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In this paper, we design and develop a novel robotic bronchoscope for sampling of

the distal lung in mechanically-ventilated (MV) patients in critical care units. Despite the

high cost and attributable morbidity and mortality of MV patients with pneumonia which

approaches 40%, sampling of the distal lung in MV patients suffering from range of

lung diseases such as Covid-19 is not standardised, lacks reproducibility and requires

expert operators. We propose a robotic bronchoscope that enables repeatable sampling

and guidance to distal lung pathologies by overcoming significant challenges that are

encountered whilst performing bronchoscopy in MV patients, namely, limited dexterity,

large size of the bronchoscope obstructing ventilation, and poor anatomical registration.

We have developed a robotic bronchoscope with 7 Degrees of Freedom (DoFs), an

outer diameter of 4.5mm and inner working channel of 2mm. The prototype is a

push/pull actuated continuum robot capable of dexterous manipulation inside the lung

and visualisation/sampling of the distal airways. A prototype of the robot is engineered

and a mechanics-based model of the robotic bronchoscope is developed. Furthermore,

we develop a novel numerical solver that improves the computational efficiency of the

model and facilitates the deployment of the robot. Experiments are performed to verify the

design and evaluate accuracy and computational cost of themodel. Results demonstrate

that the model can predict the shape of the robot in <0.011s with a mean error of 1.76

cm, enabling the future deployment of a robotic bronchoscope in MV patients.

Keywords: surgical robot, robotic bronchoscope, mathematical modelling, steerable catheter, flexible robot

1. INTRODUCTION

Critically ill patients who develop respiratory failure and require mechanical ventilation (MV)
suffer a high morbidity and mortality. Indeed, Covid-19 patients who require MV, have a mortality
approaching 40% in some case series. Once MV, patients are at high risk of developing secondary
infections and other secondary complications. Rapid and accurate sampling of the distal lung is an
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important diagnostic procedure to guide therapeutic
interventions. However, despite the high cost and attributable
morbidity and mortality, diagnosis of diseases in the distal
lung in MV patients is not standardised, lacks reproducibility
and requires expert operators. Often, this leads to empirical
treatments such as broad spectrum antibiotics which are then
very difficult to deescalate, thus compounding the exposure
of patients to non-targeted antimicrobials and promoting
antimicrobial resistance. Pulmonary infiltrates in MV critically
ill patients are a common occurrence and a major diagnostic
challenge. Endobronchial secretions such as mucus and often
hinder manually steered bronchoscopes, leading to poor
sampling results. Hence, the aim of this paper is to develop
a robotic bronchoscope that democratises sampling of the
lung in MV ICU patients and enables non-skilled operators to
safely sample disparate regions of the human lung to improve
diagnostic accuracy and therapeutic interventions.

Bronchoscopy is a common diagnostic modality for the early
detection of lung diseases (see Figure 1). During bronchoscopy,
a thin tube (bronchoscope) is passed through the vocal cords into
the airways to reach potential regions of the lung for directed
sampling. Due to relatively large dimensions of the bronchoscope
used for sampling (> 5 mm), bronchoscopy of MV patients is
challenging. Another major drawback of the current technology
is reliance on manual insertion, which is difficult due to the
limited Degrees of Freedom (DoFs) of the bronchoscope, i.e.,
rotation and insertion.

To address the aforementioned challenges, we have developed
a miniaturised continuum robot for lung bronchoscopy. A
continuum robot has a continuously elastic structure and can
traverse tightly curved 3D paths in confined spaces and reach

FIGURE 1 | A schematic of lung bronchoscopy in ICU, showcasing the

insertion of the robotic bronchoscope through the mechanical ventilator and

inside the lung.

desired positions deep inside human cavities. Continuum robots
retain force transmission capability and offer great dexterity,
thus, enabling optimal therapies when deeply seated pathologies
are targeted (Burgner-Kahrs et al., 2015). Continuum robots have
been explored for various interventions including laparoscopy
(Wu et al., 2019), cardiac surgery (Fagogenis et al., 2019), neuro-
surgery (Mattei et al., 2014), and eye surgery (Mitros et al., 2020).

The proposed bronchoscope is a continuum robot comprised
of several parallel rods that can be bent via pushing/pulling of
the rods. A continuum robot composed of several constrained
push/pull rods is commonly known as a multi-backbone robot,
first introduced in Gravagne and Walker (2000). Simaan et al.
introduced the first surgical multi-backbone robot for dexterous
tool manipulation in robotics surgery (Simaan et al., 2004; Ding
et al., 2013). Xu et al. (2015) improved this design using a “dual
continuum” actuation mechanism that increases modularity.
Several researchers have explored the possibility of using a
parallel multi-backbone approach without constraints, allowing
more dexterous robots with increased DIFs per section (Bryson
and Rucker, 2014; Wang et al., 2019). Multi-backbone robots
have been commonly proposed for abdominal surgeries (Garbin
et al., 2019; Riojas et al., 2019; Wu et al., 2019).

