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Abstract: Forecasting the number of daily COVID-19 cases is critical in the short-term planning of hospital
and other public resources. One potentially important piece of information for forecasting COVID-19
cases is mobile device location data that measure the amount of time an individual spends at home.
Endemic–epidemic (EE) time series models are recently proposed autoregressive models where the current
mean case count is modelled as a weighted average of past case counts multiplied by an autoregressive
rate, plus an endemic component. We extend EE models to include a distributed-lag model in order to
investigate the association between mobility and the number of reported COVID-19 cases; we additionally
include a weekly first-order random walk to capture additional temporal variation. Further, we introduce
a shifted negative binomial weighting scheme for the past counts that is more flexible than previously
proposed weighting schemes. We perform inference under a Bayesian framework to incorporate parameter
uncertainty into model forecasts. We illustrate our methods using data from four US counties.
Résumé: La prévision du nombre de cas quotidiens de COVID-19 est cruciale pour la planification à court
terme de ressources hospitalières et d’autres ressources publiques. Les données de localisation des téléphones
mobiles qui mesurent le temps passé à la maison peuvent constituer un élément d’information important
pour prédire les cas de COVID-19. Les modèles de séries chronologiques endémiques-épidémiques sont
des modèles auto-régressifs récents où le nombre moyen de cas en cours est modélisé comme une
moyenne pondérée du nombre de cas antérieurs multipliée par un taux auto-régressif (reproductif), plus
une composante endémique. Les auteurs de ce travail généralisent les modèles endémiques-épidémiques
pour y inclure un modèle à décalage distribué, et ce, dans le but de tenir compte du lien entre la mobilité
et le nombre de cas de COVID-19 enregistrés. Pour saisir les variations de temps supplémentaires, ils
y incorporent une marche hebdomadaire aléatoire d’ordre supérieur. De plus, ils proposent un schéma
de pondération binomiale négative décalée pour les dénombrements passés, qui est plus flexible que
les schémas de pondération existants. Ils utilisent l’inférence bayésienne afin d’intégrer l’incertitude des
paramètres aux prédictions du modèle et ils illustrent les méthodes proposées avec des données provenant
de quatre comtés américains.

1. INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes the
coronavirus disease 2019 (COVID-19), is thought to spread mainly through close contact
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through the respiratory route (CDC, 2020a). In March 2020, the number of cases began to
increase at alarming rates, as did the number of hospitalizations and deaths. The COVID-19
outbreak has been declared a global public health emergency. Predicting the evolution of the
pandemic is important for short-term planning and for policy-making to slow the spread of
COVID-19. In March 2020, American states and territories began widely implementing various
executive “stay-at-home” orders to mitigate the risk of virus transmission. The extent to which
people comply with those orders (i.e., reduce population movement) may meaningfully impact
the number of confirmed COVID-19 cases and may be useful in refining short-term forecasts.

Forecasting COVID-19 cases has attracted considerable attention among researchers and has
been accomplished using a variety of forecasting techniques and data sources. Among related
studies, susceptible-infected-recovered-dead (SIRD) and autoregressive integrated moving aver-
age (ARIMA) models have been widely used (e.g., Anastassopoulou et al., 2020; Benvenuto
et al., 2020; Fanelli & Piazza, 2020; Yonar et al., 2020; Yousaf et al., 2020). However, none
have incorporated population mobility into prediction and instead have focused only on point
forecasts, that is, without an uncertainty interval attached to forecasts. Some authors have taken
account of the effect of “social distance” on the dynamics of COVID-19. For example, Zhang,
Ma & Wang (2020) incorporated government intervention factors (e.g., stay-at-home orders,
lockdowns, and quarantines) through binary, segmented time windows into a segmented Poisson
model to identify the time of the peak in the daily number of new cases and predict the spread of
COVID-19. Chiang, Liu & Mohler (2021) used Hawkes processes and mobility data to model
COVID-19 transmission in the United States and estimated its dynamic reproductive number;
however, the model’s confidence intervals for out-of-sample projections failed to cover the
reported number of cases. In the literature, the majority of works do not take into account
week and/or day-of-the-week effects, or lagged effects. Celani & Giudici (2021) proposed an
endemic–epidemic (EE) model with a negative binomial distribution to understand the temporal
and spatial contagion dynamics of COVID-19 in Italy. The authors’ approach was motivated
by policy containment measures that limit social mobility but overlooked the lagged effects of
population mobility and the day of the week. Grimée et al. (2022) incorporated weekend effects
into an EE model using shifted Poisson weights and maximum likelihood estimation. The authors
included mobility data in the matrix of between-area weights but not in the autoregressive rate.

EE models (Held, Höhle & Hofmann, 2005) are autoregressive count time series models
designed to account for both endemic and epidemic contributions to infectious disease incidence.
Broadly, in these models, the expected number of new cases is a weighted sum of the number
of previous cases multiplied by an autoregressive rate, known as the epidemic component, plus
an endemic component that accounts for other contributions to incidence, such as imported
infections. Bauer & Wakefield (2018) showed that if the serial interval corresponds to one time
step, the autoregressive rate can be interpreted as the local effective reproductive number, which
is the average number of secondary infections produced by a single infectious individual in a
population made up of both susceptible and nonsusceptible hosts (Cori et al., 2013). However,
the authors implicitly assumed that there is no under-reporting or reporting delay. The presence
of either can lead to important differences between the autoregressive rate and the effective
reproductive number (Gostic et al., 2020; Bracher & Held, 2021), which means that EE models
need to be interpreted with some care.

The EE framework may serve as a useful basis for performing COVID-19 forecasting
that is able to incorporate and quantify the influence of population mobility on the spread of
COVID-19. We focus on predicting the dynamics of the total number of reported infections in
four counties in the United States: Hennepin, MN; King, WA; New York, NY; and Miami-Dade,
FL. Washington was the first US state to announce a confirmed case and death. By mid-March
2020, Washington had the highest absolute number of confirmed cases and the highest number
of confirmed cases per capita of any state in the United States (Perlstein, 2020) until it was
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surpassed on April 10, 2020 by New York state, which quickly became an epicentre of the
pandemic. By April 10, New York had more confirmed cases than any other country outside of
the United States (Dzhanova, 2020). From June to September, Florida saw a surge in coronavirus
cases and Miami was declared a new high-case region of the pandemic. For this reason, we
select three populous counties, King, New York, and Miami-Dade, from three states along the
East and West Coasts for our analysis. We further select another populous Midwestern county,
Hennepin, to compare the temporal evolution of COVID-19 in different geographic locations.

