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Abstract: At present, Alzheimer’s disease (AD) and related dementias cannot be cured. Therefore,
scientists all over the world are trying to find a new approach to prolong an active life of patients
with initial dementia. Both pharmacological and non-pharmacological pathways are investigated to
improve the key symptom of the disease, memory loss. In this respect, influencing the neuromod-
ulator acetylcholine via muscarinic receptors, such as cevimeline, might be one of the therapeutic
alternatives. The purpose of this study is to explore the potential of cevimeline on the cognitive
functions of AD patients. The methodology is based on a systematic literature review of available
studies found in Web of Science, PubMed, Springer, and Scopus on the research topic. The findings
indicate that cevimeline has shown an improvement in experimentally induced cognitive deficits in
animal models. Furthermore, it has demonstrated to positively influence tau pathology and reduce
the levels of amyloid-β (Aβ) peptide in the cerebral spinal fluid of Alzheimer’s patients. Although
this drug has not been approved by the FDA for its use among AD patients and there is a lack of
clinical studies confirming and extending this finding, cevimeline might represent a breakthrough in
the treatment of AD.

Keywords: cevimeline; evoxac; AF102B; SNI2011; cholinergic agonist; muscarinic receptors; cognition;
memory; neurodegeneration; Alzheimer disease

1. Introduction

Alzheimer’s disease (AD) is an irreversible and progressive neurodegenerative dis-
order that affects memory and thinking skills, and eventually, leads to the inability to
execute the activities of daily living [1,2]. In fact, it is the fifth leading cause of death
in the world [3] and the most common form of dementia, accounting for 60–70% of all
dementias [4]. The main symptom of AD and other dementias is memory loss. In the
early stages of AD, especially short-term memory, i.e., a brief period of time in which
one can recall information that s/he was just exposed to, for example a phone number or
a meal s/he has just eaten, is affected [5]. However, in the advanced stages of the disease,
patients have problems with their long-term memory, i.e., the memory that refers to the
storage of information over an extended period [5]. This type of memory includes three
different types of memories, all of which are significantly impaired in later stages of AD:
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semantic memory associated with understanding the meaning of words, episodic referring
to the past events, and procedural associated with an ability to carry out a task.

Currently, 44 million people worldwide are living with AD or a related form of
dementia, out of which 10 million are people in Europe [6]. By 2030, this number should
rise to 14 million, which would inevitably burden national health systems, state economies,
and the daily lives of millions of people with AD and their families [7]. The expected
costs of treating these people are estimated at €250 billion. Although AD and related
dementias cannot be cured, their progression can be delayed. Therefore, scientists all over
the world are trying to find a new approach to prolong an active life of patients with initial
dementia. Both pharmacological and non-pharmacological pathways are investigated to
improve the key symptom of the disease, the memory loss. In this respect, imitating the
neurotransmitter acetylcholine via acting on the muscarinic receptors might be one of the
therapeutic alternatives based on the available literature.

Acetylcholine (ACh) is a neurotransmitter of special importance. It can be found
in the peripheral and central nervous system (CNS). In the CNS, it plays an important
role in influencing alertness, attention, learning, and memory. Damage to this cholinergic
system has been found to be closely associated with decreased cognitive function and AD
manifestations. There are two groups of ACh receptors: nicotinic and muscarinic. The
cholinergic system can be therapeutically affected by either direct-acting or indirect-acting
cholinergic agents. The second group of cholinergics, reversible substances, plays an
important role in the treatment of AD. This group includes rivastigmine, donepezil, and
galantamine [8].

Cevimeline (Figure 1) represents a potent direct-acting muscarinic receptor agonist.
Chemically, it is 2-methylspiro[1,3-oxathiolane-5,3′-1-azabicyclo[2.2.2]octane]. In the lit-
erature or clinical studies, it is also known as AF102B, FKS-508, SNK-508, SND-5008, or
SNI-201. Its oral dosage form has been registered by the FDA under the tradename Evoxac®

in indication “treatment of symptoms of dry mouth in patients with Sjögren’s Syndrome”,
and the recommended dose of cevimeline hydrochloride is 30 mg taken three times a
day. The major mechanism of action of this muscarinic agonist (in sufficient dosage) is
increased secretion of exocrine glands, such as salivary and sweat glands and increased
tone of the smooth muscle in the gastrointestinal and urinary tracts [9,10]. Cevimeline
was also studied as a treatment for dry mouth caused by radiation therapy to the head
and neck (NCT00466388; NCT00017511) [8]. There is currently no (according to clinicaltri-
als.gov) clinical trial with cevimeline. However, extensive experimental preclinical research
indicates its ability to positively affect cognitive function and shows its potential in the
treatment of AD.