A major challenge in deployment of miniaturised continuum
robots is real-time and precise modelling. There are several
different kinematic and dynamic models presented in the
literature (see Webster and Jones, 2010; Burgner-Kahrs et al.,
2015 for a detailed review). The most common model for multi-
backbone robots is a geometric model proposed in Simaan
et al. (2004). The model has been used to control the motion
of the robot as well as contact forces at the robot’s tip (Bajo
and Simaan, 2016). The geometric model assumes the robot
curvature is constant and provides an accurate description of
the robot’s differential kinematics for large scale movements.
However, due to the effects of unknown boundary conditions
and the constant curvature assumption, the model’s prediction
of the robot shape and micro-scale movements are not accurate.
To overcome this challenge, Del Giudice et al. (2017) proposed
a method to improve micro-scale motion of a multi-backbone
robot using modulation of the flexural rigidity of the rods.
Another commonly method for modelling of multi-backbone
robots is Cosserat rod theory (Bryson and Rucker, 2014; Wang
et al., 2019). However, the Cosserat rod theory results in a
relatively large boundary value problem (BVP) that should be
solved for every rod in the robot and are computationally
expensive. As a result, less accurate modelling methods are still
attractive due to their low computational cost (Kaouk et al., 2014;
Bajo and Simaan, 2016).

In this paper, we develop a bronchoscope using a miniaturised
multi-backbone robot. The bronchoscope is mounted on a
linear stage that can be used to automatically insert/retract the
bronchoscope to reach targeted positions in the distal lung.
Next, we develop a geometrically exact model of the robot that
considers both the geometry of robot and mechanical properties
of the backbones. The model results in a reduced order BVP and
can be used to predict the shape of the bronchoscope without the
constant curvature assumption. Furthermore, we develop a novel
nonlinear observer that significantly improves the computational
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efficiency of the model to estimate the solution of the proposed
model in real-time. Finally, simulations and experiments are
performed to validate the design and the modelling Theory.

In the next section, section 2.1, the robot architecture and
bronchoscope design is presented. Section 2.2 details the model
of the bronchoscope. Section 2.4 outlines the detail of the
observer design. In section 3, simulations and experimental
results are performed to evaluate the design and quantify the
accuracy and computational efficiency of the model. Concluding
remarks appear in section 4.

2. MATERIALS AND METHODS

2.1. System Design and Prototyping
This section describes the design and engineering of the robotic
bronchoscope. The mechanical system design begins with DoFs
discussion. To improve the dexterity of the bronchoscope, we

propose a novel design that allows the robotic bronchoscope
to bend in 3D at two points. The tip of the bronchoscope is
composed of two segments shown in Figure 2. Each segment
is actuated by 3 nitinol (NiTi) rods with an outer diameter
of 0.475mm which are passed through holes located on
fixtures surrounding the bronchoscope. The circular fixtures are
employed to avoid buckling of the rods. An additional silicone
rod shown in blue in Figure 2 is acting as the main backbone.
It has an outer and inner diameters of 2.3mm and 2mm,
respectively and is rigidly connected to the fixtures to ensure
they cannot move relative to each other. The fixtures’ outer
and inner diameters are 4.5 and 2.4mm, respectively. Length
of proximal segment at the tip of the bronchoscope is 40mm,
length of the distal segment is 500 mm, and the overall length
of the bronchoscope is 540mm. The end-effector is actuated
via the push-pull of the 6 rods. In contrast to the cable driven
bronchoscopes, the proposed design employs in-compressible

FIGURE 2 | The robotic bronchoscope. (A) The inlet shows the tip of the bronchoscope which is composed of two segments that can be independently bent.

By pulling/pushing the wires at each segment the bronchoscope can bend in 3D space. (B) The bronchoscope prototype placed inside a 3D printed lung model.

An electromagnetic tracker (Aurora electromagnetic tracking system, NDI, Canada) is placed at the tip of the bronchoscope to measure its tip position in real-time.

(C) Camera view from the endoscopic camera placed inside the working channel of the bronchoscope.
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Nitinol rods to offer more bending curvature via pushing of the
rods. Furthermore, a 7th DoFs is employed for the insertion and
retraction of the end-effector into the airways.

