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biased in estimating variance due to POEs, and that sub-
stantial correlation between parental genotypes is necessary 
to generate biased estimates. Our empirical results, power 
calculations and simulations indicate that sample sizes over 
10000 unrelated parent-offspring duos will be necessary to 
detect POEs explaining < 10% of the variance with moderate 
power. We conclude that POEs tagged by our genetic rela-
tionship matrices are unlikely to explain large proportions 
of the phenotypic variance (i.e. > 15%) for the 36 traits that 
we have examined.

Keywords Imprinting · Parent-of-origin effects · 
ALSPAC · G-REML · GCTA

Introduction

Parent-of-origin effects (POEs) describe the phenomenon 
in which the effects of alleles depend upon their parental 
origin. POEs imply that heterozygote individuals have phe-
notypes which are distributed differently depending upon 
which of their alleles were maternally and paternally trans-
mitted (Guilmatre and Sharp 2012; Lawson et al. 2013). 
The extreme case of POEs is polar overdominance, where 
the two heterozygotes’ phenotypes differ in distribution but 
the two homozygotes share the same distribution (Hoggart 
et al. 2014). Imprinting, a phenomenon in which one parent’s 
allele is not expressed, is probably the most widely studied 
example of POE (Peters 2014).

POEs have traditionally been examined in the context 
of development, where, in mouse models, they have been 
associated with body size and social behavior (Peters 2014). 
One evolutionary explanation of POEs concerns genomic 
conflict between maternal and paternal genes in offspring, 
with paternal genes encouraging growth and solicitation of 

Abstract We propose a new method, G-REMLadp, to 
estimate the phenotypic variance explained by parent-of-
origin effects (POEs) across the genome. Our method uses 
restricted maximum likelihood analysis of genome-wide 
genetic relatedness matrices based on individuals’ phased 
genotypes. Genome-wide SNP data from parent child duos 
or trios is required to obtain relatedness matrices indexing 
the parental origin of offspring alleles, as well as offspring 
phenotype data to partition the trait variation into variance 
components. To calibrate the power of G-REMLadp to detect 
non-null POEs when they are present, we provide an analytic 
approximation derived from Haseman-Elston regression. We 
also used simulated data to quantify the power and Type 
I Error rates of G-REMLadp, as well as the sensitivity of 
its variance component estimates to violations of underly-
ing assumptions. We subsequently applied G-REMLadp to 
36 phenotypes in a sample of individuals from the Avon 
Longitudinal Study of Parents and Children (ALSPAC). 
We found that the method does not seem to be inherently 
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maternal care, even at the expense of the mother’s health, 
while maternal alleles are orientated toward success of all 
offspring, which do not necessarily share paternity (Pat-
ten et al. 2014). Other evolutionary explanations for POEs 
include: different territorial patterns in males and females 
and coadaptation of maternal and offspring genomes to max-
imize the efficiency of nurturing behaviors like suckling and 
grooming (Peters 2014).

Whilst there is considerable support for the importance 
of POEs in animals (Neugebauer et al. 2010; Lawson et al. 
2013), evidence for the existence of POEs in the etiology of 
complex human traits and diseases is mixed, in part due to 
the relative paucity of genomic data from families (Kong 
et al. 2009; Guilmatre and Sharp 2012). Before the genom-
ics era, the children-of-twins design (Nance and Corey 
1976), pedigree analyses (Hall 1990), and parent-offspring 
regressions (Clemons 2000) provided some limited evi-
dence for the existence of POEs in human populations. 
These approaches were not often able to distinguish parental 
effects (indirect effects of the parental genotype on offspring 
phenotype) from POEs (interaction between the sex of the 
transmitting parent and the direct allelic effect in offspring) 
(Hager et al. 2008). More recently, genome-wide association 
studies incorporating parent-of-origin information have been 
used to identify POEs at individual loci for age at menarche 
(Perry et al. 2014), Type I diabetes (Wallace et al. 2010), 
Type II diabetes, basal cell carcinoma, and breast cancer [all 
identified in (Kong et al. 2009)].

We propose a method, G-REMLadp, to estimate the phe-
notypic variance due to POEs across the genome by applying 
restricted maximum likelihood (REML) to offspring genome-
wide genetic relatedness matrices and phenotype data. Our 
method involves the construction of a genetic relationship 
matrix indexing the parental origin of offspring alleles using 
genome-wide SNP data from parent–child duos or trios. The 
proposed method is an early adaptation to human genetics of 
procedures developed for animal breeding (Schaeffer et al. 
1989; Spencer 2002; Nishio and Satoh 2015). The genotypic 

coding for POEs, which we adopt here, is based on the model 
outlined by Spencer (2002, 2009) and implemented by Nishio 
and Satoh (2015) in the context of genomic prediction. The 
genotype coding we used for dominance effects is due to Zhu 
et al. (2015), who designed it to be orthogonal to the allele 
count at a locus; it is also orthogonal to the POE coding, 
which distinguishes our approach from that used by Spen-
cer, Nishio and Satoh, and others. Using these codings, the 
phased genotype at a locus is coded using three orthogonal 
components: an additive-coded genotype, a dominance-
coded genotype, and a POE-coded genotype.

To estimate the power of G-REMLadp to estimate 
non-null POEs, we provide an approximation using Hase-
man–Elston regression (Elston et al. 2000; Chen 2014). We 
also used simulated data to estimate the power and Type I 
Error rates of G-REMLadp, as well as the sensitivity of its 
variance component estimates to violations of assumptions. 
We then applied G-REMLadp to 36 phenotypes related to 
body size and obesity, metabolic traits, and IQ in a sample of 
up to 4753 individuals from a UK-based longitudinal study 
of childhood health and development.

