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Early life stress is well-known as a critical risk factor for mental and cognitive disorders in
adulthood. Such disorders are accompanied by altered neuro- (synapto-) genesis and
gene expression. Because psychosomatic disorders induced by early life stress (e.g.,
physical and/or sexual abuse, and neglect) have become a socio-economic problem,
it is very important to clarify the mechanisms underlying these changes. However,
despite of intensive clinical and animal studies, such mechanisms have not yet been
clarified. Although the disturbance of glucocorticoid and glutamate homeostasis by
stress has been well-documented, it has not yet been clarified whether such disturbance
by early life stress persists for life. Furthermore, since previous studies have focused
on the detection of changes in specific brain regions, such as the hippocampus and
prefrontal cortex, it has not been clarified whether early life stress induced changes
in the sensory/motor system. Thus, in this review, we introduce recent studies on
functional/structural changes in the somatosensory cortex induced by early life stress.
We believe that this review provides new insights into the functional alteration of the
somatosensory system induced by early life stress. Such information may have clinical
relevance in terms of providing effective therapeutic interventions to early life stressed
individuals.
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Introduction

Early life stress during the perinatal period induces functional and anatomical changes in
the brain. Unfortunately, some of such changes persist in adulthood. Clinical studies have
shown that early life stress during childhood persistently impairs cognitive and emotional
functions, sometimes until adulthood (Chugani et al., 2001; Nelson et al., 2007; Gatt et al.,
2009; Mueller et al., 2010; Gershon et al., 2013; Pesonen et al., 2013). Stress-induced alterations
of neuronal activity and stress-related hormone secretion may affect neurological development
such as dendrite arborization, synaptogenesis, and spine formation (McEwen, 1999; Vyas et al.,
2002; Liston et al., 2006). These perinatal stress-induced morphological changes may alter the
brain function throughout life (Romeo and McEwen, 2006; Shair, 2007; Gershon et al., 2013).
However, it has not yet been clarified how the type, intensity and duration of stress affect
different brain regions with different persistence (Romeo and McEwen, 2006). For example,
although it has been well-known since several decades ago that acute stress disturbs glutamate
and/or corticosterone homeostasis (Moghaddam, 1993; Moghaddam et al., 1994), it has not yet
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been clarified whether such a glutamate/corticosterone
disturbance persists for a long time in a region- and temporal-
specific manner after early life stress exposure (Popoli et al.,
2011).

To study the effect of early life stress, various animal
models have been introduced with their potential applications
in humans (Shair, 2007). In these models, early life stress
induces various disorders in adulthood, e.g., an enhancement
of anxiety-related behaviors (Wigger and Neumann, 1999;
Parfitt et al., 2004; Slotten et al., 2006; Shair, 2007). Such
behavioral alteration is partly induced by structural changes of
hippocampal neurons and changes in the rate of release of several
neurotransmitters/hormones in this region (Brunson et al., 2005;
Aisa et al., 2007; Oomen et al., 2010). The electrophysiological
changes are also detected in the hippocampus of aged animals
(Sousa et al., 2014). Early life stressed rodents also show neuronal
changes such as those in synaptic spine density in the infralimbic
cortex (Ovtscharoff and Braun, 2001). Early life stress also affects
the expression levels of α-amino-3-hydroxy-5-methylisoxazole-
4-propionic acid (AMPA) receptor by suppressing the function
of Ca2+ calcium/calmodulin-dependent protein kinase type II
(CaMKII) in the barrel cortex (Miyazaki et al., 2012). These
findings indicate that early life stress during the perinatal period
affects the brain function/structure in various brain regions.
However, most studies have been performed focusing in several
specific brain regions such as the hippocampus and prefrontal
cortex (Wigger and Neumann, 1999; Parfitt et al., 2004; Slotten
et al., 2006; Shair, 2007; Miyazaki et al., 2012). Thus, it has not yet
been clarified whether early life stress disrupts the somatosensory
function.

