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Abstract: Late embryogenesis abundant (LEA) proteins, as a highly diverse group of polypeptides,
play an important role in plant adaptation to abiotic stress; however, LEAs from cassava have not
been studied in cassava. In this study, 26 LEA members were genome-wide identified from cassava,
which were clustered into seven subfamily according to evolutionary relationship, protein motif,
and gene structure analyses. Chromosomal location and duplication event analyses suggested that
26 MeLEAs distributed in 10 chromosomes and 11 MeLEA paralogues were subjected to purifying
selection. Transcriptomic analysis showed the expression profiles of MeLEAs in different tissues of
stem, leaves, and storage roots of three accessions. Comparative transcriptomic analysis revealed
that the function of MeLEAs in response to drought may be differentiated in different accessions.
Compared with the wild subspecies W14, more MeLEA genes were activated in cultivated varieties
Arg7 and SC124 after drought treatment. Several MeLEA genes showed induction under various
stresses and related signaling treatments. Taken together, this study demonstrates the transcriptional
control of MeLEAs in tissue development and the responses to abiotic stress in cassava and identifies
candidate genes for improving crop resistance to abiotic stress.

Keywords: abiotic stress; cassava; characterization; genome-wide analysis; late embryogenesis
abundant (LEA) protein

1. Introduction

Late embryogenesis abundant (LEA) protein was first found to accumulate during the late
embryogenesis in cotton seed [1]. Subsequently, they were identified from various plant species,
including rice, Arabidopsis, maize, barley, wheat, sunflower bean, and Brassica napus [2–8]. Additionally,
LEA proteins also exist in other species, such as nematodes and chironomids [9,10]. LEA proteins
have small molecular weight and a high degree of hydrophilicity [11,12]. Based on the eight conserved
Pfams (PF04927, PF00257, PF03760, PF03168, PF03242, PF02987, PF00477, PF10714), plant LEA proteins
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can be separated into eight families: seed maturation protein (SMP), dehydrin, LEA_1, LEA_2, LEA_3,
LEA_4, LEA_5, and LEA_6 [13].

Most of the LEA protein families have a unique subcellular localization, which is involved in
protecting the stability of cells under stress conditions [3,14]. Accumulated evidence has revealed the
biochemical mechanisms underlying their function on protecting plants from dehydration. Firstly,
LEA proteins function as a protectant of membranes and biomolecules [14]. Secondly, LEA proteins,
as intrinsically-disordered proteins, protect enzymes from induced aggregation by space-filling of
LEA proteins, thus decreasing the rate of collisions between aggregating proteins [15,16]. Thirdly,
LEA proteins aid in sequestration of calcium and metal ions, a benefit for signaling transduction [17].
Lastly, LEA proteins play a role in the formation of the glassy state, contributing to sugar accumulation
in the cytoplasm of plants [18].

Moreover, genetic evidences also support the function of LEA proteins on abiotic stress
response, including dehydration, osmotic, drought, salt, and chilling. Overexpression of the
OsLEA3-2 was able to enhance salt and drought tolerance in transgenic rice plants [19]. ZmLEA3
could increase the transgenic tobacco tolerance to low temperature, osmotic and oxidative
stresses [20,21]. Overexpression of the CuCOR19 in tobacco increased cold tolerance by inhibiting lipid
peroxidation [22]. Overexpression of the wheat WCOR410 improved freezing resistance in transgenic
strawberry leaves [23]. SiLEA14 conferred salt and osmotic tolerance in transgenic Arabidopsis and
foxtail millet [24]. Overexpression of the JcLEA in transgenic Arabidopsis plants improved resistance
to dehydration and salinity [25]. Transgenic Arabidopsis plants overexpressing the Group LEA_4
protein of B. napus enhanced salt and drought tolerance [26]. Together, these results suggested that
LEA proteins play a positive role in plant response to abiotic stress.