There is a growing body of literature extending the EE framework (see, Paul, Held
& Toschke, 2008; Held & Paul, 2012; Meyer & Held, 2014; Meyer & Held, 2017). We
build on the most recent development from Bracher & Held (2022), which extended the EE
framework to include multiple lags of the case counts. We focus on forecasting new daily
reported cases of COVID-19 by extending the EE framework through a Bayesian inference
procedure. In particular, we use Markov chain Monte Carlo methods to obtain samples from
the resultant posterior distribution. Previous applications of the Bracher & Held (2022) EE
model used frequentist inference and prediction that did not incorporate parameter uncertainty
into forecasting. Additionally, previous weighting schemes for past case counts have not been
very flexible, either allowing for only a decay in the weights or leading to weights that are
very concentrated around their mean. Therefore, in this work, we introduce shifted negative
binomial weights for the past case counts, which provide a more flexible weighting scheme
than in Bracher & Held (2022) and include their shifted Poisson and geometric weights as
special cases.

In order to incorporate mobility data into EE forecasts, we model the autoregressive rate
as a function of lagged values of the proportion of individuals staying at home, as determined
by mobile device location data, using distributed-lag models (DLMs) (Gasparrini, Armstrong &
Kenward, 2010). This is motivated by the hypothesis that less time spent at home will result in
more secondary infections and that, in turn, this effect will be lagged due to delays in diagnosis
and reporting. As population mobility (i.e., the stay-at-home rate) might not capture all of the
variability in the autoregressive rate across time, we also include day-of-the-week effects and a
first-order random walk term that evolves at the weekly level.

This article is structured as follows. Section 2 proposes the model framework. Section 3
describes the data sources and presents the model specification and the results. We conclude
with a discussion in Section 4.

2. METHODOLOGY

2.1. Endemic–Epidemic Model
Let yt be the reported COVID-19 case count on day t for t = p + 1,… ,T , where p is the number
of lags and is fixed a priori. Let y(t−1)∶(t−p) = (yt−1,… , yt−p)⊤ be lagged values of the case counts.
We model yt as following a negative binomial distribution, that is,

yt | y(t−1)∶(t−p);𝜽, r ∼ NegBin
(
ut
(
y(t−1)∶(t−p),𝜽

)
, r
)
, (1)

where ut
(
y(t−1)∶(t−p),𝜽

)
is a positive function of lagged values of the outcome, 𝜽 is a vector

of model parameters that we will introduce shortly, and r is an overdispersion parameter
such that V

(
yt | y(t−1)∶(t−p);𝜽, r

)
= ut

(
y(t−1)∶(t−p),𝜽

) (
1 + ut

(
y(t−1)∶(t−p),𝜽

)
∕r
)
. We will drop

the arguments of the function ut(⋅, ⋅) from this point on to simplify notation. We use a model for
daily counts and not a model for weekly counts as the latter can only forecast the total number of
cases in the next week and not their distribution throughout the week, which may be of interest.
For example, policymakers may wish to know if cases will likely increase or decrease throughout
the next week.
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We use an EE specification for ut (Bracher & Held, 2022),

ut = vt + 𝜙t

p∑

d=1

⌊𝜔d⌋yt−d, (2)

where the weight ⌊𝜔d⌋ = 𝜔d∕
∑p

c=1𝜔c is normalized and restricted to be positive, vt is the
endemic component of the model, and 𝜙t > 0 is the autoregressive rate of the disease. The
weight ⌊𝜔d⌋ represents a relative contribution of past cases to current incidence. Bracher &
Held (2022) considered geometric and shifted Poisson weights. However, these weights offer
little flexibility: geometric weights only permit a decay with the lags and force the largest weight
to be placed at a lag of one (Bracher & Held, 2022), while shifted Poisson weights are highly
concentrated around their mean. When considering weekly data, like in Bracher & Held (2022),
decaying weights may be reasonable when the average serial interval is less than 1 week, such as
with COVID-19 (Nishiura, Linton & Akhmetzhanov, 2020). However, with daily data, a more
flexible weighting scheme should be considered. Therefore, we propose the shifted negative
binomial weights

𝜔d =
Γ(d − 1 + q)
(d − 1)!Γ(q)

(1 − 𝜅)q𝜅d−1
, (3)

for d = 1,… ,p, where 0 < 𝜅 < 1 and q > 0 are parameters to be estimated.
Shifted negative binomial weights allow the most weight to be placed at lags greater than

one and are more flexible than shifted Poisson weights. In fact, both the geometric weights
and the shifted Poisson weights of Bracher & Held (2022) are special cases of Equation (3).
Geometric weights arise when q = 1 and the shifted Poisson weights arise when q grows large.
However, we consider a truncated distribution for the weights and find that there can be large
relative differences in the tails of the Poisson and negative binomial distributions even when q
is large. By the properties of the negative binomial distribution, if q ≤ 1, then the weights will
have a mode at d = 1 and decay with increasing lags. However, if q > 1, then the weights may
either have a mode at ⌊𝜅(q − 1)∕(1 − 𝜅)⌋ + 1, if ⌊𝜅(q − 1)∕(1 − 𝜅)⌋ + 1 is less than p, or at p
if ⌊𝜅(q − 1)∕(1 − 𝜅)⌋ + 1 is greater than p. The first scenario represents weights concentrated
around some central lag, which describes the serial interval distribution of COVID-19 (Nishiura,
Linton & Akhmetzhanov, 2020) that is thought to be centred around 3–5 days. The second
scenario represents increasing weights, which could arise from strong cyclical patterns in the
case counts. Bracher & Held (2022) also considered unrestricted weights, which would involve
adding p parameters to the model, versus two parameters for the restricted shifted negative
binomial weights. As we consider p = 7, p = 14, and p = 21 and have relatively short time
series, we prefer restricted weights as unrestricted weights could lead to overfitting or model
instability.

The endemic component vt in Equation (2) represents infection not due to local sources (e.g.,
imported infections) and can also account for differences in reporting across time. Following
Bracher & Held (2022), we model vt as a log-linear function of fixed effects (𝜁0, 𝜻)⊤ and temporal
covariates zt, i.e.,

log vt = 𝜁0 + z⊤t 𝜻 . (4)

2.2. Autoregressive Rate
The autoregressive rate 𝜙t is a multiplier on the weighted previous daily cases at time t.
We assume that 𝜙t is affected by lagged versions of the stay-at-home rate. The rationale is
that population mobility can increase human interaction, which raises the risk of COVID-19
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transmission. Additionally, due to delays between infection, diagnosis, and reporting, the current
number of reported cases reflects transmission events from some time in the past. Therefore, the
effect of changes in population mobility on reported case counts should be lagged to account for
the delay from infection to observation. We also assume that a mobile device was brought every
time an (anonymized) individual made a trip.