Figure 1. The structure of cevimeline.

Therefore, the purpose of this study is to explore the potential of cevimeline on
cognitive functions of AD patients.
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2. Results and Discussion
2.1. Pharmacology of Cevimeline

Cevimeline hydrochloride is a white crystalline powder that is soluble in water [9].
Absorption: After peroral administration of a single dose (30 mg), cevimeline is rapidly
absorbed with a mean time to peak concentration of 1.5 to 2 h. When administered with
food, there is a decrease in the rate of absorption, with a fasting Tmax of 1.53 h and a Tmax
of 2.86 h after the meal [9]. In healthy volunteers using cevimeline (30 mg, t.i.d, 7 d), Cmax
was 59.9 ng/mL and it was reached in 1.8 h. In a group of healthy elderly volunteers (aged
62–80 years; 30 mg), a mean Cmax of 90.8 ng/mL was reached on average over 1.5 h. In
women with Sjögren’s syndrome who were given cevimeline (30 mg), a mean Cmax of
91.6 ng/mL was reached in an average of 1.5 h [11]. No accumulation of active drug or its
metabolites was observed, following the multiple dose administration [12]. Distribution:
An approximate distribution volume of cevimeine is 6 L/kg, and its binding to human
plasma proteins is less than 20%. Therefore, extensively, cevimeline’s binding to tissues
is suggested, but the specific binding sites remain unknown. Metabolism: Cevimeline is
metabolized by isozymes CYP2D6, CYP3A3, and CYP3A4. Within the first 24 h, 86.7% of
the administered dose was recovered as follows: 16.0% uncharged, 44.5% cis- and trans-
sulfoxide, 22.3% glucuronic acid conjugate, and 4% cevimeline N-oxide. Trans-sulfoxide,
as the metabolite of cevimeline, was converted into the corresponding conjugate with
glucuronic acid in approximately 8%. No inhibition of cytochrome P450 isozymes 1A2,
2A6, 2C9, 2C19, 2D6, 2E1, and 3A4 was observed for cevimeline [9]. Excretion: Cevimeline’s
mean half-life is 5 ± 1 h. The administration of a 30 mg dose of cevimeline reveraled that
84% of the dose was excreted in the urine after 24 h. Moreover, 97% of the administered
dose was recoverd in the urine, whereas only 0.5% of the dose was recovered in the feces
after seven days [9,13–15]. Mechanism of action: Cevimeline is a cholinergic agonist
that binds and activates M1 and M3 muscarinic receptors. The selectivity of cevimeline
toward mAChR was evaluated by Heinrich et al. [16]. The EC50 values for cevimeline were
determined in the study as follows: 0.023 µM for M1, 1.04 µM for M2, 0.048 µM for M3,
1.31 µM for M4, and 0.063 µM for M5 receptors. This confirmed that cevimeline is a potent
M1 agonist. As seen from the data described above, its selectivity toward M3 was 2-fold
lower and toward M5 was 3-fold lower if compared with the selectivity for the M1 receptor.
However, the selectivity of cevimeline toward the M2 receptor was 46-fold lower and
toward the M4 receptor was 43-fold lower than its selectivity for the M1 receptor [16]. It
should be mentioned that M5 receptors are expressed in the regions discrete of therapeutic
interest. The M5AChR subtype represents in total mAChR population in the CNS less
than 2% [17]. M1 receptors are primarily found in the secretory glands (exocrine glands,
such as the salivary and sweat glands). The activation of the M1 receptors leads to the
increased secretion from the secretory glands. In general, M3 receptors are distributed on
the smooth muscle and in many glands that help stimulate secretion in the salivary glands.
The activation of M3 receptors leads to the contractions of the smooth muscle and to the
increased glandular secretion. As a result, the increased salivary excretion is observed,
and dry mouth symptoms are relieved [18]. That is why cevimeline was previously
approved for the treatment of xerostomia in Sjögren’s syndrome. Adverse effects: The
toxicity of cevimeline is defined by an exaggeration of its parasympathomimetic effects
(visual disturbance, lacrimation, gastrointestinal spasm, nausea, vomiting, diarrhoea,
headache, sweating, or respiratory distress) [9]. Voskoboynik et al. reported a previously
healthy patient who deliberately ingested approximately 10 mg/kg of cevimeline and
showed symptoms of muscarinic excess and mental depression. This incident is in detail
characterized below [19].