To date, LEA genes have been genome-wide identified in various plant species, such as 51 LEAs in
Arabidopsis [3], 39 LEAs in rice [2], 108 LEAs in Brassica napus [8], 23 LEAs in Moso Bamboo [27], 36 LEAs
in Brachypodium distachyon [28], and 53 LEAs in Populus trichocarpa [29]. However, less is known about
this family in the important tropical crop cassava. Cassava, the third most important crop after rice
and maize in Asia, Africa, and Latin America, provides dietary carbohydrates for over 600 million
people across the tropical and sub-tropical world [30,31]. Cassava has a tolerance to drought and
low-fertility soils due to the efficient use of heat, light, and water resources [32]. Transcriptomic analysis
indicated that genes involved in abscisic acid (ABA) and ethylene biosynthesis, protein degradation,
lipid metabolism, and second metabolism of flavonoids were significantly induced after osmotic
treatment in cassava [33]. Some genes related to carbohydrate metabolism, ABA and salicylic acid
metabolism, and calcium signaling were commonly regulated when cassava responded to cold and
drought stresses [34]. lncRNAs associated with hormone signal transduction, secondary metabolites
biosynthesis, and sucrose metabolism showed transcriptional changes after cold or drought treatment
in cassava [35]. In addition, gene families involved in ABA and calcium signal transduction were
identified from the cassava genome. Some members were widely responsive to drought, osmotic, cold,
salt, and ABA at transcriptional levels [36–39]. Together, these evidences suggested that phytohormone
metabolism, signaling transduction and secondary metabolites biosynthesis play a crucial role in
cassava tolerance to abiotic stress. Due to the significance of LEA proteins in plant adaptation to abiotic
stress, the LEA family was selected for systematic analysis in cassava.

In this study, an effort was made to identify MeLEAs from the cassava genome and investigate
their phylogenetic relationship, conserved motif, gene structure, chromosomal location, duplication
event, and expression profiles in distinct tissues and in response to drought, salinity, osmotic, cold,
ABA, and H2O2 treatments. This systematic study should increase our understanding of LEA proteins
related to abiotic stress response and lay a foundation for genetic improvement of crops.
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2. Results

2.1. Identification and Phylogenetic Analysis of MeLEAs

A total of 26 LEA proteins were identified from cassava based on HMM searches and conserved
domain validation. The accession number and predicted characteristic of all the MeLEA proteins
are shown in Supplementary Table S1. To investigate the phylogenetic relationship of LEA proteins,
an unrooted neighbour-joining (NJ) tree was constructed with the complete LEA protein sequences
from Arabidopsis, rice, and cassava (Figure 1). The LEA family were clustered into nine subgroups,
including LEA_1, LEA_2, LEA_3, LEA_4, LEA_5, Dehydrin, PvLEA18, AtM, and SMP. The 26 MeLEAs
were divided into seven subfamilies, including LEA_1, LEA_2, LEA_3, LEA_5, PvLEA18, Dehydrin
and SMP. The SMP and LEA_3 families were the largest, with seven and five LEA members in cassava,
respectively. By contrast, the PvLEA18 group had only one MeLEA member, MeLEA10.
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Figure 1. Evolutionary analysis of the LEAs from cassava, rice, and Arabidopsis. A total of 26 LEAs from
cassava, 37 LEAs from rice and 51 LEAs from Arabidopsis were used to create the neighbour-joining (NJ)
tree with 1000 bootstraps. Red circle, LEAs in cassava; Green square, LEAs in Arabidopsis; Blue triangle,
LEAs in rice.

2.2. Conserved Motifs and Gene Structure of MeLEAs

To understand the structural features of the MeLEAs, conserved motifs were identified according
to phylogenetic relationship. Since the 26 MeLEAs did not share high similarity, each subfamily
was respectively submitted to MEME database and a total of 10 conserved motifs of MeLEAs were
identified (Figure 2). Subsequently, the typical motif for each subfamily was annotated with the Pfam
database. The red motif that encoded a conserved LEA domain by Pfam annotation existed in six
subfamilies (LEA_1, LEA_2, LEA_3, LEA_5, SMP and PvLEA18). The conserved LEA domain in
the Dehydrin subfamily was represented by green motif. These results suggested that the identified
MeLEAs have the typical motifs of LEA family [8]. Generally, the LEA proteins belonging to the same
subfamily shared similar motif organization, further supporting the phylogenetic classification [2,8,27].
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Additionally, exon-intron organization of MeLEAs was analysed (Figure 3). The subgroup SMP
was intron-rich with 2–3 introns, whereas other subgroups were intron-less with 0–1 intron, except for
MeLEA12 with two introns. Generally, MeLEA genes in the same subfamily has similar exon-intron
feature, which evidences their close phylogenetic relationship and the classification of subgroups.
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Figure 2. The conserved motifs of the MeLEAs according to the evolutionary classification.
The conserved motifs were identified by the MEME database. The coloured boxes represent conserved
motifs and grey lines represent the non-conserved sequences. The representative motif of each
subfamily was annotated by PFAM databases with Pfam codes.
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Figure 3. The exon-intron structure of the MeLEAs based on the evolutionary relationship. Exon-intron
analysis of MeLEAs were performed with GSDS database. The back lines and the yellow boxes represent
introns and exons, respectively.
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2.3. Chromosomal Distribution and Duplication Pattern of MeLEAs