In this review, we discuss the effect of early life stress on
somatosensory function by introducing our recent studies. Most
of the results were obtained by in vivo studies such as in vivo
imaging using two- (multi-) photon laser microscopy and free-
moving in vivo microdialysis. This review may provide novel
insights into the functional alterations of the somatosensory
system induced by early life stress. Such information may be
useful in terms of providing effective therapeutic interventions
to early life stressed individuals.

Persistent Alteration of Synaptic
Turnover in the Somatosensory Cortex
in Early Life Stressed Mice

Effects of early life stress can be seen in various brain
regions. Such effects are observed as changes in synaptic spine
density, synaptic turnover rate, electrophysiological properties,
neurotransmitters release or expression levels of neuronal and
glial proteins. However, it is difficult to identify specific regions
affected by a specific early life stress. Even if a particular
neuropsychological phenotype is observed, it may still be difficult
to identify the affected brain regions, because of the complexity of
the mechanisms underlying these changes. In the hippocampus,
for example, early life stress alters the spine density and dendritic
outgrowth of pyramidal neurons (Magarinos and McEwen, 1995;
Pawlak et al., 2005; Monroy et al., 2010; Magarinos et al., 2011),

with the change in the expression levels of proteins such as
neurotrophic factors and transcription factors (Lippmann et al.,
2007; Nair et al., 2007; Kawano et al., 2008; Magarinos et al.,
2011; Horii-Hayashi et al., 2013; Suri et al., 2013; Dimatelis
et al., 2014). Such an alteration may lead to impaired memory
acquisition and cognitive function (Huot et al., 2002; Aisa et al.,
2007; Fabricius et al., 2008; Suri et al., 2013; Connors et al., 2015).
However, involvement of other brain region cannot be excluded.
On the other hand, the somatosensory cortex receives sensory
information such as pain, temperature, and pressure, integrates
them to identify the object (Haggard, 2006). Its disorder produces
difficulties in interpreting tactile information (Freund, 2003;
Tinazzi et al., 2013). However, the effect of early life stress
on somatosensory function has not yet been clarified. In the
somatosensory cortex, the spine density is rather stable after early
life stress compared with those in the hippocampus not only in
juveniles but also in adults (Takatsuru et al., 2009a). Nevertheless,
the nociceptive threshold is significantly decreased in early
life stressed juvenile (4 weeks-old) and adult mice (12 weeks-
old; Takatsuru et al., 2009a). Electrophysiologically, the slope
(μV/ms) of field potential in layer II/III evoked by vibrotactile
somatosensory simulation increases in early life stressed adult
mice. Interestingly, these changes significantly correlate with the
decrease in nociceptive threshold (Figure 1; Toya et al., 2014),
indicating that somatosensory function is persistently altered by
early life stress.

As discussed above, although the somatosensory response
is altered by the change in electrophysiological properties,
previous studies have shown slight morphological changes
in the somatosensory cortex (Takatsuru et al., 2009a). To
clarify further the mechanism inducing neurological alterations,
it is necessary to apply additional techniques such as two-
photon laser microscopy (Denk et al., 1990; Grutzendler et al.,
2002; Trachtenberg et al., 2002). This technique enables us to
examine dynamic changes in synaptic turnover rate and neuronal
excitability during neuronal circuit remodeling (Takatsuru et al.,
2009b).

In early life stressed mice, the turnover rate of mushroom
spines, which usually maintain their structure for a long
time (Grutzendler et al., 2002; Trachtenberg et al., 2002), is
significantly increased in the somatosensory cortex in not only
juvenile but also in adult mice (Takatsuru et al., 2009a). Because
both of the gain and loss of spines occur simultaneously, the total
number of spines is not markedly altered. However, two-photon
microscopy enabled us to detect the persistent dynamic changes
in synaptic turnover induced by early life stress. These findings
indicate that early life stress destabilizes synaptic formation
in the somatosensory cortex, resulting in the disturbance of
somatosensory function.