Methods

G-REMLadp uses REML to fit a linear mixed model incor-
porating random additive effects, dominance effects, and 
POEs to human genomic data, with the goal of partitioning 
phenotypic variance into components reflecting these sources 
of variation tagged by genome-wide SNP chips. In this 
model, at each locus, the phased genotype of each individual 
(

X ∈ aa, amoAfa, Amoafa, AA
)

 is expressed as 3 orthogonal 
components, which are then standardized. The codings for 
each of the 3 components are listed in Table 1. The stand-
ardized additive-coded genotype is the standardized minor 
allele (A) count at the locus. The derivation of the standard-
ized dominance-coded genotype is given in Zhu et al. (2015); 
and a flexible equivalent coding is given in Álvarez-Castro 

Table 1  Recoding a phased 
genotype using three orthogonal 
terms

The minor allele is A, with frequency p, major allele a with frequency q = 1 − p. Amo: maternally inherited 
A allele; Afa: paternally inherited A allele. “Freq” expected frequency of the genotype under Hardy–Wein-
berg equilibrium. “Add Code” additive coding of the phased genotype. “Std Add” standardized additive 
coding based on mean 2p and variance 2pq. “Dom Code” dominance coding of the phased genotype. “Std 
Dom” standardized dominance coding based on mean 2p2 and variance 4p2q2. “POE Code” parent-of-
origin effect coding of the phased genotype. “Std POE” standardized parent-of-origin effect coding based 
on mean 0 and variance 2pq

Phased genotype Freq Add Code Std add Dom code Std dom POE code Std POE

amoafa q2 0 −
√

2p∕q 0 −p∕q 0 0

amoAfa pq 1 (q − p)∕
√

2pq 2p 1 − 1 − 1∕
√

2pq

Amoafa pq 1 (q − p)∕
√

2pq 2p 1 1 1∕
√

2pq

AmoAfa p2 2
√

2q∕p 4p − 2 −q∕p 0 0
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(2014). The (unstandardized) POE-coded genotype is -1 for 
the paternal-minor heterozygote (amoAfa), where amo indi-
cates that the major allele was inherited from the mother and 
Afa that the minor allele was inherited from the father, and 1 
for the maternal-minor heterozygote (Amoafa), and 0 for both 
homozygotes.

The mixed model utilizing these codings is given in Eq. 1, 
where � is a vector of phenotypes; �yis a column vector of 
means; the vector �� includes any fixed effects of covari-
ates �; the �s are n × m matrices containing the standardised 
coded genotypes (indexing additive, dominance and POEs), 
represented as one individual per row (sample size n) and one 
SNP per column (m markers affect the phenotype; in empiri-
cal data, this will be replaced by mo, the number of observed 
markers, while in power analyses, this will be replaced by me,  
the number of effective markers); the � are m × 1 column 
vectors of additive effects (βα), dominance effects (βδ) and 
POEs (βγ), which are assumed to be independently normally 
distributed with mean 0 and variances that are inversely 
proportional to the number of markers affecting the pheno-
type: Var

(

��
)

= m−1�2
�
�n (� is the n × n identity matrix), 

Var
(

��
)

= m−1�2
�
�n, Var

(

��
)

= m−1�2
�
�n, respectively, and � 

is a normal error variable with mean 0 and variance �2
�
�n that 

is independent of the other variables on the right hand side of 
the equation. Figure 1 illustrates how the phased genotype is 
represented as the three orthogonal standardized coded geno-
types, while Eq. 1 gives the phenotypic means at each phased 
genotype. 

(1)� = �� + �� + ���� + ���� + ���� + �

The primary concern of this paper is with the partition-
ing of phenotypic variance components according to Equa-
tions 2 and 3, which present the problem in vector and indi-
vidual-based forms, respectively. 

where the matrices ��′ are n × n matrices giving the cross-
products, across all loci, of individuals’ coded genotypes. 
The elements of Var(�) are given by 

The second equality in Eq. 3 is because the mean squares 
of each individual’s standardized genotype codings are 
expected to be 1 in the absence of inbreeding.

The bold-faced Greek characters on the final line of 
Eq. 3 are used to denote the genetic relationship matrices 
(GRMs) for the three coded genotypes; the additive GRM 
is �, the dominance GRM �, and the POE-coded GRM is �.  
These are averages over all effective markers of the sums 

(2)

Var(�) = E
(

(

� − �� − ��
)(

� − �� − ��
)�
)

= m−1�2
�
����

� + m−1�2
�
����

� + m−1�2
�
����

� + �2
�
�n

(3)

{Var(�)}ii = m−1

�

m
∑

k=1

�2
�
z2
�, ik

+ �2
�
z2
�, ik

+ �2
�
z2
� , ik

�

+ �2
�

= �2
�
+ �2

�
+ �2

�
+ �2

�

{Var(�)}ij = m−1

�

�2
�

m
∑

k=1

z�, ikz�, jk + �2
�

m
∑

k=1

z�, ikz�, jk + �2
�

m
∑

k=1

z� , ikz� , jk

�

= �2
�
�ij + �2

�
�ij + �2

�
�ij

Var(�) = �2
�
� + �2

�
� + �2

�
� + �2

�
�n

Fig. 1  Phased genotype represented by 3 standardised codings: 
This figure shows the values of each of three effect-based codings 
for a given phased genotype, where a represents the major allele 
and A the minor (effect allele). The subscript mo indicates that the 
allele was transmitted maternally, while the subscript fa indicates 
paternal transmission. For a single locus with minor allele fre-

quency p, the standardised additive coding (0, 1, 2 standardised to 
−
√

2p∕q, (q − p)∕
√

2pq,
√

2q∕p) of the phased genotype is given by 
the medium-weight line. The standardised dominance coding is the 
dashed line (0, 2p, 4p − 2 standardised to−p∕q, 1, −q∕p). The par-
ent-of-origin effect coding is the thick line (0,− 1,1,0 standardised to 
0, −1∕

√

2pq, 1∕
√

2pq, 0)
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of squares and cross-products of individuals’ standardized 
coded genotypes.

It is important to note that we have assumed, but not dem-
onstrated an equivalence between the component of variance 
due to parent-of-origin effects and that due to imprinting 
defined by classical quantitative genetics (Santure and Spen-
cer 2006; Campos et al. 2015). Under real-world conditions, 
a large POE variance component might best be interpreted 
as identifying a genome-wide pattern of excessive variance 
among heterozygotes for the phenotype in question which 
may or may not be due to genomic imprinting.

Statistical methods

Assumptions

Using REML to estimate the variance components model 
given in Eq. 2 requires that several assumptions (both sta-
tistical and genetic) be met in order for inference about the 
model to be legitimate. In addition to the normality assump-
tions given above, G-REMLadp fitting of the model in Eq. 3 
assumes Hardy–Weinberg Equilibrium (HWE) and accuracy 
of phasing. Departures from HWE [such as non-random mat-
ing and differential allele frequencies in male and female 
parents (Falconer and Mackay 1996)] break the orthogo-
nality of the POE-coded genotype with the additive-coded 
genotype and the dominance-coded genotype. Non-random 
mating could decrease the frequency of heterozygotes, while 
sex-specific allele frequencies cause the frequencies of the 
amoAfa and Amoafa heterozygotes to differ. Accurate phasing 
is required so that the different heterozygotes are correctly 
called; if they are not, Z� is measured with error, diluting 
estimates of the Z� , y association, hence downward-biasing 
estimates of �2

�
.