To study the distribution of MeLEAs, the locations of the 26 MeLEA genes in chromosomes were
identified (Figure 4). The MeLEAs were mapped to chr1, 2, 3, 5, 8, 9, 10, 11, 12, and 15. The PvLEA18
subfamily that contained only one gene MeLEA10 was located on chromosome 12. LEA_2 and LEA_3
subfamilies appeared in the chromosome 1 and 5, except for MeLEA5 and MeLEA16. The SMP
subfamily which had seven members was distributed in chromosome 1, 3, 5, 8, and 9. LEA_1 subfamily
contained four MeLEAs was placed in chromosome 2, 8, 9, and 15. The chromosomal location of LEA_5
subfamily were in chr9 and chr10. Dehydrin subfamily which contained MeLEA1, 2, 18 was distributed
in chromosome 5, 2, 11, respectively.
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Figure 4. Distribution of the MeLEAs on chromosomes. The 26 MeLEAs were mapped to 10
chromosomes based on their chromosomal information of cassava.

To study the expansion of the MeLEA family in cassava, all nucleotide sequences of MeLEAs
were aligned to identify their duplication patterns. Five duplication events involving 11 paralogues
were identified (MeLEA3/MeLEA4, MeLEA11/MeLEA12, MeLEA13/MeLEA22, MeLEA19/MeLEA24 and
MeLEA6/MeLEA7/MeLEA21), which evidenced that segmental duplications had an important role in
MeLEAs expansion in the cassava genome (Figure 5).
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Figure 5. Segmental duplication of LEA genes in cassava. Chromosomes are illustrated in different
colour in circular form using the program Circos. Segmental duplicated MeLEAs are connected by
yellow lines.

Further, non-synonymous (Ka) and synonymous (Ks) values were calculated for the duplicated
MeLEA genes based on nucleotide sequences. The pairwise comparison data revealed that the Ka/Ks
ratios in all the paralogous genes were between 0.2 and 0.45, showing the purifying selection of these
genes (Supplementary Table S2).

2.4. Expression Profiles of LEA Genes in Different Cassava Tissues

To examine the transcriptional levels of the LEA genes in diverse tissues of cassava, the storage
roots, stems, and leaves of W14 and Arg7 were collected to perform RNA-seq analysis (Figure 6B;
Supplementary Table S3). Nineteen out of the 26 MeLEAs had the corresponding transcripts data,
while the remaining 7 MeLEA genes (MeLEA-5, -11, -13, -19, -23, -24, -25) were uncovered in the
transcriptome dataset of different tissues of Arg7 and W14. These 7 MeLEA genes may have no, or low,
expression levels in different tissues of cassava. In these 19 MeLEA genes, eight (42%), seven (37%),
and five (26%) MeLEAs had high expression levels (FPKM value > 20) in storage roots, stems and
leaves of Arg7, respectively. The MeLEAs with high expression levels (FPKM value > 20) in storage
roots, stems and leaves of W14 were seven (37%), six (32%), and six (32%), respectively. Notably,
MeLEA1 in the LEA_5 subgroup, MeLEA15 in the LEA_2 subgroup, and MeLEA-6, -7, -21 in the LEA_3
subgroup showed high expression abundance (FPKM value > 20) in all the tested tissues of Arg7 and
W14. These LEA genes may be beneficial for cassava tissue development and function.
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Figure 6. Expression patterns of MeLEAs in different tissues and in response to drought stress.
(A) Evolutionary analysis of the LEAs from cassava; (B) Expression profiles of the MeLEAs in various
tissues of Arg7 and W14. FPKM value is used to create the heat map with Mev 4.9.0 software. The color
scale indicates the expression levels of MeLEAs. S, stem; L, leaf; SR, storage root. The FPKM value of
the genes that was not covered in the transcriptomic datasets was set as “0”; and (C) expression profiles
of the MeLEAs in leaves and roots of Arg7, SC124, and W14 after drought treatment. Log2-based fold
changes was used to create the heat map with Mev 4.9.0 software. The FPKM value of the genes that
were not covered in the transcriptomic datasets was set as “0”. Changes in gene expression are shown
in color as the scale. L, leaf; R, root; D, drought treatment; CK, control check, showing leaf and root of
cassava varieties under normal condition.

