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Perspectives

Chromosome Territorial Organization Drives 
Efficient Protein Complex Formation: A 
Hypothesis
Manindra Bera* and Ramalingam Venkat Kalyana Sundaram
Department of Cell Biology, Yale University School of Medicine, New Haven, CT

In eukaryotes, chromosomes often form a transcriptional kissing loop during interphase. We propose that 
these kissing loops facilitate the formation of protein complexes. mRNA transcripts from these loops 
could cluster together into phase-separated nuclear granules. Their export into the ER could be ensured by 
guided diffusion through the inter-chromatin space followed by association with nuclear baskets and export 
factors. Inside the ER, these mRNAs would form a translation hub. Juxtaposed translation of these mRNAs 
would increase the cis/trans protein complex assembly among the nascent protein chains. Eukaryotes 
might employ this pathway to increase complex formation efficiency.
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INTRODUCTION

A protein molecule has to traverse a crowded mac-
romolecular environment inside the cell to find the right 
binding partners. Stochastic diffusion in highly crowded 
environments can be an impediment for biological inter-
actions. Non-specific or semi-specific interactions are 
another major barrier to forming protein complexes at 
a specific location. In absence of a concerted transport 
mechanism, a significant percentage of proteins would be 
unable to find their binding partners. As organismal com-
plexity increased during evolution, different mechanisms 
have been employed to increase local concentration of 

binding partners such as active transport, local transla-
tion, post-translational modification to anchor onto the 
membrane and phase-separation. However, maintaining 
the local stoichiometry of the components of a complex 
was another hurdle. A variety of mechanisms were devel-
oped to overcome this hurdle.

Prokaryotes produce polycistronic mRNA and simul-
taneous translation helps the nascent chains initiate fold-
ing of the cis and/or trans complex at a very early stage. 
Conversely, in eukaryotes, mRNAs originate from differ-
ent gene loci and/or different chromosomes. Therefore, 
eukaryotes need to employ spatiotemporal regulation to 
the trafficking of both mRNA and individual protein com-
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ponents to increase the efficiency of the protein complex 
formation. Eukaryotes developed mRNA transport and 
localized translation. During evolution, they physically 
separated their genome from the cytoplasmic translation 
machinery requiring export of mRNA transcripts into the 
cytoplasm to complete their translation. In neuronal cells 
and developmental tissues, localized translation solves 
this problem [1]. Co-translation and folding of the nascent 
polypeptide chains trigger protein complex formation 
which may be an adaptive strategy of the eukaryotic cell 
[2]. It is still poorly understood how eukaryotes maintain 
the homeostasis of the protein complex formation.

In this article, a hypothesis for the efficient path-
way for protein complex formation has been proposed. 
Functionally relevant genes inside the nucleus form a 
phase-separated cluster and their transcription can be 
regulated in a concerted manner. mRNA transcripts from 
these genes can colocalize into a phase-separated gran-
ule. Export of these mRNAs can be dictated by genome 
organization which leads to the formation of a translation 
hub in the ER membrane. Co-translational protein fold-
ing and interactions among the nascent chains in these 
translation hubs may resolve the spatiotemporal barrier 
of the protein complex formation.

LIFE OF mRNA INSIDE THE NUCLEUS

Eukaryotic mRNAs are synthesized by the RNA Pol 
II as precursor mRNA and then capped at the 5’ end by 
capping enzymes. These pre-mRNAs move to interchro-
matin granule clusters for the final splicing [3]. Several 
nuclear factors form dynamic clusters such as nuclear 
speckles in the nucleoplasm which are the potential hub 
for mRNA splicing [4,5]. These speckles are phase-sep-
arated granules with sizes varying from 20 to 25 nm and 
they are interconnected by thin fibrils [6]. In mammals, 
nuclear speckles or interchromatin granule clusters con-
sist of several splicing factors including hnRNPs, sn-
RNPs, and mRNPs [7]. The sizes of these speckles vary 
from one to several microns [8]. These nuclear speckles 
are concentrated with serine and arginine (SR)-rich 
proteins [9] and their phosphorylation and dephosphor-
ylation determine the stability of the speckle formation 
[4,10]. In eukaryotes, the TREX (transcription-coupled 
export) complex associates with mRNPs and triggers the 
nuclear export [11,12]. TREX-complex physically inter-
acts with the nuclear baskets and subsequently delivers 
the mRNA into the central channels of the nuclear pore 
complex [13,14]. mRNAs are exported to the cytoplasm 
in the 5’ to 3’ orientation through the coupled actions of 
CBP20, TREX complex and ATP-dependent RNA heli-
case [11,13,15].