We propose using the DLM to characterize 𝜙t. This allows the effect of the stay-at-home
rate to be distributed over a specific period of time, with certain coefficients describing each
lag’s contribution. However, due to high correlation between lags in adjacent days, simply using
a linear combination of those lags would result in collinearity and poor precision (Zanobetti
et al., 2002; Gasparrini, Armstrong & Kenward, 2010). We therefore propose extending the EE
model from Bracher & Held (2022) by adding constraints to the distributed lags, such as by
imposing a smooth curve via polynomial functions or splines, to gain more precision.

Let st denote the stay-at-home rate for day t. In the presence of delayed effects, we propose
modelling the autoregressive rate 𝜙t at a given day t using a DLM in terms of past values of
s (e.g., st−l, where l is the lag representing the days between a past stay-at-home rate and the
outcome 𝜙t). In matrix notation, with fixed L lags of the stay-at-home rate, we assume that

log(𝜙t) = wweek(t) + x⊤t 𝜸 + s⊤t⋅C𝜼, (5)

where xt is a vector of temporal covariates that are separate from the stay-at-home rate, 𝜸 is a
vector of fixed effects, and st⋅ = (st−L0

, st−L0−1,… , st−L)⊤, where L0 defines the minimum lag
and L defines the maximum lag, with L ≥ 1, L0 ≤ L, and L0,L ∈ {0, 1,…}. Here, st⋅ can be
interpreted as a set of stay-at-home rate histories at lags over the lag period from L0 to L; the lag
length is L − L0 + 1. The unknown parameter vector 𝜼 is associated with basis variables for the
lag vector st⋅ and has a length of h, and C is a (L − L0 + 1) × h matrix of basis variables derived
from the application of a specific function to the lag vector st⋅. For example, if C = 1 (i.e., a vector
of ones), Equation (5) is a moving average model and if C is the (L − L0 + 1) × (L − L0 + 1)
identity matrix, Equation (5) describes a simple linear model. The matrix C could also be defined
through a polynomial or spline function to describe a nonlinear curve across lags. The effect 𝜷
of the lags is represented as 𝜷 = C𝜼. The choice of C can be viewed as applying a constraint to
the shape of the distributed-lag curve described by 𝜷 (Gasparrini, Armstrong & Kenward, 2010).
Under Equation (5), 𝜙t > 0 and, therefore, ut in Equation (2) is always strictly positive.

The component wweek(t), where week(t) is the week number corresponding to time t, is a time
trend that evolves at the weekly level. The weeks are measured from Monday to Sunday starting
from week(p + 1). We assume that wweek(t) follows a first-order random walk so that

wweek |wweek−1 ∼ N
(
wweek−1, 𝜎

2
w

)
, (6)

where 𝜎w is a standard deviation that needs to be estimated. Bracher & Held (2022) did not
include a random walk and thus assumed that all variability in the autoregressive rate over time
can be captured by the covariates. The situation around COVID-19 is quite volatile and can
change quickly in unexpected ways due to changes in policy, viral variants, and so on; thus,
we include the random walk to capture weekly variability in the autoregressive rate that is not
explained by the stay-at-home rate or xt. We include a random walk in 𝜙t and not vt as the
endemic component of the EE model typically only accounts for a very small share of the overall
incidence (Bauer & Wakefield, 2018).

2.3. Epidemiological Interpretation of the Parameters
If we assume that yt is the true number of new infections at time t and that individuals are
negligibly infectious after p days, then 𝜙t can be interpreted as the effective reproductive
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number and the ⌊𝜔d⌋s can be interpreted as the serial interval distribution of the disease or the
distribution of the time between when an infector and an infectee develop symptoms (Quick, Dey
& Lin, 2021). However, in practice, the actual number of daily infections is not fully observable.
Instead, the reported number of cases is subject to reporting delay and under-reporting. Due
to reporting delay, we would expect the autoregressive rate to reflect transmission events from
further in the past compared with events that impact the effective reproductive number. This
should be considered when choosing the lags for the mobility data in Equation (5). Additionally,
under-reporting will have the effect of biasing the autoregressive rate towards zero relative to the
effective reproductive number (Bracher & Held, 2021). Furthermore, changes to reporting, such
as in testing eligibility, interest, or availability, could affect the autoregressive rate, while we
would not expect these changes to impact the effective reproductive number. For example, an
increase in testing availability could lead to an increase in the autoregressive rate even if there is
no change in the amount of interaction between individuals. Finally, the weight ⌊𝜔d⌋ will reflect
both the serial interval distribution and different effects of reporting.

The above differences should be accounted for in model building, such as with the DLM
in Equation (5) or through xt and zt. One needs to be careful to not overinterpret the results
of the EE model. Explicitly accounting for reporting delay and under-reporting is the subject
of ongoing research, and there are several challenges in and limitations with existing methods
(Bracher & Held, 2021; Quick, Dey & Lin, 2021), a point we return to in the discussion.

2.4. Inference Procedure
Let 𝜽 represent the vector of all model parameters specifying ut

(
i.e., 𝜽 =

(
𝜅, q, 𝜻T

, 𝜸
T
,𝜷

T
,

wweek(p+1)−1, wweek(p+1),… ,wweek(T), 𝜎w
)
⊤
)

and let y = (yp+1,… , yT )⊤ be the vector of case
counts starting after the first lag p. The likelihood function is

p(y |𝜽, r) =
T∏

t=p+1

p(yt | y(t−1)∶(t−p),𝜽, r),

where p(yt | y(t−1)∶(t−p),𝜽, r) is the probability function associated with the negative binomial
distribution specified in (1). We take a Bayesian approach so that all uncertainty in the estimation
of the parameters is accounted for in the prediction of COVID-19 cases for future instants of time.
In contrast, the frequentist approach in Bracher & Held (2022) relies on plug-in forecasts, that is,
forecasts with the estimated parameters plugged in, and therefore does not account for parameter
uncertainty that will in turn affect forecasting precision (see Chapter 16.2 in Pawitan (2001), for
example).