2.5. Expression Profiles of LEA Genes in Response to Drought Stress

To further investigate the possible role of MeLEAs under drought stress, water withholding was
applied to a wild subspecies W14 and two cultivated varieties Arg7 and SC124. Then, total RNA
was collected from roots and leaves for transcriptomic analyses (Figure 6C; Supplementary Table S4).
According to the transcriptome data, 21 out of 26 MeLEAs had the corresponding expression data,
while the rest of five MeLEAs (MeLEA-11, -12, -19, -23, -25) were not covered in the transcriptomic
datasets. In W14, three (14%) and two (10%) MeLEA genes were transcriptionally up-regulated
(log2-based fold change > 1) by drought stress in roots and leaves, respectively. In Arg7 variety,
three (14%) and seven (33%) MeLEA genes were induced (log2-based fold change > 1) after drought
stress in roots and leaves, respectively. In SC124 variety, four (19%) and six (29%) MeLEA genes
showed up-regulation (log2-based fold change > 1) by drought stress in roots and leaves, respectively.
Additionally, MeLEA5 and MeLEA26 were induced (log2 based fold change > 1) by drought in the two
cultivated varieties. Together, these results revealed that the number of LEA genes induced by drought
was more in Arg7 and SC124 than that in W14.

2.6. Expression Profiles of MeLEA Genes upon Exposure to Various Stresses and Related Signaling

Based on the RNA-seq data, 9 genes (MeLEA-2, -4, -5, -6, -7, -15, -16, -20, -26) were induced by
drought stress in different cassava accessions, which were chosen for further examination of their
transcriptional patterns after salt, osmotic, cold, and H2O2 and ABA treatments (Figure 7). Under salt
treatment, MeLEA5 showed up-regulation at 14 d and MeLEA20 showed up-regulation at 2 h and 6 h.
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In contrast, MeLEA-2, -4, -5, -6, -7, -15, -16, -26 showed down-regulation at several treated time points.
Under osmotic treatment, MeLEA2 transcripts increased at 2 h and 3 d, MeLEA5 at 2 h, 3 d, and 14 d,
and MeLEA-6, -7, -15 at 2 h. Conversely, the transcripts of MeLEA-16, -20, -26 decreased at 3 d and 14 d.
In response to cold stress, MeLEA6 at 15 h and 48 h, MeLEA7 at 48 h, MeLEA15 at 15 h, and MeLEA20 at
5 h and 48 h showed induction, whereas MeLEA-4, -5, -16 exhibited repression. Under H2O2 treatment,
MeLEA6 at 15 h and MeLEA15 at 2 h was induced, while MeLEA-2, -4, -5, -7, -16, -20 were repressed at
several treated time points. Treatment with ABA induced the expression of MeLEA5 during 2 h–24 h,
MeLEA6 at 2 h, and MeLEA15 at 2 h, but repressed the expression of MeLEA-2, -4, -26 at all the treated
time points, MeLEA16 during 6 h–24 h, and MeLEA20 at 6 h and 24 h. These results indicated that
MeLEAs may be responsive to various stresses or signals, indicating their possible role in multiple
signaling pathways in cassava.
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Figure 7. Expression profiles of the MeLEAs in leaves under salt, osmotic, cold, H2O2, and ABA
treatments. NTC (no treatment control) was normalized as “1”. Data are means ± SD of n = 3 biological
replicates. Means denoted by the same letter do not significantly differ at p < 0.05 as determined by
Duncan’s multiple range test.
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3. Discussion