Power analysis via Haseman–Elston regression 
approximation

The power of G-REML analysis can be approximated in a 
Haseman–Elston (HE) regression framework where each 

distinct pair of individuals in the sample is used as the unit 
of analysis (Elston et al. 2000; Chen 2014; Visscher et al. 
2014). In this framework, the outcome variable is the cen-
tered cross-product of phenotypes for each pair of unrelated 
individuals in the analysis (denoted Yij for individuals i and 
j) and the predictor variables are the GRM entries under 
additive-coding (Aij), dominance-coding (Δij), and POE-
coding (Γij) of the pair. The coefficients of the predictors 
in the associated ordinary least squares regression are esti-
mates of the phenotypic variance due to each type of effect. 
This is similar to unweighted least squares estimation in 
covariance structure modelling (Browne 1982). Wald tests 
of significance for the variance components can be made 
using the assumption that the residuals in the regression are 
approximately normally distributed (Chen 2014).

We focus on univariate HE regression. The justifica-
tion for this is that the standardized coded genotypes are 
orthogonal at each locus and the population values of all 
cross-locus, cross-coding correlations are 0 (assuming 
random mating under a polygenic model where causal 
loci are randomly distributed along the genome, see the 
Appendix in the Supplementary Materials for derivations). 
This means that the products of the GRMs �, �, and � 
are expected to be 0 and that sample cross-locus, cross-
coding correlations will tend to decrease with increasing 
sample size and number of effective loci. Thus, the genetic 
relationship between two individuals should be entirely 
captured by their entries in the three GRMs. For exam-
ple, the correlation between individual i’s additive coded 
genotypes (the 1 × m row vector �′

�,i
) and individual v’s 

dominance coded genotypes (the m × 1 column vector ��, v)  
is expected to be 0 and to be bound more closely to 0 
with increasing sample size n, per Eq. 4. The correlation 
between codings will have mean 0 and variance n−1 over 
repeated sampling, which we denote using the Op nota-
tion to imply that its value is bounded in probability by 
Chebychev’s inequality as n increases (Bishop et al. 1975, 
chap. 14); the equality is approximate because the sample 
correlation is not strictly uncorrelated with i and v’s coded 
genotypes. 

(4)

{

���
}

iv
= m−2��

�,i
��

�����, v

= m−2
∑

all loci k, l

z�, ik
{

��
���

}

kl
z�, vl, where

{

��
���

}

kl
is the sample

correlation of additive coding at locus k, dominance coding at locus l

= m−2
∑

all loci k, l

z�, ikOp

(

n−1
)

z�, vl

≈ m−2Op

(

m2n−1
)

≈ Op(n
−1)
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This prediction was supported by the empirical analysis, 
in which the off-diagonal elements of the GRMs were uncor-
related (r�, � = 5 × 10−5,r�, � = −2 × 10−4, r� , � = 6 × 10−4). 
Supplementary Figure S1 illustrates this lack of correlation; 
while Supplementary Table SI shows that the diagonal ele-
ments of the empirical GRMs were close to 1.

Orthogonality between codings means that simple HE 
regressions of Y on each coded genotype’s GRM will yield the 
same estimates (and associated Wald test statistics) as a multi-
ple regression, and we can analyze the power of simple regres-
sions but fit multiple components in practice. The Wald test 
statistic of a variance component, POE for example, is given by 
𝜒2 ≈ F = 𝛽2

𝛾
∕Var

(

𝛽𝛾
)

= �̂�4
𝛾
∕Var

(

�̂�2
𝛾

)

. By assuming that a 

given variance component (i.e. the HE slope) is nonzero, the 
power of this Wald test depends on the noncentrality parameter 
of the associated statistic. The derivation of the noncentrality 
parameter is parallel for each type of coded genotype, so we 
focus on HE regression of POEs, following the example given 
for additive variance components by Visscher et al. (2014).

Starting with standardized outcomes and predictor [where 
vech is the operator which transforms a symmetric matrix to 
a column vector of its lower-diagonal elements (Henderson 
and Searle 1979)]. Simplifying assumptions are required: 
(1) Y  is approximately normal (very unlikely for a cross-
product phenotype) so that the Wald test statistic has an F 
distribution with 1 degree of freedom in the numerator and 
1

2
n(n − 1) − 2 degrees of freedom in the denominator; and 

(2) the amount of variance in Y  explained by W  is so small 
and the sample size so large that the Wald F test statistic is 
well approximated by a �2

1
 random variable.

We derive results for a set of m independent loci. The numer-
ator of the Wald test statistic is the square of the estimated 
regression coefficient 𝛽2

𝛾
= Cov

(

Yij, Γij

)2
∕Var

(

Γij

)2
. For 

individuals i and j, the expected covariance between Y and Γ is 

(5)

Cov
(

YijΓij

)

= EGenotypeE�E�� ,�� ,��

(

Γijyiyj
)

= EGenotype

{

Γij

(

∑

�∈(�,Δ, �)

∑

�∈(�,Δ, �)

��
�
z�, i�

�
�
z�, j + E�

(

C1�i + C2�j + C3�i�j
)

)}

=EGenotype

{

Γij

(

∑

�∈(�,Δ, �)

∑

�∈(�,Δ, �)

��
�
z�, i�

�
�
z�, j + E�

(

C1�i + C2�j + C3�i�j
)

)}

=EGenotype

{

Γij

(

∑

�∈(�,Δ, �)

∑

�∈(�,Δ, �)

m
∑

k

m
∑

l

��, l��, kz�, ilz�, jk

)}

=EGenotype

{

Γij

(

∑

�

m
∑

k

�2
�, k

z�, ikz�, jk +
∑

�≠�

∑

k≠l

��, l��, kz�, ilz�, jk

)}

=EGenotype

{

Γij

(

�2
�
Aij + �2

Δ
Δij + �2

�
Γij + Op

(

n−1
)

)}

=�2
�
E

(

Γ2
ij

)

= �2
�
Var

(

Γij

)

recalling that the coded genotypes are orthogonal within a 
locus and using the expectation of vanishing cross-locus, 
cross-coding correlations given in the Supplementary Mate-
rial. This derivation shows that the HE regression coefficient 
in the population is �2

�
, hence the numerator of the Wald test 

statistic is �4
�
.