All DoFs are actuated by brushless DC motors (Maxon
Motors) with a gearhead with a 150 : 1 reduction and a quadratic
encoder. Each motor is controlled via a position controller
module with a built in PID controller (EPOS4 Compact
50/5 CAN). The controllers employ the encoders feedback to
accurately control the position of the motor shaft. The position
controllers communicate with a PC via the CAN protocol. A
CAN-to-USB interface (Kvaser Inc., CA, USA) is used to connect
the position controllers to the PC.

The motors are connected to lead screws that convert
the power generated by the motor into feed velocity for
pulling/pushing the rods. The lead screws are carrying a v-
shaped 3D printed part that is connected to the rods (shown
in Figure 2) and travels along the lead screw to pull/push the
rods. Additionally, 6 linear potentiometers are used to accurately
measure the displacement of the rods.

Figure 2 shows the developed robot and an inlet showcases
the different segments that the manipulator comprises.

2.2. Geometrically Exact Model of the
Robot
We use the Cosserat-rod theory (Antman, 2005; Rucker et al.,
2010) to model the robot. First, we present the model for a
robot with one bendable segment. Next, we generalise the model
to a robot with more segments. The following notation is used
throughout the paper: x, x, and X denote a scalar, a vector,
and a matrix, respectively. A complete summary of variables
and operators is given in the Appendix. The symbols used are
summarised in a nomenclature section.

A schematic of the robot is shown in Figure 3. The robot
comprises a main backbone (shown in blue) rigidly connected
to the fixtures and three NiTi rods (shown in red) fixed at the end
fixture. The three rods can pass through the rest of the fixtures
and have enough clearance to not create forces and moments but
rather follow the curvature of the main backbone. The relative
position of each rod with respect to the main backbone (di, i =
1, 2, 3 in Figure 3) is given by

di = [δcos(βi), δsin(βi), 0]
T , (1)

where δ is the rods’ distance from the robots centroid (see
Figure 3) and βi is the relative angular position of each rod with
respect to the main backbone

βi = α + (i− 1)
2π

3
, i = 1, 2, 3, (2)

with α shown in Figure 3.
The robot main backbone is modelled as a long, slender,

one-dimensional Cosserat rod endowed with a Darboux frame
attached to every point on its arc with the z axis of the frame
tangent to the curve. The rod is under an external point force
[F(t)] and distributed constant load (f ) simulating the weight of
the fixtures. The configuration of the rod can be defined using a

FIGURE 3 | A schematic of the continuum robot with one bent segment. The

main backbone is modelled as a Cosserat rod under external point force (F )

and distributed load (f ). The cross section view shows the position of the rods

with respect to the main backbone.

unique set of 3D centroids, r(s, t) :[0, ℓ]× [0,∞] → R
3× [0,∞],

and a family of orthogonal transformations, R(s, t) :[0, ℓ] ×

[0,∞] → so(3) × [0,∞]. The position of the main backbone
is defined by

r
′

(s, t) = R(s, t)e3, R
′

(s, t) = R(s, t)[u(s, t)]× , (3)

where u(s, t) = [ux(s, t), uy(s, t), uz(s, t)]
T is the curvature vector

of the deformed backbone, [.]× operator is the isomorphism
between a vector in R

3 and its skew-symmetric cross product
matrix, and e3 = [0, 0, 1]T is the unit vector aligned with the z-
axis of the global coordinate frame. Assuming the rods are made
of linear elastic isotropic materials, we can derive the constitutive
equations for calculating the instantaneous curvature of the rod
(Rucker et al., 2010)

u
′

(s, t) =− K−1

[

[u(s, t)]×Ku(s, t)+

[e3]×RT(s, t)
(

F(t)+ (l− s)f
)

]

,

(4)

where l is the length of the main backbone and K =

diag(EI,EI,GJ) is the stiffness matrix for the whole robot; E is the
robot’s Young’s modulus; I is the second moment of inertia; G is
the shear modulus; J is the polar moment of inertia. It is assumed
that the cross section of the robot is symmetric and the products
of inertia are negligible (i.e., Ixy = Ixz = Iyz ≃ 0)

In practice, the robot curvature u(s, t) and position r(s, t) are
unknown and should be estimated as the function of the length
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of the three rods (ℓi, i = 1, 2, 3). We can estimate each rod’s total
arc length as

ℓi(t) =

∫ l

0
‖r

′

i(s, t)‖ds, (5)

where ‖.‖ denotes the ℓ2-norm and ri(s, t) is the position of ith
rod given by

ri(s, t) = r(s, t)+ R(s, t)di. (6)

Substituting (6) in (5) and simplifying the equations using (3)
yields

ℓi(t) =

∫ l

0
‖e3 + [u(s, t)]×di‖ds, (7)

Now, we can write the system of differential equations
governing the motion of the robot using (3), (4), and (7)

r
′

(s, t) = R(s, t)e3, (8a)