Although we have shown the persistent increase in synaptic
turnover rate in the somatosensory cortex induced by early
life stress, the mechanisms underlying such an alteration have
not yet been clarified. One possibility is the involvement of
microglia. Recently, we have found the alteration of motility of
microglia in early life stressed mice in vivo (Takatsuru et al.,
2015). The motility of the filopodia-like processes is increased
in early life stressed mice. Interestingly, the motility of the
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FIGURE 1 | Early life stress induces hyperactivity of somatosensory
function (see Takatsuru et al., 2009a and Toya et al., 2014, for
details). Maternal deprivation is performed from postnatal day P2 to
P14, 3 h per day (the day of birth is determined as P0). After

weaning, an in vivo experiment is performed from 4 to 12 weeks. In
early life stressed mice, the nociceptive threshold studied by von Frey
hair test decreases with increasing cortical field potential. These values
significantly correlate.

processes negatively correlates with the somatosensory threshold
(the motility is higher in the mice with a lower threshold).
Furthermore, the number of processes is significantly increased
in early life stressed mice after acute somatosensory stimulation
and such an increase persists for several hours. The motility of
microglia is changed by neuronal conditions as in the case of
remodeling of synapses after a focal stroke (Wake et al., 2013).
Because previous studies indicate that microglia may partly
regulate synaptic formation by removing or ‘stripping’ synapses
(Marín-Teva et al., 2004; Cullheim and Thams, 2007; Tremblay,
2011) and because the direct contact of microglial processes with
spines has been observed (Wake et al., 2013), the activity of
microglia increased by early life stress may contribute to the
structural instability of spines in the somatosensory cortex. In
a series of study, we have clarified that not only severe brain
damage such as ischemia or inflammation, but also psychological
stress such asmaternal separation can produce persistent changes
in microglial activity. However, early life stress factors activating
microglia have not yet been clarified. In the next section, we will
discuss several possible factors for such activation.

Persistent Alterations of Glutamate
and Glucocorticoid Homeostasis in the
Somatosensory Cortex Induced by
Early Life Stress

Early life stress may induce alterations of neurotransmitters
(Barbosa Neto et al., 2012; Martisova et al., 2012; Gunn
et al., 2013) and neurotrophic factors in various brain regions
(Lippmann et al., 2007; Nair et al., 2007; Kawano et al., 2008;

Magarinos et al., 2011; Horii-Hayashi et al., 2013; Suri et al.,
2013; Dimatelis et al., 2014). Such alteration may produce
changes in the structure of neural circuits, spine turnover rate,
and/or microglial motility. Since many critical developmental
events occur in the neonatal period, even weak environmental
insults may produce irreversible alterations in organ homeostasis.
Indeed, disruption of homeostasis of glucocorticoid release
by administering excess amounts of corticosterone produces
various abnormalities such as those in the number of spines,
synaptic turnover rate, microglial motility, electrophysiological
properties, and astrocyte function (Gunn et al., 2013). However,
it has not yet been clarified whether such alterations occur
in the somatosensory cortex. Detecting the concentration of a
neurotransmitter such as glutamate or GABA in the cortex may
reveal the mechanisms underlying the change in the turnover
rate of mushroom spines. In vivo microdialysis is a potent
technique to observe the neuronal transmitter release under
intact condition although the spatial resolution is limited. This
technique also enables local drug application, which is usually
difficult due to the blood–brain barrier (Takatsuru et al., 2013).
Using this technique, we have found that the concentration of
glutamate is increased in early life stressed mice under free-
moving condition (Figure 2; Toya et al., 2013, 2014). We have
also reported that the homeostasis of coritcosterone is also
affected by early life stress (Toya et al., 2014).

