites (A). ROC curves of the diagnostic metabolites and combined equation in
the validation sets (B).
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converted to phenylpyruvate by transamination or may be
further conjugated with glutamine to form phenylacetyl
glutamine. It is produced endogenously by monoamine
oxidase as the metabolite of 2-phenylethylamine, which
may modulate central adrenergic functions.37 Previous stud-
ies postulated that urine phenyl acetate may be a biomarker
for depression.38 The demand for nutrients leads to the
depletion of phenyl acetate in cancer, and cancer cachexia
results in the accumulation of urine phenyl acetate. The
AUC in the ROC analysis was 0.929. These results demon-
strate the differences in the metabolite profiles of cancer
patients and cachexia patients.

To validate the significance of metabolites as potential
cancer cachexia biomarkers, logistic regression analysis was
employed to generate an optimal model using the three
metabolites. The diagnostic model had an AUC of 0.991 in
the corresponding ROC curve, with high specificity and sensi-
tivity. Currently, cachexia is diagnosed based on objective
measures of clinical symptoms, and its diagnosis depends on
a history of weight loss.39 This diagnostic criterion lags
behind disease progression and has limited utility for the early
diagnosis of cancer cachexia.4 The emergence of metabolo-
mics has immense potential for the early diagnosis and under-
standing of the pathogenesis of cancer cachexia. Endogenous
metabolites are the end products of physiological processes,
and many key metabolites may function intracellularly as
modulators by regulating the activity of enzymes, which are
considered responsible for the pathophysiological process.
NMR-based metabolomics is an unbiased method to distin-
guish metabolites. Thus, high resolution 1H-NMR-based meta-
bolomics was employed to reveal the metabolic profiles in
the present study. When we compared our study with the re-
sults from Di Gangi et al.,19 17 common metabolites were
found, including alanine, arginine, asparagine, creatinine,
glucose, glutamine, glycine, histidine, isoleucine, leucine, ly-
sine, phenylalanine, taurine, threonine, tryptophan, tyrosine,
and valine. While NMR-based metabolomics and LC-MS-
based metabolomics can measure different metabolites,
these methods identified common changes in amino acid
and intermediate metabolites, underscoring the robustness
of the data.

It should be noted that our previous study revealed changes
in 13 metabolites from the intact muscle gastrocnemius and
43 metabolites from the serum in our murine dynamic cancer
cachexia model.20 The common changes in metabolites be-
tween murine and human samples included 2-oxoglutarate,
3-hydroxybutyrate, 3-methylhistidine, acetoacetate,
aconitate, alanine, anserine, carnitine, carnosine, choline, cis-
aconitate, citrate, citrulline, creatine, glucose, glutamate, glu-
tamine, glycerol, glycine, isocitrate, lactate, leucine, lysine,
malate, methionine, phenyl acetate, phenylalanine, pyruvate,
serine, succinate, taurine, taurine, threonate, valine, and
VLDL/LDL. Another 10 metabolites were not found to be
changed in themurine cachexiamodel, whichmight be related

to the fact that species, tumour types, and environment were
different. After excluding the collinear metabolites, we could
establish a simple and feasible diagnostic model. A longitu-
dinal research design will be convincing to verify the results
because longitudinal design can help to show dynamic
change trends of metabolites over time, in parallel with
the severity of cachexia. It was interesting that when we
analysed the correlation between the severity of cachexia
(determined by % weight loss) and the metabolite levels cal-
culated from the model, the correlation coefficient was
0.563 and significance level was less than 0.05. These
indicated the levels of metabolites were correlated with
the severity of cachexia.

In conclusion, this study reports a metabolomics analysis
of serum and urine from cancer cachexia patients. Forty-five
distinguishable metabolites were identified, and 18 metabolic
pathways were found to change in association with cachexia.
To select the biomarkers and validate the diagnostic model,
random forest identified the 15 highly discriminating metab-
olites among 45 metabolites, and logistic regression re-
vealed a distinct diagnostic equation based on three
metabolites. ROC analysis demonstrated that the diagnostic
performance of the equation was higher than that for each
metabolite, and the AUC of the diagnostic model was 0.991.
The accuracy was 94.64% in the validation set, and these re-
sults indicated a feasible diagnostic approach for identifying
at-risk populations through the detection of metabolites.
Therefore, the signature model based on the three metabo-
lites could improve the diagnostic performance with respect
to cachexia.

Acknowledgements

The present study was supported by grants from the Natural
Science Foundation of China (No. 81503155). The authors
certify that they comply with the ethical guidelines for au-
thorship and publishing of the Journal of Cachexia,
Sarcopenia and Muscle.40

Online supplementary material

Additional Supporting Information may be found online in
the supporting information tab for this article.