R
′

(s, t) = R(s, t)[u(s, t)]× , (8b)

u
′

(s, t) =− K−1

[

[u(s, t)]×Ku(s, t)+

[e3]×RT(s, t)
(

F(t)+ (l− s)f
)

]

,

(8c)

ℓ
′

i(s, t) = ‖e3 + [u(s, t)]×di‖, i = 1, 2, 3, (8d)

with the following boundary conditions

r(0, t) = [0 0 0]T , (9a)

R(0, t) = I, (9b)

uz(0, t) = 0, (9c)

ℓi(0, t) = 0, (9d)

ℓi(l, t) = Li(t), i = 1, 2. (9e)

The model defined by (8) and (9) accepts the overall length of
the first two rods Li, i = 1, 2 as inputs and predicts the robot
curvature u(s, t), position r(s, t), and length of the third rod ℓ3(t).
We note that the length of the third rod is always defined by the
length of the first and second rod.

Additionally, (8) and (9) form a boundary value problem. In
the absence of external torques, the initial curvature of the robot
along z direction is zero (9c). However, the initial curvatures
along x and y directions [i.e., ux(0, t) and uy(0, t)] are unknown.
In addition, the first and second rods’ arc length ℓi(s, t), i = 1, 2
are defined both at the base (s = 0) and the tip of the robot (s = l)
by (9d, 9e).

Moreover, the model given in (8) is quasi-static and solved
using the separation of variables. To solve the equations, it
is assumed that at a given time, time-dependent variables are
constant and the equations are solved in spatial domain (with
respect to s) using standard methods such as the Runge-Kutta or
Adams-Bashforth families of algorithms. Shooting methods can
be used to solve the boundary value problem. A shooting method

consists of using a nonlinear root-finding algorithm to iteratively
converge on values for ux(0, t) and uy(0, t), in order to satisfy (9e).
Next, the time-dependent variables are updated [i.e., Li(t)], and
the equations are solved again in the spatial domain.

2.3. Multi-Segment Robot
Here, we generalise the model given in (8) for a multi-backbone
robot with multiple bending segments shown in Figure 4. It is
assumed that the robot is composed of n segments with lengths
of lj, j = 1, .., n. Each segment is actuated via 3 parallel rods fixed
at the end the segment. Thus, there are n rods and the jth segment
contains 3× (n+ 1− j) rods.

To model the robot, we start from the 1st segment containing
n × 3 rods and use (8) to estimate the curvature, position of
the main backbone, and the lengths of the cables up to the
next segment. Next, at the junction where the segment ends
(shown with dashed lines in Figure 4) we enforce the appropriate
boundary conditions. The boundary conditions to be enforced
across each transition point between sections are as follows: (1)
The position and orientation of each tube must be continuous
across the boundary, i.e.,

r(s−, t) = r(s+, t), R(s−, t) = R(s+, t), (10)

(2) considering the static equilibrium and the fact that the rods
apply no torque around z direction:

uz(s
−, t) = uz(s

+, t), (11)

(3) at the distal end of each segment, we have a boundary
condition for the length of the rods that end:

ℓj(s, t) = Lj(t). (12)

We repeat this process for the rest of the segments. We
note that the curvatures along x and y at each break point
are unknown. A shooting method must be used to iteratively
converge on values for {ux(0, t), uy(0, t), ux(l1, t), uy(l1, t),...,
ux(6

n
j=1lj, t), uy(6

n
j=1lj, t)}, in order to acquire the desired length

for the rods. Solving the BVP numerically is computationally
intensive. The computational cost of the model is a significant
obstacle in deployment of such designs and more efficient
numerical methods are needed. To this end, we study the design
of a novel observer that can rapidly estimate the solution of
robot’s model without the need to solve the BVP.

FIGURE 4 | A schematic of multi-backbone robot with multiple bending

segments, dashed lines denote break points.
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2.4. Rapid Solution of the Robot’s Model
Our main goal in this section is to design an observer that
employsmeasurements of ℓi(l, t) through time to estimate correct
value of uy(0, t) and ux(0, t) and ensures the boundary conditions
in (9) are satisfied without the need to solve the BVP iteratively.
First, we transform the model in (8) into an observable form that
simplifies the design of the observer. Next, we design an observer
rule that guarantees exponential convergence of the solution of
the observable model to the solution of the robot model given in
by (8) and (9).