The denominator of the Wald F test statistic is the error 
variance per degree of freedom, divided by the variance 
of the predictor variable, i.e. Var(�)∕

(

Var
(

Γij × df
))

. Here 
we use the approximation that Var(�) ≈ Var(Y) = 1. HE 
regression uses the distinct pairs of observations as the 
units of analysis, so the denominator degrees of freedom 
are 1

2
n(n − 1) when estimating the variance component and 

an intercept term. The variance of the POE GRM calculated 
at any single locus can be shown by direct calculation to be 
1, which is also true for the additive component and domi-
nance component GRMs (given assumptions). Var

(

Γij

)

 is 
interpretable as the variance of the average of these compo-
nent GRMs over me loci, hence is m−1

e
 in this simple model. 

A more accurate approach (for additive variance compo-
nents) is given in Appendix 1 of Goddard (Goddard 2009), 
in which the variance in relatedness is averaged over the 
number of effective loci given variation in pedigree as well 
as linkage disequilibrium. Visscher et al. give an empirical 
estimate of the number of effective loci for GRMs calculated 
using genome-wide common SNPs in the HapMap3 panel, 
hence they suggest using Var

(

Aij

)

= 2 × 10−5 (Visscher et al. 
2014). In our model, the denominator of the Wald test sta-
tistic is 1∕

(

m−1
e
(0.5n(n − 1) − 2)

)

≈ 2me∕n
2. This means the 

mean Wald test statistic is approximately n2�4
�
∕2me, which 

is referred to a �2
1
 distribution because the denominator 

degrees of freedom in the F-test are very large. This deriva-
tion is nearly identical to that used in (Visscher et al. 2014), 
so it is possible to use their online tool (http://cnsgenomics.

http://cnsgenomics.com/shiny/gctaPower/
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com/shiny/gctaPower/) to determine the power to detect a 
variance component of a particular size.

For me loci and sample size n, the noncentrality param-
eters of the �2

1
 test statistic are: 

In our simulations, we used the true m, as loci were simu-
lated without LD; in practice, we recommend the approxi-
mation m−1

e
≈ 2 × 10−5 (Visscher et al. 2014), although its 

application to dominance variance components and POE-
based variance components is based only on analogy with 
additive variance components and the number of effective 
loci will differ depending on which SNP panel is used.

Implementation

G-REMLadp requires a set of phased genotypes, each with 
parent-of-origin assignments. Mitochondrial DNA and X 
chromosome SNPs are excluded from analysis. In the empir-
ical analysis, we used a Perl script to assign parent-of-origin 
to genotypes which had already been phased, as described 
below. Given a set of phased, parental-origin-assigned SNPs, 
we first recoded each genotype to the three-term orthogonal 
coding given in Table 1, stored this data in the software 
package MACH’s (Li et al. 2010) “dosage” format, and 
then called GCTA to generate GRMs for the three variance 
components. GCTA’s—make-grm and—make-grmd (Zhu 
et al. 2015) make the appropriate GRMs for the additive and 
dominance components directly from the MACH-formatted 
phased genotype. However, for POEs, we recoded each locus 
(in R) by subtracting the paternal minor allele indicator from 
the maternal indicator and wrote this to an appropriately 
formatted .mldose.gz file, then generated an .mlinfo.gz file 
from the relevant sources for the SNP data set. We input 
the .mldose.gz and .mlinfo.gz files to GCTA’s MACH dos-
age function (--dosage-mach-gz) to generate the POE GRM. 
We then input the additive, dominance, and POE GRMs to 
GCTA, with the phenotype and covariate files, to fit the 
mixed model and estimate variance components. We chose 
to estimate the variance components without constraining 
them to be positive so that the null distribution of test statis-
tics would not be a mixture (Visscher 2006). We also used 
the AI-REML algorithm instead of the Newton–Raphson or 
EM algorithms to fit the model quickly. Scripts to run these 
analyses (as well as to perform the simulations described 
below) are available at the GitHub repository (https://github.
com/amatrhr/g-remladp); power calculations can be per-
formed using the GCTA-GREML power calculator at (http://
cnsgenomics.com/shiny/gctaPower/).

(6)
�� = 0.5m−1

e
n(n − 1)�4

�

�� = 0.5m−1
e
n(n − 1)�4

�

�� = 0.5m−1
e
n(n − 1)�4

�

Simulations

We simulated data according to the G-REMLadp model to: 
(1) evaluate the predicted statistical power using the Hase-
man–Elston regression approximation; (2) test the bias 
and variance of the method in response to violation of its 
assumptions; and (3) assess computational requirements. In 
simulation studies, data were simulated according to Eq. 1, 
and variance components were estimated using both HE 
regression and GCTA software. The goals were to estimate 
the bias and variance of the variance component estimators, 
the agreement between HE and GCTA estimates, and the 
empirical power and Type I error rates of the HE test.

The design factors were: sample size n = 1000,

2000, 4000, 5000, 7500 ,  m = 500, 1000, 3000, 5000  SNPs; 
�2

�
∕Var(y) = 0, 0.017, 0.033, 0.1; �2

�
∕Var(y) = 0, 0.017, 0.033, 0.1;  

�2
�
∕Var(y) = 0, 0.017, 0.033, 0.1; a violation of HWE—

simulating maternal and paternal genotypes with different 
minor allele frequencies (either no difference, or mothers’ 
allele frequency greater than fathers’ by 0.05, meaning that 
the HWE test statistic will have a noncentrality parameter 
of > 100 and power over 90% for mothers’ MAF > 0.10 and 
n > 1000) so that the POE-coded genotype is no longer 
orthogonal to the other two codings (which remain mutu-
ally orthogonal); and a second violation of HWE-simulating 
parental genotypes to be correlated at r = 0 or r = 0.25, on 
average across all simulated loci, so that the diagonal entries 
of the GRMs are on average less than 1 and results might 
be less stable numerically. The sample size and number of 
effective loci used were constrained to be small due to com-
putational requirements; computing GRMs at genome scale 
(n > 5000, me > 106) and fitting models to them required 
100% use of at least 16 processors for approximately an 
hour, which is feasible for single empirical analyses but 
not in factorial simulations with thousands of replications. 
The SNPs were simulated to be independent with minor 
allele frequencies uniformly distributed between 0.01 and 
0.5. Because there were relatively few of them, the simu-
lated SNPs had much larger individual effects than would 
be expected in empirical data. We chose to simulate vio-
lations of HWE to test the robustness of G-REMLadp to 
violations of its assumptions, and as a way of widening the 
breadth of the simulations. Realistically, most samples in 
which G-REMLadp could be applied will have filtered SNPs 
for violations of HWE as part of routine QC (Laurie et al. 
2010). A total of 7500 replications were simulated, but in 
the simulation results presented here, these factors were not 
completely crossed.