Fig. S1. The metabolites are assigned and marked. The over-
lapping peaks were identified by 2D J-resolved (A) and HSQC
(B) spectra.Figure S2. The heat map of samples and metabo-
lites analysed with Metaboanalyst 3.0. The distance measure
was Euclidean, and the clustering algorithm was average. The
samples clustered as four groups (cachexia, pre-cachexia,
body weight stable cancer groups and healthy control)

Distinct metabolic diagnostic model for cancer cachexia 83

Journal of Cachexia, Sarcopenia and Muscle 2018; 9: 71–85
DOI: 10.1002/jcsm.12246



according to their natural affiliation.Figure S3. The heat map
of correlation analysis analysed with Metaboanalyst 3.0. All
the 45 metabolites clustered as two subgroups.Figure S4.
The concentration of the examined metabolites in the four
groups.
Table S1. Baseline clinical characteristics of patients in the
training setsTable S2. The identification, assignment, sample
source of metabolites in samples and their related metabolic
pathways.Table S3. The multiple testing results of the identi-
fied metabolites.

Conflict of interest

None declared.

Authors’ contributions

Conception and design were performed by Yang Quan-Jun
and Guo Cheng. Sample selection and collection were carried
out by Zhang Jiang-Rong, Hao Juan and Li Bin.

NMR experiment was performed by Yang Gen-Jin. Metab-
olites identification was carried out by Yang Quan-Jun, Yang
Gen-Jin, Huang Jin-Lu, and Gan Run. Data analysis was per-
formed by Yang Quan-Jun, Li Jie, Lu Jin, Han Yong-Long, and
Guo Cheng. Administrative, technical, and material support
were carried out by Wan Li-Li, Huo Yan, and Han Yong-Long.
Manuscript preparation was performed by Yang Quan-Jun,
Zhang Jiang-Rong, and Guo Cheng. Study supervision was car-
ried out by Guo Cheng and Huo Yan.

References

1. Temel JS et al. Anamorelin in patients with
non-small-cell lung cancer and cachexia
(ROMANA 1 and ROMANA 2): results from
two randomised, double-blind, phase 3 tri-
als. Lancet Oncol 2016;17:519–531.

2. Fearon KC. Cancer cachexia and fat–muscle
physiology. New England Journal of Medi-
cine 2011;365:565–567.

3. Molfino A et al. Novel therapeutic options
for cachexia and sarcopenia. Expert Opin
Biol Ther 2016;1–6.

4. Drescher C et al. Loss of muscle mass:
current developments in cachexia and
sarcopenia focused on biomarkers and
treatment. J Cachexia Sarcopenia Muscle
2015;6:303–311.

5. Kalantar-Zadeh K et al. Why cachexia kills:
examining the causality of poor outcomes
in wasting conditions. J Cachexia Sarco-
penia Muscle 2013;4:89–94.

6. Quan-Jun Y et al. Selumetinib attenuates
skeletal muscle wasting in murine ca-
chexia model through ERK inhibition and
AKT activation. Mol Cancer Ther 2017;
16:334–343.

7. Garcia JM et al. Anamorelin for patients
with cancer cachexia: an integrated analy-
sis of two phase 2, randomised, placebo-
controlled, double-blind trials. Lancet
Oncol 2015;16:108–116.

8. Zhou X et al. Reversal of cancer cachexia
and muscle wasting by ActRIIB antagonism
leads to prolonged survival. Cell 2010;142:
531–543.

9. Santarpia L, Contaldo F, Pasanisi F. Nutri-
tional screening and early treatment of
malnutrition in cancer patients. J Cachexia
Sarcopenia Muscle 2011;2:27–35.

10. Fearon K et al. Definition and classification
of cancer cachexia: an international con-
sensus. Lancet Oncol 2011;12:489–495.

11. Lucia S et al. Cancer cachexia: from molec-
ular mechanisms to patient’s care. Crit Rev
Oncog 2012;17:315–321.

12. Petruzzelli M, Wagner EF. Mechanisms of
metabolic dysfunction in cancer-associated
cachexia. Genes Dev 2016;30:489–501.

13. Honors MA, Kinzig KP. The role of insulin
resistance in the development of muscle
wasting during cancer cachexia. J Cachexia
Sarcopenia Muscle 2012;3:5–11.

14. Sah RP et al. New insights into pancreatic
cancer-induced paraneoplastic diabetes.
Nat Rev Gastroenterol Hepatol 2013.

15. Braun TP et al. Cancer- and endotoxin-
induced cachexia require intact glucocorti-
coid signaling in skeletal muscle. FASEB J
2013;27:3572–3582.

16. Seelaender MC, Batista ML. Adipose tissue
inflammation and cancer cachexia: the role
of steroid hormones. Horm Mol Biol Clin
Investig 2014;17:5–12.

17. Der-Torossian H et al. Cancer cachexia’s
metabolic signature in a murine model
confirms a distinct entity. Metabolomics
2013;9:730–739.

18. O’Connell TM et al. Metabolomic analysis
of cancer cachexia reveals distinct lipid
and glucose alterations. Metabolomics
2008;4:216–225.