2.2. Muscarinic Acetylcholine Receptors and Cognition

Acetylcholine is a major neurotransmitter in the body. Receptors for this neurotrans-
mitter are of two types: acetylcholine muscarinic and acetylcholine nicotinic (Figure 2).
There are five subtypes of muscarinic receptors known as M1, M2, M3, M4, and M5 [20],
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and classically, there have been two subtypes of nicotinic receptors: NM (muscle-type;
stimulation muscle contraction; increase Na+ and K+ permeability) and NN (neuronal-type;
stimulate all autonomic ganglia; Na+, K+, and Ca2+ channel opening), although recently,
they have been found also in the non-neuronal tissues [21,22]. Nicotinic acetylcholine
receptors (nAChRs) are ligand-gated ion channels [23]. The nAChR consists of five sub-
units and is assembled into homomeric or heteromeric pentamers. In mammals including
humans, 16 subunits that are designated by Greek letters often supplemented with Arabic
numerals (α1–α7, α9–α10, β1–β4, γ, δ, ε), have been identified. The α8 subunit is related
to the α7 subunit, but it has been identified only in avian species [24–26]. Muscarinic
acetylcholine receptors (mAChRs) have seven transmembrane regions. They are known as
G protein-coupled receptors; therefore, they transduce their signals through G proteins.
Subtypes M1/M3/M5 are coupled with Gq/11 protein, while M2/M4 subtypes are coupled
with Gi/o protein [17]. Furthermore, mAChRs M1, M3, and M5 are combined to stimulate
phospholipase C, while mAChRs receptors M2 and M4 act to inhibit adenylyl cyclase
(Figure 3). mAChRs are present in both the periphery and the CNS. mAChRs in the central
and peripheral nervous system are involved in autonomic, cognitive, and motor function.
M1AChRs are the most common subtype in the CNS and are abundant in the postsynaptic
nerve endings of all areas of the forebrain [27,28]. Many studies suggest that M1AChRs are
critically involved in cognitive processes and that loss of cholinergic function contributes
to the cognitive decline associated with AD and other neurological and psychiatric disor-
ders [29–31]. Neurodegenerative disorders are associated with impairment of a number
of cognitive domains and deterioration of episodic memory, which underlies significant
difficulties for patients in daily activities, including self-care [32]. Damage to muscarinic
M1 receptors and their associated signaling pathways plays an important role in these
disorders [33,34]. Therefore, pharmacological modulation of muscarinic M1 receptors
offers the possibility of improving episodic memory [35,36].

Acetylcholine plays an important role in cognitive effects that are mediated by stimu-
lation of the M1 receptors. Therefore, M1 receptor agnosists may improve cognition upon
their interaction with the receptors. This improvement has been achieved in animal models
as well as in cognitive tests of patients suffering from AD. In addition, central presynaptic
M2 receptor antagonists may also improve cognition upon increasing acetylcholine release.
Acetylcholine M1 receptor agonists have been shown to increase the activity of medial
prefrontal cortical neurons, restoring reverse learning disabilities [37]. Such specific M1
agonists can be used to improve memory by enhancing cholinergic communication in the
brain [38]. M1 muscarinic agonists may modulate some of the hallmarks of AD, improving
its course, with important implications for future therapy. Tsang et al. showed that the
change in neuropsychiatric behavior in AD patients is due to a drastic decrease in M2
receptors [39]. Earlier studies reported by Zuchner et al. suggested that stimulation of
the M2 receptor is associated with a decrease in β-secretase enzyme activity [40,41]. Thus,
a decrease in the M2 receptor is thought to lead to an increase in β-amyloid peptides in
the brain [42]. It has also been reported that α-secretase activity, and thus less β-amyloid
peptide production, increases after stimulation of M1/M3 receptors [43].
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Figure 2. Left: Connection of presynaptic and postsynaptic neuron. Middle: Simplified illustration of cholinergic synapse
with the mode of action of acetylcholine. The influx of Ca2+ into the presynaptic neuron caused by action potential is
mediated via calcium channels and results in synaptic vesicle fusion to the active zone membrane of the presynaptic
neuron. The subsequent acetylcholine release into the synaptic cleft enables the activation of acetylcholine receptors
on the postsynaptic membrane. The acetylcholine breakdown mediated by acetylcholinesterase generates acetate and
choline. Molecules of choline are reabsorbed by presynaptic neuron via choline transporters. Choline acetyltransferase-
mediated acetylation of choline regenerates acetylcholine. Then, the neurotransmitter is transported into the synaptic
vesicle and stored until the next use. Top-right: Simplified scheme of acetylcholine hydrolysis by acetylcholinesterase with
subsequent enzyme regeneration. Bottom-right: Legend of involved cations, neurotransmitter, and its degradation products.
Abbreviations: Ac, acetate (or acetyl group if combined with choline); AChE, acetylcholinesterase; Ch, choline; ChAT,
choline acetyltransferase; ChT, choline transporter; CoA, coenzyme A; Gi/o and Gq/11, G proteins; mAChRs, muscarinic
acetylcholine receptors; nAChRs, nicotinic acetylcholine receptors; VAChT, vesicular acetylcholine transporter. Created
with BioRender.com.