Three measures were used to evaluate the method: (1) empir-
ical absolute bias, the average difference between the simulated 
variance component and the value estimated in a replication; (2) 
empirical sampling variance, the variance of estimated variance 
components over replications; and (3) power/Type I error rate, 

http://cnsgenomics.com/shiny/gctaPower/
https://github.com/amatrhr/g-remladp
https://github.com/amatrhr/g-remladp
http://cnsgenomics.com/shiny/gctaPower/
http://cnsgenomics.com/shiny/gctaPower/
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the proportion of replications in which the Wald test of a null 
variance component exceeded the 95% critical value under a 
simulated non-null/null variance component.

In the simulations, we expected power to increase with 
increasing sample size and variance component size and 
decreasing number of effective loci (noting that this means 
a larger effect at each locus for a given variance compo-
nent size in our design), and expected variance to decrease 
according to the same pattern. We expected that violation of 
assumptions would lead to detectable bias.

Empirical analysis

We applied G-REMLadp to a sample of up to 4753 individu-
als gathered as part of the Avon Longitudinal Study of Par-
ents and Children (ALSPAC), a prospective study of health 
and development beginning at pregnancy. We considered 36 
different phenotypes which had been previously associated 
with POEs or which were related to body size, development, 
or social functioning.See the Supplementary Material for 
further description of the sample, including the phenotyp-
ing and quality control procedures that we applied to it. The 
sample, the longitudinal study and its context, as well as its 
genotyping, are described in detail in two papers (Boyd et al. 
2012; Fraser et al. 2013). The 36 phenotypes are listed, with 
summary statistics, in Supplementary Table SII. G-REMLadp 
estimates of additive variance components, dominance vari-
ance components, and POE variance, are listed in Supple-
mentary Table SIII. Highly skewed phenotypes (listed in Sup-
plementary Methods) were inverse-normal transformed prior 
to estimating variance components (Peng et al. 2007); fixed 
effects of sex and the first four ancestry-informative principal 
components were modelled. Parental effects and POEs have 
been previously studied in trios in this sample (Davey Smith 
et al. 2007), but not genome-wide for the 36 phenotypes.

We also used the ALSPAC data to test our predictions that 
variance components estimated simultaneously using G-REM-
Ladp would agree with: variance components estimated in 
a univariate fashion using G-REMLadp, and also with HE 
regression estimates. The agreement among these methods 
was substantial (r > 0.98 in all cases); univariate G-REMLadp 
results are givien in Supplementary Table SIV; univariate HE 
regression estimates are given in Supplementary Table SV.

Results

Simulation results

Power and sample size

Sample size curves at a Type I error rate of 5%, based 
on the HE approximation, are given in Supplementary 

Figure S2, for POEs responsible for 1%, 3%, 10%, and 
15% of the total phenotypic variance explained, tagged 
by 10,000 loci. Supplementary figure S2 shows that a 
sample size of over 10,000 genotyped duos or trios, with 
probands having phased genotypes, is likely necessary 
to detect the largest conceivable parent-of-origin effect 
variances and that a sample of 50,000 individuals will be 
needed to detect POEs accounting for ≈ 1 − 3% of phe-
notypic variance, which was the size observed by Lopes 
et al. (2015). Figure 2 gives the empirical power, which 
was high because such large variance components were 
simulated and because me was low, with a median value 
of 2000 effective loci.

The test involving HE regression is based on further 
simplifying and adding assumptions to the G-REM-
Ladp procedure, hence discrepancies between the two 
approaches were expected, with the concern that large 
discrepancies would render the approximate power calcu-
lations unhelpful. Table SVI, in the Supplementary Mate-
rial, shows that the simulated HE-based test statistics lay 
relatively close to their expected values. Supplementary 
Figures S3–S5 illustrate this graphically.

Type I error rates

There was no evidence that the tests of the POEs had 
inflated Type I error rates when assumptions were met; 

Fig. 2  Empirical power curves in simulated data: Curves generated 
using proportions of significant Wald tests in simulated data with all 
assumptions specified in the text satisfied. %PoE: proportion of phe-
notypic variance attributable to parent-of-origin effects in the model 
used to generate simulated data; Sample size: number of simulated 
individuals with parent-of-origin determined at all loci; Power: pro-
portion of replicates with Wald tests having p-values < 0.05. Note 
that the number of effective loci in this figure is an order of magni-
tude lower than in Supplementary Figure S2
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under these conditions, the simulated type I error rate was 
0.0510. The HE-based test of the POE variance component 
had slightly elevated Type I error rates (0.0625) under vio-
lation of HWE due to dependence of parental genotypes.

Bias and variance due to violating assumptions

We observed that violating HWE increased the discrep-
ancy between predicted and observed test statistics. How-
ever, these results do not indicate whether this was due to 
increased bias or variance of the estimates, or both. Addi-
tionally, because the predicted test statistics were based 
on many simplifying assumptions, it is possible that the 
increased discrepancy would not have led to incorrect infer-
ence, and it is worth exploring whether violating HWE 
causes the estimated variance components to be misleading 
in predictable ways.

Results for simulations with truly null variance compo-
nents are not shown. The absolute bias was under 3 × 10−3 for 
each type of variance component under all simulation condi-
tions. Variances were similar to those for non-null estimates.

Table 2 shows the GCTA results under HWE. The bias 
was small, less than 5% of the true parameter value for each 
type of variance component. There may be a tendency to 
increased bias and variance at larger effect sizes. Results 
were similar for HE model fitting.

Table 3 shows the GCTA results when the HWE assump-
tions were violated. Additive variance components estimates 
did not seem to be biased or to have increased variance under 
violation of HWE. When parental gametes were correlated, 
parent-of-origin effect variance estimates were downward 
biased, sometimes as much as 10 or 20% of the parameter 
value. Biases due to correlated gametes in estimating domi-
nance variance components were smaller but were uniformly 
positive. Variance of estimates did not seem to be affected by 
violation of HWE. Results were similar for HE model fitting.