TERRITORIAL ORGANIZATION OF THE 
EUKARYOTIC GENOMES

In diploid nuclei, organization of the chromosomes 
inside the nucleus is non-random during interphase. This 
was first proposed by Theodor Boveri in 1909. He also 
predicted that the territorial organization of chromatins 
are stably maintained in daughter nuclei as well [16]. 
Inside the nucleus, chromosomes maintain a spatial sep-
aration between active and inactive chromatins where 
inactive heterochromatins tend to be localized near the 
nuclear periphery while actively transcribing euchromat-
ins are localized more toward the center of the nucleus 
[17,18].

These spatial organizations can further be dissected 
into large multi-Mb compartments containing open chro-
matin (A-compartments) and inactive, closed chromatin 
(B-compartments). These compartments can interact with 
similar compartments like an A-compartment can cluster 
with other A compartments [19,20]. However, these inter-
actions are dependent on specific cell types and are cell 
cycle-dependent. Gene-rich chromosome territories (CT) 
like Ch19 (human) are less compact than the gene-poor 
chromosome like Ch18 [18,21]. CTs always maintain a 
structural hierarchy of chromatin consisting of 10 and 30 
nm fibers and 60 to 130 nm chromonema fibers [22,23]. 
Folding of these chromatin fibers is still being debated. 
These chromosomal organizations regulate gene expres-
sions [24].

Through evolution, cells have also acquired several 
mechanisms to regulate gene expression. Recent advanc-
es in Hi-C techniques revealed that chromosomes can 
maintain an additional level of compaction, known as 
Topologically Associating Domain (TAD) [25-27]. From 
bacteria to humans, genomes are organized into a string 
of spatially separated domains which maintain preferen-
tial interactions. In mammals, these domains range from 
several hundred kb to 2 Mb in size, while in bacteria, they 
are about ~200 kb in size. These domains are defined as 
TADs and Chromatin Interaction Domains (CIDs) in eu-
karyotes and bacteria respectively. TADs are smaller than 
the A- or B-type compartments and mostly independent 
of the cell types [20,28] and they can facilitate transcrip-
tional regulation [20]. TADs can maintain the chromatin 
partitioning and colocalize with transcription granules 
[29].

It has also been observed that long-range interactions 
among the chromosome during transcription can also 
play an important role [30]. “Intermingling” or “kissing” 
chromosomes as non-homologous chromosomal contacts 
(NHCC) was first experimentally observed using laser UV 
microbeam by Cremer group [31,32]. These NHCCs are 
the coalescence of several chromosomes. Furthermore, 
the chromatins with high gene densities can extend into 
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the interchromosomal space or interchromatin domains 
(ICDs) from their chromosomal territories [33]. The TAD 
structure and genome organization are appropriately ex-
plained in the “loop-extrusion” model that proposes how 
the intrachromosomal interactions help to cluster distal 
regulatory regions into close 3D proximities [34]. More 
recently, the phase separation model proposed that the in-
teractions of low complexity regions of the transcription 
regulators with DNA and RNA maintain genome com-
partmentalization [35,36].