Corticosterone may play a protective role in neuronal circuits
against stress (McEwen, 2000a,b). Glucocorticoids convert
proteins and/or lipids into carbohydrates, which can be easily
used for energy production. This conversion will serve the body
well in the short run by replenishing energy reserves after a
period of activity, as in a situation such as running away from
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FIGURE 2 | Schematic drawing showing the effect of early life stress on
acute-stress-induced corticosterone and glutamate responses in the
somatosensory cortex. Samples from the somatosensory cortex were
collected by in vivo microdialysis. After collecting the dialysate in the home cage,
the mice were placed inside the stress box. Stressful physical stimulation (30 s
duration, every 5 min) were applied 10 times. The concentrations of

corticosterone and glutamate were determined by ELISA and HPLC,
respectively, (Toya et al., 2014). Early life stress induced an increase in basal
levels of corticosterone and glutamate. On the other hand, although
acute-stress-mediated increase in corticosterone concentration did not occur in
early life stressed mice, that in glutamate concentration was markedly
enhanced.

a predator (McEwen, 2000b). Glucocorticoids also increase the
appetite for food and promote food-seeking behavior (Leibowitz
and Hoebel, 1997). Thus, enhancement of corticosterone release

under acute stress potentially protects the body from stress.
However, a long-term increase in corticosterone concentration
induces dendritic atrophy in some brain regions (McEwen,

FIGURE 3 | Schematic drawing showing the morphological/chemical
alterations induced by early life stress in the somatosensory cortex
(Takatsuru et al., 2009a, 2015; Toya et al., 2014). (A) Increase in
mushroom spine turnover rate without significant alteration of total number of
spines, (B) increase in basal glutamate level and acute-stress-mediated

increase in glutamate level, (C) increase in basal level of corticosterone
without further increase under acute stress, and (D) increase in microglial
motility. Although the involvement of astrocytes has not yet been clarified
(E), studies of other brain regions indicate their possible involvement (Gunn
et al., 2013).
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2000a) and thus, the concentration of corticosterone should be
carefully controlled to maintain the homeostasis of body/brain
functions. Furthermore, perinatal stress sometimes disrupts
hypothalamic-pituitary-adrenal axis, resulting into persistent
aberrant glucocorticoid secretion (Faturi et al., 2010; Koe et al.,
2014; Nishi et al., 2014). Under such conditions, the protective
role of glucocorticoids in neural circuits may be disrupted.
Thus, an increased basal corticosterone concentration in the
somatosensory cortex in early life stressed animals may be partly
involved in inducing spine instability, glutamate secretion, and
microglia motility. Disruption of glucocorticoid responses to
acute stress may exacerbate such instability.

In early life stressed animals, the basal concentration of
glutamate in the somatosensory cortex increases markedly (Toya
et al., 2014). It has been well-known that the acute stress
disrupts glutamate homeostasis (Moghaddam, 1993). However,
it has not yet been clarified whether such disruption persists
for life after early life stress in a specific brain region. Our
study clearly demonstrated the increase in glutamate level in
adulthood by early life stress in the somatosensory cortex. On
the other hand, in control mice, the concentration of glutamate
is rather stable after acute-stress application (Toya et al., 2014).
This is probably due to the activation of glial cells that take
up excess glutamate, thus preventing excitotoxity (Danbolt,
2001; Takayasu et al., 2009). In early life stressed mice, on
the other hand, although the basal glutamate concentration is
sixfold that in control mice, acute stress further increased the
concentration of glutamate. Such a further increase lasts longer
than 1 h after stimulation. These findings indicate the alteration
of glutamate homeostasis by early life stress. However, the
interaction between enhanced glutamate release and suppressed
corticosterone response induced by acute stress early in life of
mice has not yet been clarified.