The possible involvement of muscarinic acetylcholine receptors in various patholog-
ical conditions is becoming an important area of neuropharmacology. The treatment of
various pathological conditions based on muscarinic receptors as targets has long been
limited by the lack of selective muscarinic receptor ligands. Today, some of such muscarinic
receptor ligands are known as, for example, xanomeline [44], sabcomeline [45], talsaci-
dine [46], NGX-267 (AF267B) [47], WAY-132983 [48], and cevimeline [35] as well. These
M1 agonists are classified as orthosteric ligands. Although the majority of the orthosteric
ligands failed in clinical development at some stage probably due to reduced selectivity
toward M1 receptors, they provided interesting data about the therapeutic potential of M1
agonists. Moreover, some of the compounds entered phase II/III of clinical studies [16].
Bodick et al. reported a placebo-controlled clinical trial of xanomeline, which is a direct
acting muscarinic receptor with a possible therapeutic effect in AD patients. The highest
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administered dose of xanomeline tartrate seemed to improve a cognitive performance in
patients that completed the study. Unfortunately, dose-dependent adverse effects (mainly
gastrointestinal) resulted in the limitation of the drug utility. The authors remarked that
xanomeline-mediated cognitive improvement seemed to be equally in magnitude to the
improvement in cognition achieved in a tacrine hydrochloride-based study in AD pa-
tients [49,50]. However, the authors further claimed that these congnitive improvements
were different in kind; therefore, additional studies are required. Moreover, the study also
confirmed an improvement of behavioral disturbances in AD patients [49]. Interestingly,
xanomeline, the M1/M4 receptor agonist, has been attracting attention in recent years
due to its efficiency to treat behavioral and psychotic disturbances, as showed in the trials
in AD patients. This resulted in further studies to evaluate its utility for the treatment
of schizophrenia [51]. Indeed, xanomeline revealed its potential for a novel treatment
of schizophrenia with improved short-term memory and verbal learning function [52].
Despite its gastrointestinal adverse effects, xanomeline still remains an interesting drug for
further studies [53]. According to the above-mentioned studies, targeting mAChRs can
be considered as an interesting approach for both cognitive and psychotic disturbances
therapies [51].

In addition to the direct muscarinic receptor agonists, the allosteric modulators repre-
sent an alternative approach in the improvement of cognition. One of the most highlighted
attributes in allosteric modulators is their selectivity toward M1 receptors. Threfore, it is
assumed that the adverse effects as a result of nonselective activation of other mAChRs
(M2-M5) should be reduced. There is a study reported by Chambon et al., which focused on
the mode of action of benzyl quinolone carboxylic acid (BQCA), the M1 receptor positive
allosteric modulator in relation to positive effects on memory and side effects in an animal
model (rats). The findings of this study reveal that the therapeutic potential of BQCA for
the treatment of memory deficits was observed in Alzheimer’s disease and that the results
of this molecule proved an advantage over the agonist cevimeline [38]. In another study,
Gould et al. confirmed a significant role of M1AChR in learning and memory of mice. The
study revealed that the M1AChR knockout (M1KO) mice showed a reduced rate of learning
in comparison to the wild-type mice. Moreover, the administration of the M1 positive al-
losteric modulator, BQCA, enhanced learning rate in the wild type, but it did not affect the
M1KO in the discrimination task over 12 consecutive days. The authors further reported
that M1AChR represented a significant potential therapeutic target for the improvement of
cognition in neuropsychiatric disorders, such as schizophrenia [54]. Another animal study
based on the other selective M1 muscarinic receptor positive allosteric modulator, PQCA,
was evaluated by Uslaner et al. The study for the first time demonstrated improvements
in cognitive performance in the rodent, cynomolgus macaque, and rhesus macaque. The
authors concluded that the M1 selective modulator seems to be a suitable candidate for
the trials in AD patients [55]. For the sake of completeness, it should be mentioned that a
promising highly selective, positive allosteric modulator of the M1AChR, MK-7622, which
entered the phase II trials in AD patients [56], has been recognized recently as ineffective
at improving the cognition. The study in mild-to-moderate AD patients treated with
MK-7622 did not confirm an expected improvement in cognitive functions. As declared
by the authors, their findings based on MK-7622 trials do not necessary mean that other
selective M1 allosteric modulators would be unable to improve cognition [57].