We define the vector of missing initial values as

ǔ(0, t) = [uy(0, t), ux(0, t)]
T . (13)

To realise the effect of the missing initial value [i.e., ǔ(0, t)] on
the solution of the equations, we define four auxiliary variables,
namely,

Ai(s, t) : =
∂ℓi(s, t)

∂ǔ(0, t)
, i = 1, 2, 3 (14a)

B(s, t) : =
∂u(s, t)

∂ǔ(0, t)
, (14b)

C(s, t) : =
∂
[

RT(s, t)
(

F(t)+ (l− s)f
)]

∂ǔ(0, t)
, (14c)

D(s, t) : =
∂
(

RT(s, t)f
)

∂ǔ(0, t)
. (14d)

Using the new variables defined by (14), one can derive the
following generalised model of the multi-backbone robot (see the
Appendix for derivation)

r
′

(s, t) = R(s, t)e3, (15a)

R
′

(s, t) = R(s, t)[u(s, t)]× , (15b)

u
′

(s, t) =− K−1

[

[u(s, t)]×Ku(s, t)+

[e3]×RT(s, t)
(

F(t)+ (l− s)f
)

]

,

(15c)

ℓ
′

i(s, t) = ‖e3 + [u(s, t)]×di‖, i = 1, 2, 3, (15d)

A
′

i(s, t) =
−(e3 + [u(s, t)]×di)

T[di]×
‖e3 + [u(s, t)]×di‖

B(s, t), i = 1, 2, 3, (15e)

B
′

(s, t) =K−1

[

[Ku(s, t)]×B(s, t)−

[u(s, t)]×KB(s, t)− [e3]×C(s, t)

]

,

(15f)

C
′

(s, t) =[RT(s, t)(F(t)+ (l− s)f )]×B(s, t)−

[u(s, t)]×C(s, t)−D(s, t),
(15g)

D
′

(s, t) = [RT(s, t)f ]×B(s, t)− [u(s, t)]×D(s, t). (15h)

Now, we provide a set of initial conditions for (15) that
ensures the solution of the observer model in (15) exponentially

converges to the solution of the boundary value problem defined
by (8) and (9).

r(0, t) = [0 0 0]T , (16a)

R(0, t) = I, (16b)

uz(0, t) = 0, (16c)
[

ux(0, t)
uy(0, t)

]

= −

∫ t

0

[

A
T
1 (l, t)

A
T
2 (l, t)

]†

P

[

ℓ1(l, t)− L1(t)
ℓ2(l, t)− L2(t)

]

dt, (16d)

ℓi(0, t) = 0, (16e)

Ai(0, t) = 0, i = 1, 2, (16f)

B(0, t) = [1 0 0; 0 1 0], (16g)

C(0, t) = 0, (16h)

D(0, t) = 0, (16i)

where P is a symmetric positive definite matrix and † denotes the
pseudo-inverse operator. We note that (16f-16i) are calculated
based on the definition of the auxiliary variables in (14). (16d)
is the main observer rule that guarantees the convergence of the
observer (see the Appendix).

The observer given in (15) is quasi-static, similar to the robot’s
model in (8). However, instead of using an iterative BVP solver,
it can be solved as an initial value problem using the initial
values given in (16). At a given time t, time-dependent variables
are assumed constant and the equations are solved in spatial
domain. Next, the time-dependent variables are updated [i.e.,
Li(t), ux(0, t), uy(0, t)]. The updated time-dependant variables
are used to solve the equations in the spatial domain again. The
observer can be generalised to a multi-segment robot following
the approach discussed in section 2.3.

In the next section, series of simulation and experiments are
performed to evaluate the model’s accuracy and demonstrate
the computational efficiency of the observer in comparison with
common BVP numerical solvers.

3. RESULTS

Simulations and experiments are performed to evaluate the
proposed design and modelling theory. The bronchoscopic robot
used in the simulations and experiments consists of two bendable
segments, shown in Figure 2. The length of the first segment is
500mm, and the length of the second segment (at the tip) is
40mm. The outer diameter of the robot is 4.5mm and the inner
diameter of the robot is 2mm. Twenty-seven circular fixtures
each weighting 5 g were equally spaced along the length of the
bronchoscope and were rigidly fixed to themain backbone shown
in blue in Figure 2.

We performed experiments to identify the developed model
parameters and validate the model. First we performed
experiments to identify the model parameters. For the
identification phase, each rod was commanded to either
push or pull the end disks by 5mm, making the robot to
randomly bend to 12 different positions. We estimated the 3D
shape of the robot using calibrated stereo rig comprising two
Logitech HD Pro C922 webcams. The cameras were running at
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1, 080p resolution. As identified through calibration using on
average 30 views of a checkerboard, a single pixel corresponded
to 0.25 × 0.25 mm on the image plane. Following calibration,
the entry point of the robot, i.e., s = 0 was estimated in 3D
space via triangulation. The robot coordinate frame was aligned
to a planar calibration target always visible by the cameras
during the experiments.