By Bayes’ theorem, the posterior distribution p(𝜽, r | y) of (𝜽, r)⊤ is proportional to
p(y |𝜽, r)p(𝜽, r), where p(𝜽, r) is the prior distribution of (𝜽, r)⊤. Because we have a hierarchical
structure in our model, the prior factors as,

p(𝜽, r) =

(
week(T)∏

week=week(p+1)
p(wweek |wweek−1, 𝜎w)

)

p(wweek(p+1)−1)p(𝜎w)p(𝜅, q, 𝜻 , 𝜸,𝜷).

We assign normal priors with means of zero and variances of 100 to all unbounded parameters.
In order to avoid overfitting in the random walk, we assign a half-Cauchy prior distribution
with a mode at zero to 𝜎w. The Poisson distribution is a special case of the negative binomial
distribution where r = ∞. Therefore, in order to penalize the complexity of the model, we assign
a half-Cauchy prior distribution to 1∕r, which gives a reasonable prior probability close to the
Poisson model. Note that exp(𝜁0) represents the rate of imported cases per day at a baseline of
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the covariates. The posterior of 𝜁0 often has a long, flat tail from which it is difficult to sample.
Therefore, we use the slightly informative prior distribution 𝜁0 ∼ Unif(−2, 50), which represents
a lower bound of one case imported every 10 days – a reasonable lower bound for a large county.

Some care is needed when specifying prior distributions for q and 𝜅. Figure 1 (bottom)
shows that using a gamma(0.1, 0.1) prior distribution for q and a uniform prior distribution for 𝜅
leads to quite an informative prior distribution for the shifted negative binomial weights, where
very little prior probability is put on the weights for moderate lags. Therefore, we use a mixture
uniform prior distribution for q,

p(q) = 1
p

I[0 < q < 1] +
p − 2

p(p − 1)
I[1 < q < p] + 1

p(Lmax − p)
I[p < q < Lmax],

where p is the maximum lag, Lmax is the upper bound of the final uniform distribution of the
mixture, and I[⋅] is an indicator function. Based on the discussion of the properties of the shifted
negative binomial weights in Section 2.1, the mixture uniform prior distribution for q places
equal prior probability on the following three scenarios: the weights are decreasing; the weights
have a mode between lags 1 and p; and the weights are increasing. Empirically, it appears that
a larger Lmax leads to more prior probability being placed on the weight for the last lag. As we
believe the weights should decay to zero over time, we use Lmax = 10 for p = 7, Lmax = 18 for
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FIGURE 1: The left plots show the prior distribution for q under a mixture uniform prior distribution with
p = 7 and Lmax = 10 (top), and a gamma(0.1, 0.1) prior (bottom). The right plots show the resulting prior
means of the shifted negative binomial weights ⌊𝜔d⌋ for d = 1 (lag 1) to d = 7 (lag 7), where we assume
that 𝜅 follows a uniform prior distribution on (0,1). The horizontal lines in the right plots are drawn at 1∕7,

which represents a uniform prior distribution on the weights.
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p = 14, and Lmax = 27 for p = 21, which keeps the value of Lmax close to p. Figure 1 shows
that the mixture uniform prior distribution for q leads to a much more uniform prior distribution
for ⌊𝜔d⌋ compared with the gamma prior distribution. Therefore, the mixture uniform prior
distribution is preferable to the gamma prior distribution as it is less informative regarding the
weights.

As the posterior distribution p(𝜽, r | y) has no closed form, we use Markov chain Monte
Carlo (MCMC) methods to obtain samples from the posterior distribution. More specifically,
we use the R package Nimble (de Valpine et al., 2017), which relies on a Gibbs sampler
with some steps of the Metropolis–Hastings and other sampling algorithms, to draw from the
joint posterior distribution. Parameters that show high posterior correlations, such as q and 𝜅,
are sampled in blocks using automated factor slice sampling, which greatly improves mixing
(Tibbits et al., 2014). Parameters that mix slowly but whose posterior distributions are not
highly correlated are sampled using univariate slice sampling (Neal, 2003). We use Nimble as it
accommodates custom distributions and can therefore easily accommodate our proposed mixture
uniform prior distribution for q. The Nimble code used to fit the model and the data are available
on Github (https://github.com/Dirk-Douwes-Schultz/extended_bayesian_EE_mobility).

2.5. Temporal Predictions
From a Bayesian point of view, predictions for future instants in time are obtained through the
posterior predictive distribution, which naturally accounts for the uncertainty in the estimation
of the parameter vector 𝜽. Here the goal is to obtain K-step ahead forecasts of the number of
cases. In this case, the posterior predictive distribution, p(yT+K | y), is

p(yT+K | y) =
∫

p
(
yT+K | yT+K−1,… , yT+K−p,𝜽, r,wweek(T+K)

)

× p
(
yT+K−1 | yT+K−2,… , yT+K−p−1,𝜽, r,wweek(T+K−1)

)

× · · · × p
(
yT+1 | yT ,… , yT+1−p,𝜽, r,wweek(T+1)

)

×
week(T+K)∏

week=week(T)+1

p
(
wweek |wweek−1, 𝜎w

)

× p(𝜽, r | y) dyT+K−1 · · · dyT+1d𝜽drdwweek(T)+1 · · · dwweek(T+K).

The above integral can be approximated through Monte Carlo integration: once a sample
from the posterior distribution of the parameters is available, we have that

p(yT+K | y)

≈ 1
Q −M

Q∑

m=M+1

p
(

yT+K | y[m]T+K−1,… , y[m]T+K−p,𝜽
[m]

, r[m],w[m]week(T+K)

)

, (7)

where the superscript [m] denotes a draw from the posterior distribution of the variable, M is the
size of the burn-in sample, Q is the total MCMC sample size, and y[m]t = yt when t ≤ T .