The GCTA and HE estimates tended to differ in the pres-
ence of correlation between parental genotypes; in this situ-
ation, HE regression estimates of POEs had higher variance 
(and hence higher mean-squared error) than did GCTA esti-
mates, which is expected to be the case even in additive-only 
models (Yang et al. 2017). As a result, the correspondence 
between the two methods decreased from a HE-GCTA corre-
lation of 0.9911(0.9908, 0.9915) with independent parental 
genotypes to 0.9624(0.9597, 0.9649) with correlated par-
ents. This was not observed for estimates of the two other 
types of variance components.

Empirical analysis

Estimates and standard errors of �2
�
, �2

�
, and �2

�
, calculated 

using GCTA to fit a multiple-component G-REMLadp are 
given in Supplementary Table III for the 36 phenotypes. 
Results for a set of five variables with large parent of ori-
gin variance component estimates are given in Table 4. 
The sample size of n ≈ 5000 was sufficient to detect estab-
lished additive variance components for anthropometric 
variables such as height and fat mass. The mean estimate 
for additive variance components was 0.310(0.14). There 
is evidence for dominance variance on verbal IQ and fat 
mass in the sample. The mean estimate for dominance 
variance components was 0.026(0.15). The largest (and 
most reliably estimated) POE variance components were 
estimated for age at menarche, FVC, age at first tooth, 
and blood pressure. The mean estimate for POE variance 
was 0.018(0.08). Interestingly, height had a large, nega-
tive estimate of the POE variance component. Figure 3 
presents histograms of the variance component estimates, 
using different colors to represent additive vs dominance 
vs POE variance component estimates in the 36 ALSPAC 
traits. Figure 3 is broadly similar to Fig. 2 of (Zhu et al. 
2015), which contains histograms of variance component 

Table 2  Absolute bias and 
variance for G-REMLadp 
variance components when 
HWE was met, for non-null 
simulated effects

Proportion of phenotypic variance explained: by additive effects given in the �2

�
 column, by dominance 

effects given in the �2

�
 column, and by parent-of-origin effects given in the �2

�
 column. N: number of simu-

lated phased genotypes, #Reps: number of simulated replications, “Bias” is the absolute bias of estimates 
across simulated replications, “Var” is variance of estimates across simulated replications

N �2

�
�2

�
�2

�
#Reps �̂�2

𝛼 Bias �̂�2

𝛼 Var �̂�2

𝛿 Bias �̂�2

𝛿 Var �̂�2

𝛾  Bias �̂�2

𝛾  Var

1000 0.017 0.017 0.017 280 1.0e−03 1.1e−03 1.5e−03 8.9e−04 1.2e−03 1.1e−03
1000 0.033 0.033 0.033 290 − 1.1e−04 1.9e−03 − 1.7e−03 1.8e−03 − 2.0e−03 1.8e−03
1000 0.100 0.100 0.100 290 3.0e−03 7.1e−03 9.0e−04 5.7e−03 2.6e−03 6.3e−03
2000 0.017 0.017 0.017 300 − 2.2e−03 2.9e−04 − 6.5e−05 2.6e−04 4.2e−04 2.6e−04
2000 0.033 0.033 0.033 300 − 2.7e−04 5.7e−04 − 1.9e−03 4.9e−04 1.2e−03 6.3e−04
2000 0.100 0.100 0.100 300 3.7e−03 1.6e−03 1.6e−03 1.7e−03 −1.1e− 03 1.6e−03
4000 0.017 0.017 0.017 300 5.0e−04 6.5e−05 1.2e−05 6.8e−05 −8.0e−04 7.5e−05
4000 0.033 0.033 0.033 300 2.9e−05 1.7e−04 −6.2e−04 1.5e−04 − 8.0e−04 1.4e−04
4000 0.100 0.100 0.100 300 − 2.6e−03 4.8e−04 − 1.8e−03 4.4e−04 1.5e−03 4.5e−04
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estimates for additive and dominance variance compo-
nent estimates in 79 traits from the Atherosclerosis Risk 
in Communities cohort.

Across the 36 phenotypes surveyed, in the aggregate, 
additive variance components were frequently estimated 
reliably, positively, and away from 0. In general, if a variance 

Table 3  Absolute bias and variance for G-REMLadp variance components when HWE was violated, for non-null simulated effects

Parent Corr average correlation of parental genotypes, MAF Diff average difference in parental MAFs. Proportion of phenotypic variance 
explained by additive effects is given in the �2

�
 column, by dominance effects in the �2

�
 column, and by parent-of-origin effects in the �2

�
 column. 

N number of simulated phased genotypes, #Reps number of simulated replications, “Bias” is absolute bias of estimates across simulated replica-
tions, “Var” is variance of estimates across simulated replications