Furthermore, manual backbone segmentation established the
base and shape of the bronchoscope relative to the aligned
calibration grid. Matching backbone points were selected in both
images, and then triangulated to provide the 3D point cloud.
This process is shown in Figure 5. The mean error of the 3D
triangulation algorithm was equal to 6 pixels corresponding to
1.5mm. The extracted 3D backbones were used to identify for
the robot model parameters, namely, Young’s modulus, E and
shear moduli G of the robot and initial displacement of the rods,
δℓi, i = 1, ..., 6. The parameters were identified by fitting the
kinematic model given in (8) to the shape of the robot estimated
via the cameras at 12 different configurations. The identified
parameters of the model and the known parameters of the model
are given in Table 1.

In the next step, to validate the model accuracy we
commanded the robot to move to 20 different positions. The
shape of the robot was estimated using the calibrated cameras
and was compared to the shape of the robot predicted by the
identified model. Figure 6 shows representative results. Results
of the measurements including maximum, mean, and standard
deviation of error of the model in predicting the robot tip
position and the root-mean-squared error of the model in
predicting robot shape are listed in Table 2. The root-mean-
squared error is calculated as

RMSE =

√

∑m
j=1(‖r̂ − r‖j)2

m
, (17)

TABLE 1 | Physical parameters of the robot.

Known Identified

l1 40 mm E 92.13e9 GPa

l2 500 mm G 31e9 GPa

f [0.25, 0, 0]T N δℓ1 6.03× 10−14 m4

α1 15◦ δℓ2 0.23 mm

α2 30◦ δℓ3 1.2 mm

δ 1.7 mm δℓ4 0 mm

I 2.13× 10−12 m4 δℓ5 0 mm

J 2.72× 10−12 m4 δℓ6 0.7 mm

FIGURE 6 | A comparison of experimental bronchoscope’s shape with model

prediction at four different configurations.

FIGURE 5 | Estimating robot’s backbone shape using two calibrated cameras.
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TABLE 2 | Experimental results.

emax [mm] emean [mm] σ [mm] RMSE [mm]

26.2 17.6 10.9 10.3

Maximum error of tip position (emax ), mean error of tip position (emean), standard deviation

of error (σ ), and root mean squared error (RMSE) are reported.

and is used as a measure of the differences between the actual
shape of the robot, r̂, and the model predicted shape, i.e., r, for
m = 30 data points along the robot backbone.

In the experiments, the robot tip was capable of bending up to
100◦ with respect to its backbone (see Figure 6). The maximum
error of the model in estimating the position of the robot tip is
26.2 mm, corresponding to 1.9% of the robot’s length.

Finally, we performed simulations to compare the
computational efficiency of the observer with various shooting
methods used to solve BVPs. Shooting methods consists of using
a nonlinear root-finding algorithm to iteratively converge on
values for ux(0, t) and uy(0, t) for each segment, in order to
satisfy the boundary conditions (9), i.e.,

Minimize: Error : =

∥

∥

∥

∥

∥

∥

∥

∥









ℓ1(l1, t)− L1(t)
ℓ2(l1, t)− L2(t)

ℓ4(l1 + l2, t)− L4(t)
ℓ5(l1 + l2, t)− L5(t)









∥

∥

∥

∥

∥

∥

∥

∥

,

w.r.t. : ux(0, t), uy(0, t), ux(l1, t), uy(l1, t).

(18)

We compared the observer predictions with shooting method
algorithms that employ three different root-finding algorithms,
which to the best of authors knowledge, are the most commonly
used BVP solvers. These solvers are:

1. Interior-point method (Byrd et al., 2000),
2. Quasi-Newton method with BFGS Hessian estimation (Curtis

and Que, 2015),
3. Nelder-Mead method (Powell, 1973).

In the simulations, we pulled and pushed the cables from −5
to 5 mm at a frequency of 2π/10 Hz. The simulation runs for
10 seconds at sampling frequency of 50 Hz. The observer gain
P used in the simulations was set to 70 × I, as this value was
found to achieve the minimum prediction error. The optimally
tolerance for all the algorithms were set to 10−6. The simulations
are performed in Matlab on an Intel Core i7 (2.93GHz) machine
with 16 GB memory.

Figure 7 shows the robot’s trajectory estimated via different
methods. The observer and the Nelder-Mead method gave the
best accuracy. The other two methods, namely, interior-point
and quasi-Newton, gave substantial error at two points across
the robot trajectory. Also, it can be seen that the observer has
an error at the first sampling time but rapidly converges to the
correct solution.

Figure 8 shows the error of the solvers and the observer in
satisfying the boundary conditions given in (18). The observer
error is the same order as the BVP solvers. The BVP solvers
occasionally fail in minimizing the error, while the observer

FIGURE 7 | A comparison of bronchoscope’s tip trajectory calculated by

solving the robot’s model using four different methods. The bronchoscope’s

backbone is shown at several configurations along the trajectory.