Due to the significant roles of LEA proteins in abiotic stress response and the typical feature of
drought tolerance of cassava, it is requisite to systematically investigate the potential role of LEAs.
In this study, we identified 26 MeLEAs from the cassava genome, which is shrunk in comparison
to LEA members from Arabidopsis [3], rice [2], Brassica napus [8], Brachypodium distachyon [28],
and Populus trichocarpa [29], but expanded compared with that from moso bamboo [27]. Previous
phylogenetic analyses indicated that LEAs in most plant species contained eight subfamilies (LEA_1,
LEA_2, LEA_3, LEA_4, LEA_5, PvLEA18, dehydrin, and SMP) [8]. MeLEAs were classified into
seven subfamilies, among which the LEA_4 subfamily was not found in cassava (Figure 1). LEAs in
Arabidopsis were classified into nine subfamilies (LEA_1, LEA_2, LEA_3, LEA_4, LEA_5, PvLEA18,
dehydrin, SMP, and AtM), in which AtM was unique to the Brassicaceae [3]. Additionally, a total of
34 LEAs in rice were grouped into seven families (LEA_1, LEA_2, LEA_3, LEA_4, LEA_5, dehydrin,
and SMP), whereas the PvLEA18 subfamily was lacking [2]. These evidences suggested that the
subfamily variation of the LEA family existed in some plant species. Most of the LEA genes (25/26)
harbored less introns (0–2) in cassava (Figure 3), which is in accord with the intron feature of LEAs in
other plant species, such as 21/23 PeLEAs, 92/108 BnLEAs, and 39/39 OsLEAs with 0–2 introns [2,8,29].
All the MeLEAs in SMP subfamily showed intron-rich feature (containing 2–3 introns) and low/no
expression in different tissues. In contrast, MeLEA15 in LEA_2 subfamily and MeLEA-6, -7, -21
in the LEA_3 subfamily did not contain intron, but had high expression levels in various tissues
(Figures 3 and 6). These results suggested that intron structure variation is associated with the
expression patterns of MeLEAs. Additionally, MeLEAs belonging to the same subfamily had similar
motifs and exon-intron compositions, further supporting the phylogenetic classification of MeLEAs
(Figures 2 and 3).

The expansion of a gene family occurs via three modes: segmental duplication, tandem
duplication, and whole-genome duplication [40,41]. It was necessary to analyze the duplication events
of LEA genes in cassava. Firstly, the chromosomal distribution of the LEAs in cassava was investigated,
which was widely distributed in the genome, and the similar result was observed in Arabidopsis,
rice and Brassica napus (Figure 4) [2,3,8]. Subsequently, five pairs of paralogous genes (MeLEA3/MeLEA4,
MeLEA11/MeLEA12, MeLEA13/MeLEA22, MeLEA19/MeLEA24, and MeLEA6/MeLEA7/MeLEA21) were
identified from cassava, suggesting that segmental duplication may be the main expansion mechanism
for MeLEAs (Figure 5). Further Ka/Ks ratio calculation showed the paralogues of MeLEAs were subjected
to purifying selection (Supplementary Table S2). This is consistent with the LEA family expansion
in Brassica napus and B. distachyon [8,28]. Of these paralogous gene pairs, MeLEA3/MeLEA4 showed
similar exon-intron organization (two exons), whereas distinct expression profiles in different tissues;
MeLEA11/MeLEA12 showed different exon-intron organization, but commonly low/no expression
in different tissues; MeLEA13/MeLEA22 and MeLEA19/MeLEA24 commonly had three exons and
low/no expression in different tissues; and MeLEA6/MeLEA7/MeLEA21 commonly displayed 1
exons and high expression in different tissues. Additionally, these paralogous gene pairs exhibited
different expression patterns after drought treatment in different cassava accessions (Figures 3 and 6C).
These results indicated that segmental duplication-driven expansion resulted in similar gene structure
and expression diversity of most paralogous MeLEAs. This is in accord with the current opinion
that gene duplication generates new genetic diversity as a basis for evolutionary innovation in
eukaryotes [42].

Genome-wide expression analysis have demonstrated the significant response of LEA genes
to drought or osmotic stress in various species, including Arabidopsis, rice, Moso bamboo, and sweet
orange [2,3,27,43]. In this study, we found that some MeLEA genes, including MeLEA-2, -5, -6, -13, -26,
were induced (Log2FPKM > 1) by drought in different cassava accessions. Additionally, we observed
that the total number of MeLEAs up-regulated by drought was greater in Arg7 and SC124 than that in
W14, indicating the comprehensive activation of LEAs in Arg7 and SC124 (Figure 6C). This indicated
that LEAs-mediated drought responsive mechanism are differentiated between wild subspecies and
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cultivated varieties. Due to the differences for the genetic background between wild species (W14) and
cultivated varieties (Arg7 and SC124) [44], the contribution of MeLEA genes to drought tolerance of
cassava is elucidated.