COLOCALIZED GENE TRANSCRIPTION

The movements of the active chromatins within 
the nucleus are not random. Several actively transcrib-
ing genes are localized at the focal points of RNA Pol 
II which are called “transcription foci” [37-39]. As the 
number of transcription foci are fairly small compared to 
actively transcribing genes, it can be suggested that sev-
eral genes are transcribed together. Indeed, several FISH 
and 3C experiments have shown convincingly the colo-
calization of active alleles which are several Mbs apart, 
either in cis- or trans-chromosomes [37,40,41].

Long-range interactions between genes and their 
regulatory elements like enhancers have been heavily 
studied [42]. A number of mechanisms have been pro-
posed to explain long-range gene regulations such as 
chromatin loop formation linked by large protein com-
plexes [35,43,44]. Expression of the β-globin locus is an 
example of a well-characterized long-range interaction 
and chromatin loop formation [45]. The enhancer ele-
ments and local control region (LCR) form a loop with 
the β globin genes (HBB) as experimentally shown by 
3C and RNA tagging and recovery of associated proteins 
(RNA-TRAP) methods [46,47]. Several other long-range 
interactions between genes and their regulatory loci such 
as CFTR locus [48,49], c-MYC locus [50], Th2 interleu-
kin cluster [51] have been described subsequently.

Recent Hi-C and computational predictions revealed 
that very specific long-range interactions between en-
hancers and promoters can be found within the bound-
aries of TADs [52,53]. Another example is the olfactory 
receptor (OR) genes (~1400 genes) that are located across 
18 different chromosomes but through a complex chore-
ography, they all congregate into the same interchromatin 
space called the “olfactosome” at the time of expression 
[54]. These examples show that although eukaryotes do 
not possess polycistronic mRNA, the expression of sev-
eral genes can be controlled through spatial gene cluster-
ing mechanisms which are as of yet unclear.

Nuclear pore complexes are the bi-directional gates 
for communications between nucleoplasm and cyto-
plasm. Localization of the nuclear pore complex on the 
nuclear membrane is non-random [55]. The underlying 

spatial organization of the genome is regulated by the 
lamin network [56]. In the gene-gating hypothesis, 
Gunter Blobel proposed that all the transcripts of genes 
are destined to specific sets of nuclear pore complexes 
[57]. Eukaryotes organize their genome by keeping each 
chromosome at a separate location during interphase 
[58]. Each chromosome maintains its specific neighbors 
at the interphase stage, forming a chromosomal territory 
[31,59,60]. Lamin meshwork helps to organize the chro-
mosome territories [61]. Territorial organizations of the 
chromosomes vary by cell types and even for the same 
type of chromosome in the diploid cell [21]. During 
transcription, each gene forms a transcription loop to pro-
vide access for the transcription machinery [62]. Several 
genes inside the nucleus form “kissing loops” with their 
neighbors and maintain a transcription hub [63,64]. Of-
ten, these transcription hubs form a phase-separated state 
through intrinsically disordered regions of the transcrip-
tion machinery and nascent mRNAs [65,66].

CT DRIVES THE PROTEIN COMPLEX 
FORMATION: A PERSPECTIVE

Phase-separation inside the cell is an emerging con-
cept providing a more general mechanism for several 
compartmentalized biochemical reactions. Recently, sev-
eral groups proposed a phase-separation model for tran-
scriptional control [35,36,67,68]. The low complexity re-
gion of the transcription regulators forms a liquid-liquid 
phase separation which helps to co-cluster several genes 
and their enhancers forming a super-enhancer [69]. These 
condensates provide a platform for co-transcription and 
regulations of several genes. The RNA-protein ratio in 
these interchromatin spaces is crucial for the formation of 
the phase-separated granules [70,71]. The interchromatin 
spaces are filled with nuclear speckles and mRNPs. The 
numbers of these speckles vary from 20 to 50 in each 
nucleus [72,73]. SR-rich proteins maintain these mem-
brane-less granules and several kinases and phosphatases 
control their dynamicity [74]. The various transcripts 
from the neighboring chromatin kissing-loops may clus-
ter together through the association of these RNPs. It has 
been shown earlier by different groups that the diffusion 
of the individual mRNPs are random [75,76]. It has also 
been proposed that mRNA transcripts possess a unique 
zip code which tightly coupled the downstream processes 
like translation and subsequently protein complex forma-
tion [77,78]. However, the mRNA transcripts vary in size 
and till now, there is no evidence suggesting any mRNA 
signal code coupled to the translations. Genome-wide 
analysis has shown that the specific export factors are 
available to tightly regulate the export of different types 
of mRNA [79,80].