To conclude, the selective M1 allosteric modulators and direct-acting mAChR agonists
are both considered as possible drugs to improve cognitive performance as well to treat the
AD. Undoubtedly, both groups of compounds may provide significantly different biological
data. However, the studies mentioned above and those discussed below demonstrate that
mAChRs are still an attractive target associated with cognition and AD. Even in the case if
the drugs will not phenomenally treat cognitive function, some of them still bear potential
to attenuate progression of the AD. This can bring an improvement in the quality of life for
AD patients and their families.
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Figure 3. Top: Simplified and schematic view of muscarinic acetylcholine receptors (mAChRs) type M1, M3, and M5 and
their signaling pathway. The receptors are coupled to trimeric Gq/11 proteins composed of α-, β-, and γ-subunits. Upon
ligand binding, mAChR undergoes a conformational change, resulting in dissociation of the α-subunit, which activates
phospholipase C. Activated phospholipase C promotes the hydrolysis of phosphoinositol 4,5-bisphosphate. One of the
hydrolysis products, diacylglycerol, promotes the translocation of protein kinase C from the cytoplasm to the cell membrane
followed by the activation of kinase. Activated kinase mediates the phosphorylation of various proteins, which activate
several gene transcription factors. The second product of the hydrolysis, inositiol 1,4,5-trisphosphate, is translocated to
its receptors integrated into endoplasmic reticulum, resulting in the opening of calcium channels. Increasing intracellular
calcium promotes several cellular responses. Middle: Simplified and schematic view of mAChRs type M2 and M4 including
signaling pathway of the receptors coupled with trimeric Gi/o proteins. Upon ligand binding to the binding site of the
receptor, the dissociated α-subunit inhibits adenylyl cyclase. The inhibition of adenylyl cyclase results in a decreased
level of intramolecular cAMP. Reduced levels of cAMP as a second messenger decreases an activity of cAMP-dependent
protein kinase A, which catalyzes the phosphorylation of several proteins followed by various cellular responses. Bottom:
Simplified view of nicotinic acetylcholine receptors (nAChRs). The receptors are composed of five subunits and act as
natural ion channels. Channels allow Na+, Ca2+ and K+ ions to flow down their electrochemical gradient; some of the
channels enable the flow of selected cations only. The function of nAChRs can be modulated by neurotransmitters as well
as by different toxins and drugs. The cross-section of the nAChR indicates binding sites of various modulators (colored
triangles) and cation flow across the pore (colored arrows). The pentameric schematic view of nAChRs illustrates two
main groups of the receptors (homomeric and heteromeric) with selected examples (α7, α9, α4β2, α4α6β2β3, and α3β4).
The acetylcholine binding sites on nAChRs are depicted by green triangles. Abbreviations: ACh, acetylcholine; ADP,
adenosine diphosphate; ARA, arachidonic acid; ATP, adenosine triphosphate; cAMP, cyclic adenosine monophosphate;
DAG, diacylglycerol; Gi/o and Gq/11, G proteins; IP3, inositiol trisphosphate; LA, local anesthetics; NCA, noncompetitive
agonists; PIP2, phosphatidylinositol 4,5-bisphosphate; PLC, phospholipase C; PKA, protein kinase A; PKC, protein kinase C;
STR, steroids. Created with BioRender.com.
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2.3. Cevimeline and Cognition

A relatively well-documented area is the effect of cevimeline on cognitive function in
animal models (mice, rats, monkeys). Between 1988 and 2014, several experimental studies
evaluating the effect of this drug on various forms of memory (reference memory, working
memory, fear memory) on amnesia and learning-related processes were published [58–67].
Likewise, all authors conclude that based on these results, cevimeline may be considered as
a candidate for the clinical examination of the cholinergic hypothesis of cognitive decline
in Alzheimer’s dementia.