19. Di Gangi IM et al. Metabolomic profile in
pancreatic cancer patients: a consensus-
based approach to identify highly discrimi-
nating metabolites. Oncotarget 2016;7:
5815–5829.

20. QuanJun Y et al. Integrated analysis of se-
rum and intact muscle metabonomics
identify metabolic profiles of cancer ca-
chexia in a dynamic mouse model. RSC
Adv 2015;5:92438–92448.

21. Quanjun Y et al. Serum metabolic profiles
reveal the effect of formoterol on cachexia
in tumor-bearing mice. Mol Biosyst
2013;9:3015–3025.

22. Quan-Jun Y et al. NMR-based metabolo-
mics reveals distinct pathways mediated
by curcumin in cachexia mice bearing
CT26 tumor. RSC Adv 2015;5:11766–11775.

23. Beckonert O et al. Metabolic profiling,
metabolomic andmetabonomic procedures
for NMR spectroscopy of urine, plasma, se-
rum and tissue extracts. Nat Protoc
2007;2:2692–2703.

24. QuanJun Y et al. Protective effects of
dexrazoxane against doxorubicin-induced
cardiotoxicity: a metabolomic study. PLoS
One 2017;12: e0169567.

25. Quan-Jun Y et al. Distinct metabolic profile
of inhaled budesonide and salbutamol in
asthmatic children during acute exacerba-
tion. Basic Clin Pharmacol Toxicol 2017;
120:303–311.

26. Scheede-Bergdahl C et al. Is IL-6 the best
pro-inflammatory biomarker of clinical out-
comes of cancer cachexia? Clin Nutr
2012;31:85–88.

27. Aberg KM, Alm E, Torgrip RJ. The corre-
spondence problem for metabonomics
datasets. Anal Bioanal Chem 2009;394:
151–162.

28. Dunnett M, Harris R. Carnosine and taurine
contents of type I, IIA and IIB fibres in the
middle gluteal muscle. Equine Vet J
1995;27:214–217.

29. Bae O-N et al. Safety and efficacy evalua-
tion of carnosine, an endogenous neuro-
protective agent for ischemic stroke.
Stroke 2013;44:205–212.

30. Letzien U et al. The antineoplastic effect of
carnosine is accompanied by induction of
PDK4 and can be mimicked by L-histidine.
Amino Acids 2014;46:1009–1019.

31. Arner P et al. Circulating carnosine dipepti-
dase 1 associates with weight loss and
poor prognosis in gastrointestinal cancer.
PLoS One 2015;10: e0123566.

32. Li F et al. Leucine nutrition in animals and
humans: mTOR signaling and beyond.
Amino Acids 2011;41:1185–1193.

33. van Norren K et al. Dietary supplementa-
tion with a specific combination of high
protein, leucine, and fish oil improves mus-
cle function and daily activity in tumour-

84 Q-J. Yang et al.

Journal of Cachexia, Sarcopenia and Muscle 2018; 9: 71–85
DOI: 10.1002/jcsm.12246



bearing cachectic mice. Br J Cancer 2009;
100:713–722.

34. Caperuto EC et al. Beta-hydoxy-beta-
methylbutyrate supplementation affects
Walker 256 tumor-bearing rats in a time-
dependent manner. Clin Nutr 2007;26:
117–122.

35. Chen Y et al. Leucine-stimulated mTOR
signaling is partly attenuated in skeletal
muscle of chronically uremic rats. Am J
Physiol Endocrinol Metab 2011;301:
E873–E881.

36. Giron MD et al. Conversion of leucine to
beta-hydroxy-beta-methylbutyrate by
alpha-keto isocaproate dioxygenase is re-
quired for a potent stimulation of protein
synthesis in L6 rat myotubes. J Cachexia
Sarcopenia Muscle 2016;7:68–78.

37. Mosnaim AD, Hudzik T, Wolf ME. Behav-
ioral effects of β-phenylethylamine and
various monomethylated and monohalo-
genated analogs in mice are mediated by
catecholaminergic mechanisms. Am J Ther
2015;22:412–422.

38. Wijburg FA and Nassogne M-C, Disorders
of the urea cycle and related enzymes, in
inborn metabolic diseases. 2012, Springer.
p. 297-310.

39. Martins T et al. Biomarkers for cardiac
cachexia: reality or utopia. Clin Chim Acta
2014;436:323–328.

40. von Haehling S, Morley JE, Coats AJS, Anker
SD. Ethical guidelines for publishing in the
Journal of Cachexia, Sarcopenia and Mus-
cle: update 2015. J Cachexia Sarcopenia
Muscle 2015;6:315–316.

Distinct metabolic diagnostic model for cancer cachexia 85

Journal of Cachexia, Sarcopenia and Muscle 2018; 9: 71–85
DOI: 10.1002/jcsm.12246