In practice, once a sample from the posterior distribution of the parameter vector is available,
we use composition sampling to draw samples from the posterior predictive distributions. The
sampling algorithm is described in Algorithm 1. For k = 1,… ,K, Algorithm 1 obtains realizations
from the resultant posterior predictive distribution p(yT+k | y). The prediction procedure requires
sT+K⋅ = (sT+K−L0

, sT+K−L0−1,… , sT+K−L)⊤, so that we must have K = L0. In our applications,
we considered L0 = 7 to predict cases in the next week using mobility data from the current and
previous weeks.
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Algorithm 1. Posterior predictive simulation

for m in M + 1 ∶ Q do
for week in (week(T) + 1) ∶ week(T + K) do

draw w[m]week from p
(
wweek ∣ w[m]week−1, 𝜎

[m]
w

)

end
for k in 1 ∶ K do

draw y[m]T+k from

p
(

yT+k ∣ y[m]T+k−1, ..., y
[m]
T+k−p,𝜽

[m]
, r[m],w[m]week(T+k)

)

, where

y[m]t = yt for t ≤ T

end
end

2.6. Model Comparison
To compare two models within the sample period, we use the Watanabe–Akaike information
criteria (WAIC) (Gelman, Hwang & Vehtari, 2014). The model with the lowest WAIC is
considered to have the best fit and, generally, a difference of five or more in the WAIC
is considered meaningful. However, the WAIC is only an approximation of out-of-sample
prediction error and might not accurately select the correct model. Similar to Bracher &
Held (2022), to compare models out of sample, we use proper scoring rules (Gneiting &
Raftery, 2007) approximated by draws from the posterior predictive distributions. Suppose that
the model is fit using data up to time T . The logarithmic score for the kth-step-ahead prediction is

LSTk = −log
(

p(y(obs)
T+k | y)

)

,

where y(obs)
T+k is the observed future value and p(y(obs)

T+k | y) is approximated by Equation (7) using
draws from the posterior predictive distributions generated by Algorithm 1. The score is averaged
across multiple time points to compute the comparison criterion

LSk =
1

Tu − Tl + 1

Tu∑

T=Tl

LSTk,

where Tu and Tl denote the upper and lower bounds for T . The model with the lowest LSk
is considered the best at k-step ahead prediction (Bracher & Held, 2022). Because a model
may perform better in short-term prediction but worse in long-term prediction, LSk should be
computed for a wide range of k. The initial time point Tl should be big enough so that all models
being compared can produce stable estimates and Tu should be big enough to reduce random error.

3. DATA ANALYSIS

3.1. Data Description
We select four large counties in the United States for analysis: Hennepin, MN; King, WA; New
York, NY; and Miami-Dade, FL. The USAFacts (https://usafacts.org) COVID-19 time series
data are gathered from the Centers for Disease Control and Prevention (CDC) and state- and
local-level public health agencies. County-level data are confirmed by referencing state and local
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agencies directly. Hennepin, New York, and Miami-Dade counties’ time series data are directly
retrieved from the USAFacts website. For King county, county-level data from USAFacts are
incomplete and inaccurately include negative numbers of daily new cases. Therefore, we collect
King county time series data from the local public health department website (https://www
.kingcounty.gov/depts/health.aspx). Cases, deaths, and per capita adjustments reflect cumulative
totals since January 22, 2020. Confirmed daily cases are based on the date of report from January
2020 to January 2021. Data on the daily percentage of people staying at home are obtained from
the Bureau of Transportation Statistics (BTS) and are estimated by the Maryland Transportation
Institute and Center for Advanced Transportation Technology Laboratory at the University of
Maryland. Daily travel estimates are from a mobile device data panel from multiple data sources
that address geographic and temporal sample variation. The data only include mobile devices
whose anonymized location data meet a set of data quality standards, which further ensures the
overall quality and consistency of the data. These quality standards consider both the temporal
frequency and spatial accuracy of anonymized location point observations, temporal coverage
and representativeness at the device level, and spatial representativeness at the sample and county
levels. A multilevel weighting method that employs both device- and trip-level weights is applied
before travel statistics are computed, so the results are representative of the entire population in
a nation, state, or county (Bureau of Transportation Statistics, 2020).

In the observed data, there are a small number of days with zero daily cases after the
emergence date, which we posit is likely due to under-reporting or delayed reporting. We
redistributed cases around days with zero reported cases by averaging the most recent 5 days
ahead and then rounding to ensure that the number of cases remains integer-valued. Specifically,
the average of the 5 days ahead of days with zero daily cases are deducted proportionally from
these 5 days. The emergence date of COVID-19 is set as the time of the number of first nonzero
cases for each county. Data from the 260 days (i.e., about 37 weeks) after the emergence date are
used to fit a model for Hennepin, New York, and Miami-Dade, while 320 days (about 46 weeks)
are used for King county. More days were chosen for King county because that data, collected
from the local public health agency, are expected to have higher accuracy (CDC, 2020c). The
number of new cases reported to the CDC each day fluctuates. There is generally less reporting
during the holidays (e.g., Christmas) and more volatility from December 2020 to January 2021.
The end date for each time series is chosen as the most recent time at which the time series is
relatively stable (e.g., without containing a sequence of zeros).

The outcome of interest is the daily number of new, confirmed COVID-19 cases. The
covariates are lagged daily case counts and lagged daily stay-at-home rates in each of the four
counties. The primary aim of our analysis is to forecast the autoregressive rate and the number
of new daily cases seven days ahead.

3.2. Model Specification and Fitting
The model in Equation (2) represents a general form with many possible specifications. For
each model specification considered in this section, we run 100,000 MCMC iterations with three
chains, each started from different points in the parameter space and each with a burn-in of
10,000 iterations. Convergence was checked using the Gelman–Rubin statistic (with an upper
bound of 1.05 for all estimated parameters), the minimum effective sample size (with a lower
bound of 1000), and trace plots (Plummer et al., 2006).

As there can be considerable variation in COVID-19 case counts across different days of
the week (Grimée et al., 2022), we assume that zt in Equation (4) and xt in Equation (5) are
composed of day-of-the-week indicators. Having an indicator for each day of the week in both zt
and xt would add 12 parameters to the model, which is not small considering that our time series
have lengths of 260 and 320. Therefore, we reduce the number of parameters associated with the
day-of-the-week effects by fitting a model with full effects and then combining effects that are
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TABLE 1: WAIC of the fitted EE models with different stay-at-home lag and weighting settings for each
county.

Shifted NB weights, lags of stay-at-home rate at time t (st⋅)

County

Shifted Poisson

weights None st st−7 (st−7,… , st−14)⊤ (st−7,… , st−21)⊤

Hennepin 2883 2907 2884 2883 2873 2880

King 3157 3165 3161 3165 3151 3161

New York 2577 2573 2575 2550 2558 2558

Miami-Dade 3479 3464 3465 3464 3464 3458

Note: The best model with the lowest WAIC for each county is underlined. As the model with shifted Poisson weights
consistently fit more poorly than those with the shifted negative binomial weights, WAICs were computed for models
with Poisson weights that correspond to the best-fitting (underlined) models with negative binomial (NB) weights model.
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FIGURE 2: Mean log scores across forecast horizon (days) for King county. “RW” stands for the model
with a weekly random walk effect. “Covariate” indicates the inclusion of the stay-at-home rate DLM in the

autoregressive rate.

very similar and dropping insignificant effects. The other model specifications are determined by
an initial version of Table 1 calculated without day-of-the-week effects. We then choose between
the model with the reduced day-of-the-week effects and the model with no day-of-the-week
effects using the WAIC. Based on this process, we include only a Monday indicator in xt only
for Miami-Dade, King, and New York counties, and a combined indicator of Monday and Friday
in zt only for Hennepin county.