Nakahara et al. explored the impact of cevimeline on experimental amnesia (produced
by anticholinergic agents intracerebroventricularly and subcutaneously) using a passive
avoidance task in rats. It was found that cevimeline is able to ameliorate the memory
deficits in rats, and the authors suggest that this molecule may compensate central cholin-
ergic defects [58]. Nakahara et al. extended their previous study with rats, and they were
examining the effect of cevimeline on memory disorders using a T-maze and radial-arm
maze task in experimental amnesia models (bilateral intracerebroventricular injection of
cholinotoxine). The repeated administrations of cevimeline for 5 weeks significantly ame-
liorated impaired performance in a delayed alternation task in the T-maze and acquisition
failures in a radial-arm maze task. The authors observed the effect of a single adminis-
tration of cevimeline, which led to the reduction of the incorrect choices in a radial-arm
maze task with 6 h delay time [59]. Fisher et al. found that in cholinotoxine-treated rats,
a single dose of cevimeline managed to reverse cognitive impairments in a step-through
passive avoidance task. The same was true for reversing reference memory impairments
in the Morris water maze test, and the repetitive administrations of cevimeline improved
working memory deficits in the same test [60]. The effect of cevimeline on the processes
associated with the learning of aged and young rats was studied by Brandeis et al. The
Morris water maze task was used for the evaluation of spatial reference memory, while an
eight-arm radial maze was used for spatial working memory evaluation. As a result, the
age-related cognitive impairments were significantly reduced in both tasks after cevimeline
administration [61]. In addition, Vincent et al. evaluated the impact of cevimeline on
the learning processes using the Morris water maze task. In this case, model animals
were C57BL/10 mice. Learning was significantly improved by ranging dose levels, and
U-shaped dose–response dependence was confirmed. The findings show that cevimeline
enhanced cognition in mice with a longer duration of action than reported for traditional
muscarinic agonists [62]. More specific tests of reference and working memory were used
by Dawson et al., including the rat tests of reference memory, a rat response sensitivity test,
passive avoidance or conditioned suppression of drinking, and working memory (delayed-
matching-to-position) and a mouse tail-flick test. The results of this study suggest that
cevimeline can reverse the effects of a scopolamine-induced deficit in these animal tests [68].
The roles of hippocampal M1/M2AChRs in working and reference memory performance of
rats were examined in the study of Ohno et al. [64]. The authors applied intrahippocampal
injections of selective antagonists (pirenzepine, methoctramine) and studied whether the
concurrent injection of cevimeline can reverse the negative effect of these antagonists. It
was found that M1 muscarinic receptor agonist cevimeline attenuated increased working
memory errors in the presence of both antagonists. The results suggest that processes
mediated by M1AChRs in the hippocampus are involved in working memory but not in
reference memory [64]. The results of the study of Suzuki et al. suggest that cevimeline is
able to ameliorate the disturbance of learning behavior in senescence-accelerated mice. The
shortened latency of step-through in this type of mice was prolonged by the administration
of cevimeline (3 and 10 mg/kg, p.o.) in a bell-shaped manner. The authors concluded
that the central cholinergic system in senescence-accelerated mice may be an appropriate
age-dependent model of amnesia for evaluating pharmacological actions of drugs [69].
The positive efficacy of cevimeline on cognition was confirmed in both intravenous and
peroral forms of administration in mice by Iga et al. [66]. In the study, the authors eval-
uated a behavioral memory task, long-term potentiation, and cholinergic modulation of
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hippocampal rhythmical slow activity. Perorally administered cevimeline in mice resulted
in improvement of scopolamine-induced memory deficits at doses of 1.0 mg/kg (passive
avoidance task). Intravenously administered cevimeline induced slow rhytmicalhippocam-
pal activity at the same doses of 1.0 mg/kg [66]. O’Neill et al. used a monkey as the
only model animal for their experiment. Object working memory was tested in young
and aged pretrained monkeys, using a delayed match-to-sample task. Cevimeline was
administered by intramuscular injection in doses of 0.1–2.1 mg/kg. The results show that
there was an improvement in task performance in both young and aged monkeys. Thus,
the findings indicate that cevimeline may represent a low-toxicity treatment of age-related
memory disorders [70]. The stimulation of muscarinic receptors (M1AChRs) promotes
long-term memory consolidation during and after a fearful experience in mice. Over-
consolidation may contribute to the recurrent and intrusive memories of post-traumatic
stress disorder. Young et al. illustrated that agonist M1AChRs cevimeline regulates the
consolidation of cued fear memory by redundantly activating phospholipase C in the
basolateral amygdala [67]. Cevimeline (AF102B) and other structurally related compounds
of AF-series developed by Fisher et al. (e.g., AF267B and AF292) act as cognitive enhancers
and potential disease modifiers in animal models of AD [71].