Previous studies demonstrated that LEAs could widely participate in plants response to abiotic
stress and hormones [2,3,8,19–29]. Here, we examined the expression of nine genes (MeLEA-2, -4,
-5, -6, -7, -15, -16, -20, -26) under salt, osmotic, cold, and H2O2 and ABA treatments. The results
showed that almost all the MeLEA genes could be induced at least by one of the treatment (Figure 7).
Notably, MeLEA5 was commonly inducted by ABA, salt, and osmotic treatments; MeLEA6 was
commonly up-regulated by ABA, cold, and osmotic treatments; MeLEA7 and MeLEA15 were commonly
up-regulated by cold and osmotic treatments; and MeLEA20 was commonly induced by cold and
salt treatments. In rice, OsLEA-5, -12, -29 showed up-regulation after osmotic, salt, and ABA
treatments [2]. In Moso bamboo, 10 genes showed induction after both dehydration and cold stresses [19].
These evidences supports that a single MeLEAs is involved in various stresses or signals and MeLEA-5,
-6, -7, -15, 20 can serve as candidates for genetic improvement of crop tolerance to multiple stresses.

4. Materials and Methods

4.1. Plant Materials and Treatments

The characteristics of W14, SC124, and Arg7 cassava accessions were described in previous
studies [45,46]. W14 (M. esculenta ssp. flabellifolia) is a wild subspecies of cultivated cassava.
Arg7 is a variety containing elite agronomic traits, including a certain level of growth under moderate
drought stress. SC124 is a widely planted cassava cultivar in China and can survive in prolonged
severe drought stress. All the cassava plants were cultured with soil and vermiculite (1:1) under
the glass house in the CATAS (Chinese Academy of Tropical Agricultural Sciences, Haikou, China).
To analyze transcripts of MeLEAs in distinct tissues at the early development stage, stems (90 days old),
leaves (90 days old), and storage roots (150 days old) were gathered from Arg7 (cultivated variety)
and W14 (wild subspecies) under normal conditions. To examine the transcriptional levels of MeLEAs
under drought stress, cassava plants (90 days old) of W14, Arg7, and SC124 were subjected to water
withholding for 12 days, and the leaves and roots were collected for RNA sequencing. To detect the
expression levels of MeLEAs under abiotic stress, leaves were collected from Arg7 (60 days old) for
quantitative real-time PCR (qRT-PCR) detection. For salt and osmotic treatments, cassava seedlings
grew in soil irrigated with 300 mM NaCl or 200 mM mannitol for 14 days. For cold treatment, cassava
seedlings were cultured in an incubator with low temperature (4 ◦C) for 48 h. For ABA and H2O2

treatments, cassava seedlings grew in soil irrigated with 100 µM ABA or 10% H2O2 for 24 h.

4.2. Identification and Phylogenetic Analyses

The whole LEA protein sequences in Arabidopsis and rice were obtained from the Arabidopsis
information resource (TAIR) and rice genome annotation project (RGAP) databases, respectively [47,48].
The whole genome and protein sequences of cassava were downloaded from the Phytozome
12.0 cassava database (Lawrence Berkeley National Laboratory, Berkeley, CA, USA). MeLEAs
were identified by hidden Markov model (HMM) profiles built from the known LEA protein
sequences [49]. To confirm the LEAs of cassava, the candidate MeLEAs were further analyzed
using the conserved domain search (CDD), simple modular architecture research tool (SMART),
and the basic local alignment search tool (BLAST) databases [50–52]. The unrooted phylogenetic
tree was created with LEA protein sequences from cassava, Arabidopsis, and rice by ClustalX 2.0
(Tokyo Metropolitan University, Tokyo, Japan) and MEGA 6.0 software packages (University College
Dublin, Dublin, Ireland) bootstrap values for 1000 replicates) [53,54].
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4.3. Protein Properties and Gene Structure Analysis

The ExPASy database (Swiss Institute of Bioinformatics, Lausanne, Switzerland) and DNASTAR
software packages (DNASTAR, Madison, WI, USA) were used to predict the molecular weight and
isoelectric points of MeLEA proteins [55,56]. The MEME database was employed to identify the
conserved motifs of MeLEA proteins [57]. Then, all the structural motifs were annotated by SMART,
PFAM, and InterProScan databases [13,49,58]. The exon/intron organization of MeLEAs were identified
by the Gene Structure Display Server (GSDS) database [59].