The log score represents the performance of the model as if it were fit each day and used
to forecast a week ahead, as described in Section 2.6. This is how we would expect the model
to be used in practice, and, therefore, the log score is a useful tool for comparing models in
this application. However, it is very computationally intensive to compute the log score, so we
use the log score with the King county data to test the effectiveness of the random walk and
the addition of the stay-at-home rate through the DLM. Figure 2 shows the mean log scores for
each forecast horizon (i.e., 1,… , 7 days ahead) for the four models for the King county data.
We compare a model that includes both the random walk and the stay-at-home rate DLM with
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models that use exactly one or none of these components. For the DLM model, we choose a
minimum lag of L0 = 7 and a maximum lag of L = 14, as suggested by the WAIC (see Table 1).
The lag of the case counts p in Equation (2) is set to 7 days for all models compared. We choose
Tl = 100 and Tu = 320 for computing the mean log scores, which results in 221 fitted models
for each specification (for 884 total models). From Figure 2, the random walk clearly improves
forecasting performance at all horizons, especially when forecasting the first 5 days ahead.
Because the random walk also provides a more accurate historical estimate of the autoregressive
rate, we include the random walk component in the model for New York and Miami-Dade
counties. The random walk component is not considered in the model for Hennepin county as
the estimate of 𝜎w in (6) is approximately zero, which indicates no significant week effects and
the WAICs with and without the random walk appear to be the same. There is uncertain evidence
regarding the effectiveness of the stay-at-home rate DLM, based on the log score. For this reason,
we use the WAIC to decide whether to include the DLM in the model for each county and to
make decisions regarding other model specifications. We describe this process in more detail
below.

First, we compare models with p = 7, p = 14, and p = 21 and find no significant difference
in the WAIC for any county. Therefore, we use p = 7 for all counties as it allows the most
data to be incorporated into the fitting. Table 1 gives some results of the model comparisons,
specifically for determining the optimal lags in the DLM of the stay-at-home rate and for
determining the optimal weighting scheme for past counts. We compared the shifted Poisson and
shifted negative binomial weights and find the shifted negative binomial weights significantly
improve the fit for all counties. We use a natural cubic spline for the basis matrix for the
stay-at-home rate in Equation (5). For each county, we concentrate on four variants of Equation
(5) that differ in st⋅ = (st−L0

, st−L0−1,… , st−L)⊤. According to the CDC, the incubation period
of COVID-19 is thought to extend to 14 days, with a median time of 4–5 days from exposure
to symptom onset (CDC, 2020b). Many categories of tests are used to detect COVID-19: some
tests (e.g., antigen tests) provide results within minutes, while others (e.g., laboratory-based
tests) require time for processing and may result in diagnostic delays due to the processing
time and return times. For example, most nucleic acid amplification tests (NAATs) need
to be processed in a laboratory and it may take 1–3 days for results to become available
(CDC, 2021). According to an analysis of national survey data conducted by researchers at
Northeastern University, Harvard University, Rutgers University, and Northwestern University,
the average turnaround time for receiving COVID-19 test results dropped from 4.0 days (with
a median of 3.0 days) in April 2020 to 2.7 days (with a median of 2.0 days) in September
2020 (Chwe et al., 2021). Considering the incubation period and delays in diagnosis and
reporting, the observed number of cases yt informs transmission some time before t. Therefore,
it is reasonable to assume that 𝜙t is affected by lags of population mobility with a minimum
lag of L0 > 0. Specifically, we compare (L0 = 0,L = 0), (L0 = 7,L = 7), (L0 = 7,L = 14), and
(L0 = 7,L = 21), and compare these to a null model that excludes the stay-at-home rate st⋅ as a
covariate.

For the four counties, we find an optimal minimum lag (L0) of 1 week for the stay-at-home
rate in the DLM model in Equation (5) and an optimal maximum lag (L) of 1 week for New York
county (i.e., only the past seventh day), 2 weeks for Hennepin and King counties, and 3 weeks
for Miami-Dade county. This means that population mobility between 1 and 2 or 3 weeks in the
past is the most relevant for determining current incidence.

3.3. Model Results
Table 2 gives the estimates of the posterior means for the best-fitting model in each county
(underlined models in Table 1), where we exclude spline coefficients as they are not informative
(see Figure 4 instead). King county has the largest overdispersion parameter while Hennepin
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county has the smallest. This reflects the different case count trajectories in these counties: cases
initially increased very quickly in King county, which led to a large amount of variability in
the case numbers. The standard deviation of the random walk term (i.e., 𝜎w in Equation (6)) for
King county is much larger than that for New York and Miami-Dade counties, indicating greater
weekly variability in the autoregressive rate for King county (see Figure 5). By examining
patterns in incidence by day of the week in all counties, we notice that Mondays often report
fewer cases than the surrounding days; the daily cases appear to rise from Monday to Friday.

TABLE 2: Posterior means and 95% posterior credible intervals (in brackets) of the parameters (excluding
spline coefficients) from the best-fitting model for each county.

Variable Hennepin King New York Miami-Dade

r in Equation (1) 5.42 (4.43, 6.59) 23.66 (19.09, 29.13) 9.13 (7.41, 11.18) 6.55 (5.44, 7.80)

𝜅 in Equation (3) 0.94 (0.73, 1.00) 0.91 (0.69, 1.00) 0.88 (0.51, 1.00) 0.65 (0.24, 0.98)

q in Equation (3) 0.57 (0.37, 1.03) 7.59 (4.71, 9.90) 0.80 (0.45, 2.00) 1.95 (0.77, 7.02)

𝜎w in Equation (6) - 0.23 (0.17, 0.32) 0.09 (0.04, 0.17) 0.05 (0.01, 0.12)

𝜁0 in Equation (4) −0.26 (−1.90, 1.45) 3.19 (2.82, 3.45) 0.65 (−1.83, 2.22) 1.22 (−1.83, 3.46)

zt in Equation (4)
(Monday and Friday)

2.67 (0.86, 4.46) - - -

xt in Equation (5)
(Monday)

- −0.34 (−0.46, −0.23) −0.26 (−4.0, −0.12) −0.32 (−0.47, −0.17)
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FIGURE 3: Posterior summaries (where solid circles and line segments denote posterior means and 95%
credible intervals, respectively) of normalized weights ⌊𝜔d⌋ from the EE models with optimal stay-at-home

rate lags.
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New York County Miami−Dade County
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FIGURE 4: Lag-specific effects. Posterior summary of the autoregressive rate ratio (RR) for every 10%
increase in the proportion of the population staying at home, as measured by mobility data (i.e., for a 0.1-unit
increase in stay-at-home rate, 0.1 × 𝜷 = 0.1 × C𝜼 in Equation (5)) with 95% posterior credible intervals.