The study in human, reported by Nitsch et al., evaluated the effect of cevimeline on the
changes in total β-amyloid (Aβ) levels in cerebrospinal fluid (CSF) before and during the
treatment. The authors reported data providing evidence of Aβ levels reduction in the AD
patients, but they did not measure behavioral or cognitive short-term changes [72]. In an
earlier study reported by Fisher et al., clinical trials of cevimeline (AF102B) in AD patients
resulted in the dose-dependent improvement in the cognitive subscale of Alzheimer’s
disease assessment scale (ADAS-Cog) [73]. It should be noted that xanomeline, the above-
mentioned direct mAChR agonist, revealed the affection of cognitive performance at
the higher evaluated doses [49]. On the other hand, this may be associated with the
adverse effects. Considering the remarkable data in animal studies and a lack of human
studies, further research is needed to unambiguously confirm cevimeline’s effect on the
improvement of cognitive functions.

2.4. Cevimeline and Alzheimer’s Disease

It seems that M1AChRs could represent an important target that affects all major
features of AD, such as cholinergic deficiency, cognitive dysfunction, Aβ, and tau pathology.
Positive effects of muscarinic agonists have been demonstrated in several cell culture
studies [74–77], animal models [78,79], and AD patients [72]. In experiments, cevimeline
increased αAPPs, decreased Aβ levels, decreased tau hyperphosphorylation, and blocked
Aβ-induced neurotoxicity in vitro (Figure 4). In cognitive tests, it had a positive effect on
deficits and showed excellent therapeutic safety, even with various types of administration.

In vitro experiments on cell lines represent an imaginary beginning to investigate the
relationship between cevimeline and a possible AD therapy. Harring et al. investigated
the effect of cevimeline on the secretion of amyloid precursor protein (APP) by M1AChRs-
transfected PC12 cells. The results indicate that cevimeline might be a molecule suitable for
reducing cell-associated APP levels over a prolonged period and thus affect Aβ deposition
and possibly delay AD progression [74]. The same authors extended this study (Harring
et al.) on the connection with the nerve growth factor (NGF). On NGF-differentiated
PC12 cell culture, they promoted APP secretion by administering 50 ng/mL NGF for
3 days. The effects of NGF were reflected by larger reductions in membrane-associated
APP levels following muscarinic stimulation [75]. Gurwitz et al. (1995) described an effect
of M1-selective muscarinic agonist, which itself caused a minimal neurite outgrowth in
M1AChRs-transfected PC12 cells; however, in the presence of NGF, it is able to induce
it. The experiment showed that cevimeline might improve the neuronal response to
neurotrophic factors and thus contribute to this mechanism in the treatment of AD. Tau
pathology is, apart from the presence of Aβ, another characteristic feature of AD [76].
The possibility that tau phosphorylation is controlled by M1AChRs has been investigated
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by Sadot et al. on M1AChRs-transfected PC12 cells. The stimulation of M1 receptors
with cevimeline was found to reduce tau phosphorylation. The effect was time and dose
dependent. In addition, a synergistic effect on tau phosphorylation was found when
cevimeline was combined with NGF. As the authors conclude, this is the first evidence of
a link between the cholinergic signal transduction system and the neuronal cytoskeleton.
According to the authors, this can be mediated by regulated phosphorylation of the tau
microtubule-associated protein [77].

The subsequent in vivo animal experiments have taken previous experiments to
the next level of knowledge. Beach et al. extended the results from the in vivo experi-
ments on rabbits, which were administered cevimeline for 5 days, s.c. injections in doses
2 mg/kg/day. They discovered that cevimeline had decreased cerebrospinal fluid Aβ
concentrations [78]. Welt et al. used amyloid-β protein precursor transgenic mice as
model animals. The results confirmed the effect of modulation of M1AChRs by cevimeline
(5 mM applied directly to the hippocampus via retrodialysis) on an Aβ pool in interstitial
fluid. These results strengthen the potential of the M1AChRs agonist cevimeline in AD
therapy [79].