Parent Corr MAF Diff N �2

�
�2

�
�2

�
#Reps �̂�2

𝛼 Bias �̂�2

𝛼 Var �̂�2

𝛿 Bias �̂�2

𝛿 Var �̂�2

𝛾  Bias �̂�2

𝛾  Var

0.00 0.05 1000 0.017 0.017 0.017 300 1.7e−03 1.0e−03 − 4.8e−04 9.7e−04 2.9e−03 1.0e−03
0.00 0.05 1000 0.033 0.033 0.033 300 1.1e−03 2.4e−03 1.1e−03 2.4e−03 6.6e−04 2.0e−03
0.00 0.05 1000 0.100 0.100 0.100 300 − 1.0e−03 6.6e−03 2.9e−04 6.4e−03 3.1e−04 5.7e−03
0.00 0.05 2000 0.017 0.017 0.017 300 − 1.4e−03 2.5e−04 3.5e−04 3.1e−04 − 1.8e−05 2.8e−04
0.00 0.05 2000 0.033 0.033 0.033 300 9.4e−04 5.4e−04 1.6e−03 5.2e−04 3.0e−04 4.8e−04
0.00 0.05 2000 0.100 0.100 0.100 300 2.2e−03 1.6e−03 − 5.2e−04 1.6e−03 6.9e−04 1.6e−03
0.00 0.05 4000 0.017 0.017 0.017 300 1.9e−04 7.2e−05 − 6.7e−04 6.9e−05 − 9.4e−04 8.1e−05
0.00 0.05 4000 0.033 0.033 0.033 300 − 6.3e−04 1.5e−04 8.3e−04 1.8e−04 − 8.2e−04 1.5e−04
0.00 0.05 4000 0.100 0.100 0.100 290 − 2.1e−03 4.9e−04 1.7e−03 5.6e−04 − 2.0e−04 4.3e−04
0.25 0.00 1000 0.017 0.017 0.017 300 6.1e−04 8.2e−04 1.5e−03 1.6e−04 − 1.4e−03 1.1e−03
0.25 0.00 1000 0.033 0.033 0.033 290 1.9e−03 1.6e−03 1.9e−03 2.5e−04 − 6.8e−03 2.0e−03
0.25 0.00 1000 0.100 0.100 0.100 290 1.7e−03 5.6e−03 2.1e−03 9.8e−04 − 2.5e−02 8.3e−03
0.25 0.00 2000 0.017 0.017 0.017 300 − 1.3e−04 2.0e−04 − 3.5e−04 5.6e−05 − 5.4e−03 2.8e−04
0.25 0.00 2000 0.033 0.033 0.033 300 2.0e−03 3.9e−04 − 9.0e−05 1.0e−04 − 6.9e−03 6.5e−04
0.25 0.00 2000 0.100 0.100 0.100 300 3.6e−03 1.5e−03 4.5e−03 3.8e−04 − 2.5e−02 2.2e−03
0.25 0.00 4000 0.033 0.033 0.033 300 2.3e−04 1.2e−04 4.0e−04 4.6e−05 − 7.1e−03 1.3e−04
0.25 0.00 4000 0.100 0.100 0.100 300 1.3e−03 3.6e−04 1.7e−03 1.4e−04 − 2.3e−02 4.7e−04
0.25 0.05 1000 0.017 0.017 0.017 130 − 4.1e−03 8.4e−04 3.5e−03 3.6e−04 − 3.4e−03 1.3e−03
0.25 0.05 1000 0.033 0.033 0.033 160 − 1.2e−03 1.7e−03 2.1e−04 5.6e−04 − 1.5e−02 2.5e−03
0.25 0.05 1000 0.100 0.100 0.100 220 − 9.1e−04 5.2e−03 7.1e−03 2.6e−03 − 3.1e−02 8.2e−03
0.25 0.05 2000 0.017 0.017 0.017 280 − 9.5e−04 1.9e−04 4.4e−05 1.1e−04 − 4.7e−03 3.2e−04
0.25 0.05 2000 0.033 0.033 0.033 300 8.4e−05 3.8e−04 2.0e−03 2.8e−04 − 8.6e−03 5.4e−04
0.25 0.05 2000 0.100 0.100 0.100 300 5.2e−03 1.4e−03 1.2e−03 7.4e−04 − 2.1e−02 1.8e−03
0.25 0.05 4000 0.033 0.033 0.033 300 − 2.9e−04 1.3e−04 1.5e−03 7.8e−05 − 7.8e−03 1.6e−04
0.25 0.05 4000 0.100 0.100 0.100 300 2.2e−03 3.1e−04 3.5e−03 2.5e−04 − 2.3e−02 4.8e−04

Table 4  Large G-REMLadp 
parent of origin variance 
component estimates for five 
ALSPAC phenotypes

Variance component estimates of five standardized phenotypes in ALSPAC, estimates and standard errors 
generated with multiple components GCTA-GREML. VarA proportion of phenotypic variance attributa-
ble to additive genetic effects, SEvarA standard error of proportion of phenotypic variance attributable to 
additive genetic effects. VarD proportion of phenotypic variance attributable to dominance effects, SEvarD 
standard error of proportion of phenotypic variance attributable to dominance effects. VarP proportion of 
phenotypic variance attributable to parent-of-origin effects, SEvarP standard error of proportion of phe-
notypic variance attributable to parent-of-origin effects. DBP diastolic blood pressure. FVC forced vital 
capacity. SBP systolic blood pressure. See Supplementary Tables SIII for results on all phenotypes and 
SVII for unstandardized variance components

Phenotype VarA SEvarA VarD SEvarD VarP SEvarP

Age at first tooth 0.425 0.083 0.114 0.121 0.156 0.082
Age at Menarche 0.337 0.162 0.195 0.246 0.179 0.162
DBP 0.193 0.088 − 0.076 0.132 0.114 0.088
FVC 0.370 0.097 0.017 0.136 0.159 0.097
SBP 0.313 0.088 − 0.147 0.130 0.145 0.088
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component was detectable, it represented additive variance. 
POEs had standard errors approximately equal to those of 
additive variance components, while estimates of dominance 
variance showed slightly larger standard errors. Further, half 
of the dominance variance components were negative and 
half positive. Although the sample size is too small to per-
form significance tests of differences in heritability estimates 
across traits, lipid traits tended to have negative dominance 
components and IQ traits positive ones.

Discussion

The most important findings from our simulations are that: 
(1) G-REMLadp does not seem to be inherently biased 
in estimating variance due to additive effects, dominance 
effects, and POEs, and (2) that substantial correlation 
between parental genotypes is necessary to bias G-REM-
Ladp estimates. We did not investigate the effect that linkage 
disequilibrium might have on our results, but present the 
correlations between codings in the Supplementary Mate-
rial. If local levels of linkage disequilibrium are associated 
with POE size, an implementation of G-REMLadp using 
GCTA-LDMS would likely be able to estimate variance 
components without LD bias, while an LDAK implemen-
tation would have estimates at greater risk of bias (Speed 
et al. 2012; Yang et al. 2017). The empirical results and 
power calculations suggest that a sample size under 10,000 

is insufficient to generate precise G-REMLadp estimates. 
Hence, POEs of the size observed by Lopes et al. (Lopes 
et al. 2015) (≈ 2% of variance explained) are likely to require 
sample sizes close to 50,000 to resolve properly (their sam-
ples were about 4500 purebred pigs, hence me far below that 
for humans on the HapMap 3 panel, accordingly their pat-
tern of results is closer to our simulated findings than to our 
empirical ones). It is unlikely that power could be improved 
substantially via improved phasing using trio samples due 
to the already high accuracy of phasing using parent–child 
duos in the case of dense genome-wide SNP data (Marchini 
et al. 2006; Browning and Browning 2011).

Despite the limited power of our analysis, it may be inter-
esting to follow up some of the phenotypes that had high 
estimates of parent of origin effects in the ALSPAC cohort, 
like age at menarche [a phenotype known to be influenced 
by imprinted loci (Perry et al. 2014)] in a larger study. Rep-
licating the dominance results for fat mass would also be of 
interest, as Zhu et al. (2015) found no significant dominance 
for skinfold thickness; similarly, replicating a dominance 
heritability component of verbal IQ would substantiate ven-
erable claims for non-additive effects on cognitive perfor-
mance (Devlin et al. 1997; Plomin and Deary 2015).