This day-of-week pattern is consistent with the findings in Slater, Brown & Rosenthal (2021),
which observed lower deaths on Sundays and Mondays. However, the day-of-week pattern tends
to differ among counties. The estimated Monday and Friday effect zt in the endemic component
and the estimated Monday effects xt in the epidemic component are summarized in Table 2.
In Hennepin county, Monday and Friday have more infections not due to local sources (e.g.,
imported cases). In King, New York, and Miami-Dade counties, Monday appears to have a lower
autoregressive rate (and therefore fewer cases) than the other days.

Figure 3 plots the posterior weights, given by ⌊𝜔d⌋ in Equation (3), for the optimal EE model
with shifted NB weights for Hennepin, King, New York, and Miami-Dade counties, including
95% posterior credible intervals for the estimated weights. Hennepin and New York counties
display similar monotonically decaying curves, and Miami-Dade county presents a concave
curve with a maximum at lag two; larger lags show lower weights, which suggests that the
further from the current time, the less the forecasting power of previous daily reported cases
is. On the contrary, King county displays a monotonically increasing curve that has the first
four estimated weights close to zero, suggesting that daily reported cases for the past 1–4 days
do not provide information for forecasting current case counts: this explains the weekly pattern
of daily reported cases shown in Figure 6. Note that geometric weights would not be able
to reveal an increase in the weights such as those observed in King county. When fitting the
model with p = 14 and p = 21 in King county, we also observed most of the weight being put
on the last lag, but with a significant increase in the WAIC. Therefore, this phenomenon of
the most weight being estimated on the last lag in King county appears to be due to strong
weekly patterns and not due to a need to increase p. The 95% posterior credible intervals show
a non-monotonic pattern. For Hennepin, New York, and Miami-Dade counties, the first lag has
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the largest posterior credible interval and the narrowest interval appears around the middle of the
lags. In contrast, for King county, the largest posterior credible interval appears in the last lag.
The serial interval distribution of COVID-19 is thought to have a mode at 3–5 days (Nishiura,
Linton & Akhmetzhanov, 2020). Our weighting scheme does allow for this but instead estimated
a constant decaying, concave or increasing pattern in the weights. This could be explained by
the fact that our data (reported cases) are the result of a complex process that not only involves
new infections but also variable diagnosis delays and changing testing eligibility and reporting
procedures.

The lag-specific figure (Figure 4) shows the estimated autoregressive rate ratios for the
stay-at-home rate at the optimal lags for the four counties. The overall significant lag effects
of stay-at-home rate on daily cases are negative, while specific lag effects tend to be different.
This supports the assumption that more travel outside the home increases the risk of COVID-19
infection. The relationship between the stay-at-home rate and the autoregressive rate 𝜙t seems
to change with the lag. Figure 4 confirms the delayed effects of population mobility on observed
cases: for King county, the 95% credible interval of lag 14 does not contain one, and for New
York county, the 95% credible interval of the only lag does not contain one. In the best-fitting
models selected by the WAIC, the credible interval of every lag contains one in Hennepin and
Miami-Dade counties. Figure 4 displays the posterior distributions of lag-specific effects, with
many of the lagged effects being not significant. A possible explanation is that we condition on
past values of the case counts, which may already reflect much of the information about the
stay-at-home rate.

Figure 5 shows estimated and 7-day-ahead predicted autoregressive rates (i.e., 𝜙t in Equation
(5)) over time for the optimal EE models. The average𝜙t is approximately 1.03 (range: 0.68–1.48)
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FIGURE 5: The autoregressive rate 𝜙t in Equation (5) over time with 95% posterior credible intervals from
the EE models with optimal stay-at-home rate lags. The portion of the series to the left of the vertical dashed
line shows fitted autoregressive rate values, while the series to the right of the line plots predicted values.
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FIGURE 6: Fitted values (solid lines) with 95% posterior credible intervals (shaded areas) together with
observed values (solid circles) from the EE models with optimal stay-at-home rate lags.

for Hennepin county, 0.88 (range: 0.31–1.68) for King county, 1.06 (range: 0.61–3.13) for New
York county, and 1.09 (range: 0.67–1.95) for Miami-Dade county. Though on different scales,
the two time series of autoregressive rates for King and New York display a similar trend
that starts with a large value in March, and decreases in April. The largest 𝜙t appears around
mid-March, the time when daily reported new cases increased steeply at the very beginning
of COVID-19’s emergence (see Figure 6). The autoregressive rate time series for Hennepin
county started with a low value below one, but then increased and became relatively stable
before finally going above one after October. This further explains the daily cases pattern of
Hennepin in Figure 6: daily case counts reached a small peak around May, then plateaued before
steeply increasing after October. The small 𝜙t value in late April to early May could be due
to statewide community mitigation activities, including the closure of nonessential businesses
and the issuance of orders encouraging (if not mandating) residents to stay at home. However,
changes in the autoregressive rate could also be due to changes in testing eligibility or interest as
well as changes in reporting procedures.

Figure 6 examines the time series of the fitted values together with the observed counts. The
fitted values are constructed by drawing from p(yt | y(t−1)∶(t−p),𝜽

[m]
, r[m]) for m = M + 1,… ,Q

and t = p + 1,… ,T and, therefore, represent draws from the posterior distribution of a new case
count generated by the same parameters and past counts that generated yt. Clearly, the fitted
models capture well the structure of the different time series. Figure 7 displays the predicted
values together with the actual observed counts for the following 7-day period, along with 95%
credible intervals using the distributed observed daily cases. The predicted values represent
draws from the posterior predictive distribution of future COVID-19 case counts, p(yt+k | y), and
were generated using Algorithm 1. The figures suggest that the EE model captures the daily
trend well. The good fit is even more pronounced for the 1-week ahead forecasts.
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FIGURE 7: Predicted values (solid lines) with 95% posterior credible intervals (shaded areas) from the
EE models with optimal stay-at-home rate lags. Open circles denote the observed cases left out from the

inference procedure, whereas solid circles represent the last few observations used for model fitting.