The body of evidence presented thus far support the 
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channels of interchromatin space. These channels can 
be gated to specific nuclear pores as proposed by Gunter 
Blobel and interaction between the nuclear baskets and 
TREX-complex can help to nucleate various mRNPs 
containing functionally related mRNAs. Coupled exports 
of these mRNPs can help form a translation hub in the ER 
and the co-clustering of these translation hubs can ensure 
the high local concentration of the nascent polypeptide 
chains which leads them to form co-translational cis and/
or trans-protein complex (illustrated in Figure 1).

The proposed hypothesis is the following.
1. Chromatin kissing loops in the active compart-

ments are enriched with the genes which participate in 
protein complex formation in the cytoplasm.

2. Transcriptions of these genes are regulated in a 
concerted manner by forming a phase-separated state 
maintained by the disordered domains of the transcription 
factors.

hypothesis that chromosome kissing loops in the active 
A-compartments can efficiently drive protein complex 
formation. Chromosome kissing loops are often a con-
glomerate of several chromosomal contacts extended 
into the interchromatin space. These loops may contain 
functionally related genes and their regulators that form 
a phase-separated granule through the interaction of the 
low complexity regions of the transcription regulators. 
Although each loop can be very long and dynamic, the 
downstream products of these kissing loops will partici-
pate in the forming protein complexes in the cytoplasm. 
The mRNA transcripts from these loops can cluster to-
gether into the ICDs with the association of the splicing 
machinery, mRNPs and several nuclear export factors. 
These mRNPs and nuclear export factors can furthermore 
act as sorting machinery for the functionally related mR-
NAs. Although the diffusion of the individual mRNPs is 
random, these diffusions can be guided via the narrow 

Figure 1. A model for chromosome loop driving the protein complex formation. Functionally related genes (Gene 
A, B, and C) from different chromosomes extend their loops into the inter chromosome space and form phase-separated 
clusters (zoomed out). Their transcriptions are tightly coupled through the interactions of the transcription factors and 
mRNAs synthesized from these transcription loops in these clusters can be recruited to the specific nuclear granules. 
The movements of these granules are guided through the interchromatin channels and their exits are destined to the 
nearby nuclear pore complex and finally exported into the ER. On the ER membrane, these mRNAs form a translational 
hub and local translation of these mRNAs helps to form the co-translational protein assembly (ABC- Nascent Protein 
Complex). On the ER membrane, translation hub increases concentrations of the nascent chains which induce cis-
trans-complex formation. The pre-assembled protein complex travels to their corresponding destination via the protein 
transport vesicles (circular box containing protein complex). These chromosomal loop formations increase the efficiency 
of nascent chain complexes formation. This proposed pathway could be the adaptive strategy of the eukaryotes to 
avoid the futile protein production.
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hERG ion channel [86], D1 protein of the photosystem 
II [87], IgE high-affinity receptor [88], soluble histone 
methyltransferase [89], and acetyltransferase [90]. Study-
ing their mRNA movements and gene clustering in the 
transcription foci and tracking individual RNPs can be 
useful in proving this hypothesis. This can be done by 
using fluorescence in situ hybridization (FISH) probes 
specific to these functionally related genes and followed 
by co-translation immunoprecipitation of these proteins. 
The hypothesis predicts the co-movement of mRNAs 
from functionally related genes as long as they originate 
from the same chromosome kissing loop. However, a 
systematic investigation is needed to further confirm the 
hypothesis.
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