FIGURE 8 | A comparison of (A) accuracy and (B) computational efficiency of

the observer with common BVP solvers. On each box in (B), the central mark

indicates the median, and the bottom and top edges of the box indicate the

25th and 75th percentiles, respectively. The whiskers extend to the most

extreme data points and the outliers are plotted individually using plus symbol.
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TABLE 3 | Experimental results.

Observer Interior-point Quasi-Newton Nelder-Mead

emean [mm] 8.05× 10−5 7.28× 10−5 2.53× 10−5 9.52× 10−5

σe [mm] 1.35× 10−4 1.39× 10−4 6.14× 10−5 6.04× 10−5

tmean [sec] 0.011 0.52 0.62 0.64

σt [sec] 0.006 0.45 0.36 0.19

Mean error (emean), standard deviation of error (σe ), average time to estimate the solution

of the model (tmean) for each method, and standard deviation of time σt are reported.

consistently maintains an error below 10−4 mm. Figure 8

compares the computational efficiency of the BVP solvers and
the observer in terms of the time that each method takes to
compute the solution of the model at each sampling time.
Evidently, the observer is much faster than the BVP solvers
and has lower standard deviation. The average time that the
observer takes to estimate the model’s solution is 0.0108 s,
which is significantly faster than other solvers. We performed
10 more simulations, where, the robots rods are pulled/pushed
at frequencies between π/5 Hz and π/50. The results are
summarised inTable 3. The results demonstrate that the observer
maintain similar error as the BVP solvers, while exhibiting
superior computational efficiency. The average time that the
observer takes to estimate the model’s solution is 47 times
faster than the fastest BVP solver, namely, the interior-point
method.

4. DISCUSSION

In this paper, we presented the concept for and the design
of a continuum robot for pulmonary endoscopy in MV
patients. MV patients are at high risk of developing
secondary infections and there is a need for a reliable and
controlled sampling of the distal lung to guide therapeutic
interventions. Current methods for diagnosis of diseases
in the distal lung in MV patients are not standardised,
lack reproducibility and require expert operators. Here, we
proposed a novel robotic bronchoscope that can be used
to democratise lung sampling and improve the accuracy
and reliability of distal lung sampling in MV patients. The
proposed design of the system considers the limitations
and constraints of current bronchoscopy, i.e., limited
dexterity, low repeatability, and relatively large size of
the bronchoscope.

One of the main challenges in current bronchoscopy is
navigating the tightly curved architecture of bronchial tree.
Several studies (Coppola et al., 1998; Ulusoy et al., 2016) have
reported that bifurcation angles of the bronchial tree including
sub-carinal angles and inter-bronchial angles vary between 30
and 100◦. The experimentallymeasuredmaximumbending angle
of the proposed robotic bronchoscope is 100◦ with respect to the
robot’s main backbone, which enables the robot to traverse the
tightly curved structure of airways. We note that the maximum
bending angle and curvature of the robot is a function of the
robot’s interaction with the environment. In the future, we
will study the bending capability of the robot in lung models

to fully verify the effectiveness of the robot in navigating the
bronchial tree.

The external diameter of traditional bronchoscopes is
generally 5–6mm with a working channel with inner diameter
of 2mm (Vachani and Sterman, 2008). The developed prototype
is comparable with current technology and has an outer diameter
of 4.5mm with a working channel with inner diameter of 2mm.
Moreover, the bronchoscope is highly dexterous and possesses 7
DoFs in total. The continuum manipulator is able to bend in 3D
at 2 different points along its backbone thanks to 6 push/ pull
NiTi rods. The extra dexterity offered by the proposed design can
potentially extend the reach of the clinical bronchoscopy.

One of the aims of this research is to democratise
bronchoscopy in MV patients in the ICU via automating the
procedure. To this end, we have proposed a new theoretical
framework to model the robot that can be used in closed-loop
control of the bronchoscope motion. Our novel mechanics-based
model of the robotic bronchoscope can predict the shape of the
robotic bronchoscope under external forces with an accuracy
corresponding to 1.9% of its arc-length. We note that for long,
slender continuum robots, tip error is highly dependent on the
total arc length (Rucker et al., 2010) and robot’s backbone’s
interaction with its surrounding environment. We note that this
error can be further reduced via closed-loop control of the robot
tip. A closed-loop controller can employ sensory feedback from
the robot tip position to minimise the bronchoscope error in
navigating the lung. In practice, electromagnetic trackers are
placed at the tip of the bronchoscope to measure its tip position
in real-time. The proposed design offers a 2mmworking channel
that can be used to place such trackers, allowing real-time
monitoring of robot position for closed-loop control.