Although the mechanisms inducing the persistently enhanced
glutamate release in the somatosensory cortex induced by
early life stress have not yet been fully understood, previous
studies have provided several clues. Environmental stress
enhances glutamate release and suppresses glial-cell-mediated
glutamate cycling. Such changes affect synaptic transmission
in the limbic/cortical areas (Sanacora et al., 2012). Early life
stress also affects the structural organization, i.e., dendritic
remodeling, reduction of synaptic spine formation, glial cell
loss, and possibly volumetric reductions of several specific brain
regions of the rodent brain (Sanacora et al., 2012). Acute
exposure to stress or administration of glucocorticoids rapidly
promotes glutamate release in the hippocampus and other
brain regions (Lowy et al., 1993; Moghaddam, 1993; Reznikov
et al., 2007). The glucocorticoid-receptor-mediated increase in
the expression levels of presynaptic soluble N-ethylmaleimide-
sensitive factor attachment protein receptor (SNARE) protein
complexes are induced in the presynaptic membrane in the
prefrontal/frontal cortex by acute stress. SNARE then enhances
the release of glutamate (Musazzi et al., 2010). The Rab4-
mediated recycling of NMDA and AMPA receptors from early
endosomes is also enhanced in the prefrontal cortex (Yuen
et al., 2009). Chronic stress also decreases the number of
glial fibrillary acid protein (GFAP)-expressing cells and the

impaired clearance of synaptic glutamate through excitatory
amino acid transporters in the prefrontal cortex (Banasr and
Duman, 2008). Taken together, it is reasonable to speculate
that early life stress may alter glucocorticoid homeostasis, and
such an alteration may enhance glutamate release by stimulating
the expression of proteins related to glutamate release and
sensitivity. The activity of glial cells, which take up glutamate,
may also be affected, inducing an increase in interstitial glutamate
level.

On the basis of the findings mentioned above, we examined
the involvement of glutamate receptor subunits of AMPA,
NMDA, and metabotropic glutamate receptors after application
of acute stress in early life stressed mice to clarify the underling
mechanisms by Western blot analysis (Toya et al., 2013).
However, protein levels of these subunits in the membrane
fraction were not significantly different between the control
and early life stressed animals before and after acute-stress
application. Because we carried out only Western blot analysis,
further study to determine the protein turnover rate by in vivo
imaging may be required. Under the present condition, however,
we were unable to detect the involvement of glutamate receptors
in the alteration of somatosensory function induced by early life
stress.

Summary and Perspectives

Figure 3 shows a summary of the effects of early life stress
in the somatosensory cortex. We found the following; (A)
Increase in mushroom spine turnover rate without significant
alteration of the total number of spines, (B) Increase in basal
level of corticosterone without further increase under acute
stress, (C) Increase in basal and acute-stress-mediated glutamate
levels, and (D) Increase in microglial motility. A combination
of these alterations may have affected somatosensory function.
Unfortunately, however, we failed to identify molecules involved
in such alterations. One possible reason for the failure is that,
although we detected a significant increase in synaptic turnover
rate and microglial motility with a decreased somatosensory
threshold and an increased electrophysiological activity, less
than 10% of all spines were lost or gained. Thus, only a
limited amount of molecules may be involved in such subtle
changes. To detect such changes, Western blot analysis may
not be a suitable technique. More sophisticated techniques such
as detection of protein trafficking and/or protein expression
at the single-cell level may be required. Nevertheless, our
series of studies have demonstrated the persistent alteration
of somatosensory function induced by early life stress with
morphological/chemical alterations in the somatosensory cortex.
Although the involvement of astrocytes has not yet been clarified,
a previous study has shown that early life stress decreases
glutamate uptake in the hypothalamus (Gunn et al., 2013). Thus,
such a decrease may also be induced in the somatosensory
cortex (Figure 3E). Trials to clarify the involvement of astrocytes
are currently underway. However, as discussed above, the
morphological/chemical changes in the somatosensory cortex are
not always identical to those in other brain regions. Thus, more
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careful analysis may be required to examine the brain region-
specific effects of early life stress. In particularly, more attention
should be paid to the change in somatosensory function in
early life stressed humans, because only limited information is

available at present. We believe that this review has provided an
important clue to developing effective therapeutic interventions
to prevent persistent somatosensory abnormalities induced by
early life stress.
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