4.4. Chromosomal Location and Duplication Pattern Analysis

The chromosomal location of MeLEA genes was identified according to the data information
obtained from the Phytozome 12.0 cassava database. Paralogous LEA genes were selected according
to calculation of sequence identity and the phylogenetic relationship. Gene duplication events of
paralogous LEA genes in cassava were identified based on the following two rules: (1) the alignment
covered >80% of the longer gene; (2) the aligned region had an identity >80% [60,61]. The Ks
(synonymous substitution) and Ka (non-synonymous substitution) were calculated by DnaSP 5.0
software (Universitat de Barcelona, Barcelona, Spain) [62]. A Ka/Ks ratio < 1 indicates a purifying
selection, a Ka/Ks ratio = 1 indicates a neutral selection, and a Ka/Ks ratio > 1 indicates a positive
selection [63,64].

4.5. Transcriptomic Analysis

Samples were gathered to extract total RNA with plant RNA extraction kit (TIANGEN,
Beijing, China). The total RNA of each sample was used to construct cDNA libraries. Then,
Illumina GAII platform (Illumina, San Diego, CA, USA) was used to perform high throughput
sequencing according to manufacturer’s RNA-seq protocol. Adapter sequences were cleaned by
FASTX-toolkit in the raw reads [65]. To obtain high quality sequences, FastQC was used to remove
low quality sequences [66]. Then, clean reads were mapped on the cassava genome by Tophat v.2.0.10
(Johns Hopkins University, Baltimore, MD, USA) [67]. Cufflinks was used to performed transcriptome
assemblies [68]. Finally, FPKM (fragments per kilobase of transcript per million mapped fragments)
values were calculated to create heat map with MeV 4.9 software (CCCB, Boston, MA, USA).

4.6. qRT-PCR Analysis

Expression of MeLEAs in response to various stimuli were determined by quantitative real-time
PCR (qRT-PCR) on Stratagene Mx3000P instrument (Stratagene, Santiago, CA, USA). AlleleID6.0 was
used to design gene-specific primer pairs that were further validated by melting curve and agarose gel
electrophoresis (Supplementary Table S5). Each reaction system had a volume of 10 µL containing
0.5 µL of cDNA, 1 µL of gene-specific primers, 3.5 µL of RNA-Free water and 5 µL of SYBR® Premix
Ex Taq™ (TaKaRa, Tokyo, Japan). The PCR conditions were implemented as follows: 5 min at 95 ◦C;
40 cycles of 10 s at 95 ◦C, 15 s at 55 ◦C and 20 s at 72 ◦C; 60 s at 95 ◦C, 30 s at 55 ◦C and 30 s at 95 ◦C.
The Tubulin gene was used to normalize as a reference. The 2−∆∆Ct approach was carried out to
calculate the relative expression of MeLEA genes. The relative expression levels of MeLEA genes in
each time point was calculated according to the control and treated samples. Each sample has three
replicates and three biological experiments were performed.

5. Conclusions

In conclusion, this study identified 26 LEAs from cassava and studied their classification by
phylogenetic, protein motif, and gene structure analyses. Chromosomal location and duplication
event analysis revealed that 26 MeLEAs were distributed in 10 chromosomes and 11 LEAs were
paralogues which were subjected to purifying selection. Transcriptomic analyses revealed the tissue
expression and drought response diversity of MeLEAs in wild species and cultivated varieties. Several
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MeLEA genes were observed to respond to multiple abiotic stresses, and H2O2 and ABA signaling.
This systematic research will provide a solid foundation for understanding the function of LEA genes
and LEAs-mediated abiotic stress response in cassava.

Supplementary Materials: The following are available online. Table S1. Characteristics of LEAs in cassava;
Table S2. The Ka/Ks ratios of duplicated LEA genes in cassava; Table S3. The expression profiles of the cassava
LEA genes in different tissues; Table S4. The expression profiles (log2-based fold changes) of the cassava LEA
genes after drought treatment; Table S5. Primers used in qRT-PCR analysis.
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