Furthermore, we have demonstrated that our numerical
framework can estimate the model’s solution 47 times faster than
the fastest existing solvers, enabling applications in real-time
robotic control. Future work will focus on developing a closed-
loop control strategy that uses the model and the feedback of
the robot tip position acquired with electromagnetic trackers,
to minimise the error of the robot tip in following a desired
trajectory for sampling.
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A. NOMENCLATURE

t Time.

s Arc length.

. Derivative with respect to time.
′

Derivative with respect to s.

[ ]× Converts R
3 in so(3).

n Number of bendable segments.

i Number of rods in each segments.

di Position of rods with respect to the main backbone.

δ Rods’ distance from the robots centroid.

αn Angular position of 1st rod of nth segment with

respect to the main backbone.

βi Angular position of ith rod with respect to the main

backbone.

l Overall length of the robot.

ln length of the nth segment.

ℓi Model predicted length of the ith rod.

r(s, t) Position vector of the main backbone in the global

reference frame.

ri (s, t) Position vector of the ith rod in the global reference

frame.

R(s, t) Orientation matrix.

u(s, t) Vector of backbone curvatures.

ux (s, t) Curvature around x axis.

uy (s, t) Curvature around y axis.

uz (s, t) Curvature around z axis.

K Stiffness matrix.

E Young’s modulus.

I Second moment of inertia.

G Shear modulus.

J Polar moment of inertia.

F(t) External point force.

f External distributed force.

e3 Unit vector aligned with the z-axis of the global

coordinate frame.

I Identity matrix .

0 Zero matrix.

P Observer gain.

A(s, t),B(s, t),C(s, t),D(s, t) Auxiliary variables defined in (14).

APPENDIX

Derivation of Auxiliary Variables
Here, we derive the differential equations governing the evolution
of auxiliary variables given in (14), beginning with (14a).

Using (8d) and the chain rule of differentiation we have

A
′

i(s, t) =

∂

ǔ(0, t)

[

(e3 + [u(s, t)]×di)
T(e3 + [u(s, t)]×di)]

1/2 =

−(e3 + [u(s, t)]×di)
T[di]×

‖e3 + [u(s, t)]×di‖
B(s, t)

In deriving (15) we used the following identity

∂([a]×b)

∂c
= −[b]×

∂a

∂c
+ [a]×

∂b

∂c
.

We now use (8c) to derive the equations for calculating B(s, t).

B
′

(s, t) =
∂u

′
(s, t)

ǔ(0, t)
= K−1

[

[Ku(s, t)]×B(s, t)−

[u(s, t)]×KB(s, t)− [e3]×C(s, t)

]

Furthermore, C(s, t) can be computed by taking the transpose
of (8b), multiplying both sides by F(t) + (l − s)f , subtracting
RT(s, t)f , and finally taking partial derivative of both sides with
respect to ǔ(0, t).

C
′

(s, t) =[RT(s, t)(F(t)+ (l− s)f )]×B(s, t)−

[u(s, t)]×C(s, t)−D(s, t).

We can calculate D(s, t) in a similar way. First, we take the
transpose of (8b). Next, we multiply both sides by f . Finally,
taking partial derivative of both sides with respect to ǔ(0, t) gives

D
′

(s, t) = [RT(s, t)f ]×B(s, t)− [u(s, t)]×D(s, t).

Proof of Convergence and Stability
The error of the observer in satisfying the robot’s model’s
boundary condition in (9) (i.e., robot’s rods’ lengths) is

ǫ(t) =

[

ℓ1(l, t)
ℓ2(l, t)

]

−

[

L1(t)
L2(t).

]

To prove that this error exponentially converges to zero, we select
the following Lyapunov candidate

V =
1

2
ǫ
T
ǫ. (A1)

Taking the time derivative of V and replacing ǫ̇ using (14a) we
obtain

V̇ = ǫT ǫ̇ = ǫ
T

[

A
T
1 (l, t)

A
T
2 (l, t)

]

˙̌u(0, t).

Substituting ˙̌u(0, t) using (16d) gives

V̇ = −ǫ
T

[

A
T
1 (l, t)

A
T
2 (l, t)

] [

A
T
1 (l, t)

A
T
2 (l, t)

]†

Pǫ

= −ǫ
TPǫ

In deriving the above equation we used the following identity

aa† = aaT(aaT)−1 = I.

P is symmetric positive definite. Thus, ∀t > 0, V̇ is negative
definite. Therefore, as t → ∞, ǫ̇(t) → 0. Consequently, the
solution of the observer converges to the solution of the model
given in (8).
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