However, the highest-profile claim (Devlin et al. 1997) 
for non-additive effects on IQ involves maternal effects. The 
evidence for this claim comes from findings of increased 
similarity in IQ in the children of female twins relative to the 
children of male twins (Nance and Corey 1976). Maternal 

Fig. 3  Histograms of the esti-
mates of additive, dominance, 
and parent-of-origin variance 
components for 36 ALSPAC 
traits. Add Estimated propor-
tions of phenotypic variance 
attributable to additive effects, 
Dom Estimated proportions of 
phenotypic variance attribut-
able to dominance effects, 
PoE Estimated proportions of 
phenotypic variance attributable 
to parent-of-origin effects. The 
bin width is 0.025. To avoid 
biased variance estimates, they 
were not constrained to be posi-
tive; hence, for POEs, which 
the study was underpowered to 
detect, there are many negative 
estimates. The figure is intended 
to illustrate patterns in the vari-
ance component estimates for 
the phenotypes which happened 
to be included in this study; 
it would be inappropriate to 
consider these histograms as 
representative of the densities of 
different variance components 
for complex traits in general



77Behav Genet (2018) 48:67–79 

1 3

(or paternal) effects are defined as indirect effects of the 
parent’s genotype on offspring phenotype, usually via paren-
tal influence on offspring’s environment (Wolf and Wade 
2009). These are distinct from the POEs discussed here, 
because POEs are direct effects of the offspring’s genotype 
on its phenotype. In the presence of maternal (paternal) 
effects, the mother’s (father’s) genotype explains some of 
the residual phenotypic variation remaining after regress-
ing the offspring’s phenotype on its genotype. However, 
methods designed to detect POEs by modelling different 
distributions of the two heterozygotes’ phenotypes (includ-
ing G-REMLadp) cannot distinguish POEs from certain 
patterns of maternal/paternal effects (Hager et al. 2008). It 
is also possible that there are maternal effects that cause 
imprinting (epigenetic changes due to intrauterine environ-
ment or family environment created by parental behavior). 
To distinguish POEs from maternal effects, it might be 
possible to fit a model with both maternal and POEs. For 
example, G-REMLadp could be implemented in OpenMx 
and combined with the M-GCTA model (Eaves et al. 2014; 
Kirkpatrick and Neale 2015; Neale et al. 2015). However, 
POEs and maternal/paternal effects represent departure from 
Mendelian inheritance; a reliable nonzero �2

�
 value detected 

by G-REMLadp is worthy of follow-up even if it represents 
a mixed bag of POEs and indirect effects.

Other than the insufficient sample size in the ALSPAC 
analyses, an additional limitation of this project was that the 
simulations and empirical data were not closely matched; 
less idealized, more informative simulations could have been 
performed. For example, simulated phenotypes could have 
been based on the empirical distributions of the ALSPAC 
phenotypes, and these, coupled with real GRMs (with 
imperfect HWE because of sampling error, if not actual 
violations), could’ve resulted in more thorough evaluation 
of G-REMLadp. Pairwise relatedness values could also have 
been simulated from the empirical distributions of (Aij, Δij, 
and Γij) or smooth approximations to them (Lee and Chow 
2014). This approach is more feasible computationally under 
the HE regression framework than under maximum likeli-
hood. The extreme-seeming violations of HWE which we 
used (parents’ gametes highly correlated or MAF differences 
between parents) are observable in certain human popula-
tions. Several localities where consanguineous marriages 
are common are identified in Erzurumluoglu et al. (2016). 
Examples include the city of Riyadh, in which first-cousin 
marriages (corresponding to correlation between parental 
gametes of 0.125) are 30–40% of all marriages; this paper 
also lists localities where uncle-niece marriages (gametic 
correlation of 0.25, as we have simulated) represent several 
percent of all marriages. Erzurumluoglu et al. also describe 
Riyadh as composed of recently immigrated subpopulations, 
which makes allele frequency differences possible in the 
remainder of marriages there.

A further drawback is that the power calculations which 
we present are based on the assumption that causal loci are 
randomly distributed throughout the genome. It is unclear 
the degree to which parent of origin effects are randomly 
distributed across the genome in humans vs being clustered 
at distinct loci. Dissecting the genetic basis of parent of ori-
gin effects in humans has been hampered by two factors: (1) 
GWAS aimed at detecting parent of origin effects have been 
small meaning that only a small number of common SNPs 
having relatively large effect have so far been identified; 
and (2) Many studies have restricted association analyses 
to regions of the genome known to be imprinted. There are 
anywhere from 40 to 100 regions known to be imprinted in 
humans (Baran et al. 2015), although recent evidence sug-
gests that this figure may be higher (Cuellar Partida et al. 
2017). Additionally, whilst imprinting is one mechanism 
through which parent of origin effects may manifest, there 
are other processes (e.g. maternal effects) that may also leave 
wide-spread signatures across the genome that are largely 
consistent with the results from parent of origin analyses. 
Since G-REMLadp is not necessarily limited to genome-
wide analyses; future work could specifically examine relat-
edness at known imprinted loci in the construction of GRMs, 
although this would require revised power calculations to 
estimate sufficiently large samples to account for the lower 
degree of tagging of phenotypic variation.

A 2015 paper by Baran et al. in Genome Research, sup-
plies an atlas of imprinted regions in the genome (Baran 
et al. 2015). A related future direction (as suggested by 
Lopes et al.) would be to emphasize the connection between 
imprinting and attempts to detect POEs, for example by 
applying the method in the EWAS, rather than GWAS, con-
text, i.e. identifying genome-wide eQTL effects on age at 
menarche and first tooth, and 2d4d ratio (Zhu et al. 2016).

In summary, G-REMLadp offers the ability to easily parti-
tion phenotypic variance according to three types of inher-
ited effects. Given large studies of parent–child trios/duos 
(for example, MoBa), it is possible to fit G-REMLadp mod-
els and detect variance components without bias. The close 
agreement between GREML and HE regression approaches 
to estimate variance components suggests that G-REMLadp 
models can be fit to a good approximation even in very large 
studies or with limited computational resources, where HE 
can be up to 50 times faster than GREML (Yang et al. 2017). 
Finally, failure to model POEs has been suggested as one 
possible source of missing heritability (Kong et al. 2009; 
Eichler et al. 2010). For any phenotypes with missing herit-
ability that is uncovered by modelling POEs, the epigenetic 
and evolutionary implications of POEs lead to hypotheses of 
distinctive etiologies and genomic architectures.
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