To further assess model adequacy, we plot the autocorrelation function (ACF) of the posterior
mean of the Pearson residuals (yt − ut)∕

√
ut(1 + r−1) (Bracher & Held, 2022), in each county.

There are no significant autocorrelations in any county except for New York at around 3 weeks.
However, fitting the model with p = 21 in New York does not yield a significantly better
model fit.

We also investigate the sensitivity of the model fitting to the choice of priors for r, 𝜎w,
and q in King county. Uniform priors for r and 𝜎w with large upper bounds do not change the
results noticeably. A gamma prior for q leads to a noticeably faster increase in the weights in
King county. However, the gamma prior is very informative for the weights, as discussed in
Section 2.4.

4. DISCUSSION

We extended EE time series models to include a distributed-lag model in the specification
of the autoregressive rate in order to incorporate lagged effects of mobility data into the
forecasting of daily reported COVID-19 cases. This method is based on sound epidemiological
theory about the effect of mobility on the generation of secondary cases: less time spent
at home should increase the number of secondary cases produced by the current infectious
population. This effect should be lagged due to delays between infection and diagnosis. As the
stay-at-home rate might not be able to explain all of the variability in the autoregressive rate
over time, we also included a first-order weekly random walk and/or day-of-the-week effects.
Additionally, we introduced a novel shifted negative binomial weighting scheme for past counts.
Shifted negative binomial weights are more flexible than the weights previously proposed in
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Bracher & Held (2022) and contain the shifted Poisson and geometric weights as special cases.
Our use of Bayesian inference and prediction, which has the advantage of incorporating all
uncertainty regarding unknown parameters into the forecasts, is another significant contribution
of this work. The incorporation of the DLM led to significantly better fits in Hennepin, King,
New York, and Miami-Dade counties, according to the WAIC, with stay-at-home rate at lags
of, respectively, 1 or 2–3 weeks being most predictive of current incidence. The lag was
particularly large in Miami-Dade county at 21 days while p was only seven. This could be
due to undetected cases of COVID-19 that contribute significantly to the spread of the disease.
However, in all counties, many of the lagged effects were not significant. Also, there was
no clear evidence regarding the usefulness of the DLM according to the mean log score in
King county, although the random walk greatly improves forecasting performance according
to the same measure. Therefore, we have mixed evidence overall about whether mobility data
improve forecasting performance. A possible explanation is that conditioning on past values
of the case counts may already reflect much of the information about the stay-at-home rate,
because human behaviour and government orders are often reactive to changes in cases. It
is important to note that, as we are mainly concerned with forecasting, we are not focused
on determining the causal effect of past mobility on current reported cases in this article,
but rather on using mobility to predict future cases. In light of this, one should be cautious
in interpreting this result, especially considering the complex effects of reporting bias. The
estimated autoregressive rate 𝜙t began to increase again after May, which could be the result
of increased trips: we hypothesize that this pattern is due to “COVID-19 fatigue” leading to
poorer adherence to infection mitigation strategies. However, the increase could also be due to
changes in testing interest or availability. Moreover, the random walk in 𝜙t can account for
variability in transmission rates over time from unmeasured sources, such as the potential effects
of wearing a face mask or adhering to social distancing guidelines. For example, we would
expect attenuated stay-at-home lag-specific effects with raised awareness and adherence to social
distancing guidelines.

Accounting for reporting delay and under-reporting in the estimation of the effective
reproductive number is the subject of ongoing research. There are several limitations in and
challenges with existing methods (Gostic et al., 2020; Bracher & Held, 2021; Quick, Dey &
Lin, 2021). For example, the recently proposed method in Quick, Dey & Lin (2021), while
reflecting important progress on this problem, requires the reporting delay distribution to be
known and time-invariant; requires the use of seroprevalence surveys, which might not be widely
available, to account for under-reporting; does not account for overdispersion; assumes that the
serial interval distribution is known; and introduces several latent variables for each time point t
that would greatly increase the computational complexity of a Bayesian analysis. Therefore, as
we are mainly concerned with extending recently proposed EE models (Bracher & Held, 2022)
to the Bayesian setting while incorporating a DLM for mobility data, negative binomial weights
with uninformative priors, and a random walk, we consider explicitly accounting for reporting
delay and under-reporting to be outside the scope of this article. Instead, we attempt to account
for reporting effects through covariate design, such as with the DLM in Equation (5), which
assumes a lagged effect of mobility data to account for delays between infection, diagnosis, and
reporting and with weekday effects. We try not to overinterpret the results of the model. Another
modelling decision we made was to use cross validation with proper scoring rules and/or the
WAIC to choose between different model specifications. However, a shrinkage prior, such as the
Bayesian lasso (Park & Casella, 2008), is an alternative to using proper scoring rules and/or the
WAIC when selecting covariates such as when selecting the weekday effects or the stay-at-home
rate DLM. There are advantages and disadvantages to using the lasso for covariate selection
(Heinze, Wallisch & Dunkler, 2018): investigating these for our particular setting lies outside
the scope of this article.
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This case study was motivated by the desire to incorporate population mobility into
COVID-19 forecasting. This required us to extend the EE model and propose a Bayesian
approach to estimate the unknowns of the proposed model. In our application, the proposed
models were able to capture different structures, though the mobility data might not be greatly
informative in forecasting reported COVID-19 cases for the four time series. However, these
extensions and developments of the EE model are not limited to the four selected counties
and will undoubtedly be applicable to other regions and useful in wider contexts, such as
incorporation of other covariates if not mobility data. One limitation to our approach is that our
proposed model is only univariate, while EE models are often fit in a spatio-temporal setting
where the disease is allowed to spread between areas through spatial autoregression (Bracher
& Held, 2022). A natural extension of our proposed approach could consider multiple time
series related to different counties that experienced the first wave of COVID-19 around the same
time. Then, a hierarchical Bayesian approach, wherein parameters of the model change across
counties but follow a common prior distribution, could be used. This would naturally impose a
correlation structure among the different time series and possibly provide posterior predictive
credible intervals with shorter ranges. Our model can help guide policymakers by quantifying
likely spikes in cases due to increased mobility that is picked up in nearly real time by mobile
devices.
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