Figure 4. Assumed effect of muscarinic acetylcholine receptor agonists such as cevimeline on the mAChRs in association
with AD. The agonist-mediated activation of mAChRs result in increased activity of PKC via same pathway as described
in the previous figure. The increased activity of PKC via a cascade of reactions activates ERK, which in turn activates
α-secretase. The APP is cleavaged predominantely by α-secretase to produce a non-amyloidogenic P3 peptide. In addition,
the activated PKC inhibits γ-secretase activity, leading to a decrease of Aβ in the amyloidogenic pathway. Abbreviations:
Aβ, amyloid beta; AICD, APP intracellular domain; APP, amyloid precursor protein; CTFα (C83), C-terminal fragment
α; CTFβ (C99), C-terminal fragment β; DAG, diacylglycerol; ERK, extracellular regulated kinase; Gq/11, G proteins; IP3,
inositiol trisphosphate; MEK, mitogen-activated protein kinase kinase; P3, non-amyloidogenic peptidic fragment; PIP2;
phosphatidylinositol 4,5-bisphosphate; PLC, phospholipase C; PKC, protein kinase C; Raf, serine/threonine specific protein
kinases; Ras, small GTP-binding proteins; sAPP/α/β, secreted APP/α/β. Created with BioRender.com.
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In 1996, Fisher et al. reported the utilization of cevimeline (AF102B) in human clinical
trials performed in Israel, Japan, and the USA. In Israel, a single-blind, placebo-controlled,
parallel-group study was evaluated in female and male patients diagnosed with probable
AD within 10 weeks. In the study, cevimeline or placebo were orally administered 3 times
per day in graduating doses (20 mg, 40 mg, and 60 mg), each dose for 2 weeks. The middle
(40 mg) and the highest (60 mg) dose of cevimeline resulted in a significant favorable effect
in the ADAS-Cog and word recognition subscale of ADAS. Similarly, the highest dose of
cevimeline was effective in patients with moderate to severe dementia. Interestingly, the
improvement at the middle and the highest dose of cevimeline was observed by caregivers.
The authors claimed that cevimeline was well tolerated, but some adverse effects were
observed if compared with the placebo group. However, the most significant adverse
effects were of cholinergic nature, such as diaphoresis (20%) and excessive salivation (7%).
It has been concluded by the authors that M1 agonists including cevimeline may have a
more important and complex role in AD treatment than envisaged previously. Their mode
of action might be of unique value in delaying the AD progression [73].

Nitsch et al. explored similar clinical trials in AD patients. They administered ce-
vimeline to 19 AD patients in escalating doses as follows: 3 × 20 mg/day during the first
week, 3 × 40 mg/day during the second week, 3 × 60 mg/day during the third week,
and 3 × 80 mg/day during the fourth week. Three of the 19 patients with AD died of the
causes unrelated to the drug after the study was completed. There were nine men and
10 women with a mean age of 72.2 ± 10.1 (mean ± SD), and the mean duration of their
AD was 4.9 ± 2.9 years. The mean information–memory–concentration (IMC) subscale
of the Blessed dementia scale score was 19.4 ± 9.8 (Table 1). The most important part of
experiment was a measuring of total Aβ levels in cerebrospinal fluid (CSF) before and
during treatment. Total levels of Aβ in CSF decreased by 22% in 14 patients, increased in
three patients, and were uncharged in two patients. These results revealed a statistically sig-
nificant overall decrease in the group. The authors concluded that there was evidence that
the activation of M1AChRs reduced Aβ levels in the CSF of AD and may have long-term
therapeutic benefits by lowering amyloid in AD [72].

Table 1. Clinical trials of cevimeline, hydrocychloroquine, and physostigmine in AD patients as reported by Nitsch et al. [72].

Total Number of AD
Patients in the Trials

(Female/Male)

Age
[Years]

(Mean ± SD)

Illness Duration
[Years]

(Mean ± SD)
IMC Score *

(Mean ± SD)
Baseline CSF

Aβtotal
(Mean ± SD)

Treatment CSF
Aβtotal

(Mean ± SD)

Cevimeline 19 (10/9) 72.2 ± 10.1 4.9 ± 2.9 19.4 ± 9.8 22.8 ± 7.5 19.9 ± 7.9
Hydroxychloroquine 10 (3/7) 68.3 ± 6.9 3.8 ± 1.9 19.5 ± 13.1 23.5 ± 10.1 24.0 ± 8.1

Physostigmine 9 (6/3) 67.7 ± 9.3 3.8 ± 1.5 13.2 ± 8.9 21.2 ± 7.9 21.0 ± 6.1

Abbreviations: IMC, information–memory–concentration; SD, standard deviation. * The score on the IMC subtest of the Blessed dementia scale.

Despite the current approach to the treatment of AD focused on the application of
acetylcholinesterase (AChE) inhibitors, agonists of mAChRs may represent an alternative
therapy to increase the neuronal stimulation and improve cognitive functions. Clinical
trials of cevimeline and xanomeline revealed that mAChR agonists were feasible drugs
with the potential to improve the cognitive abilities of AD patients. Same as the AChE
inhibitors, these mAChR agonists also displayed side effects, especially of gastrointestinal
nature. However, cevimeline along with other mAChR agonists still attracts attention and
discussion as a potential drug for developing new therapies for cognitive enhancement [80].
The beneficial effects of cevimeline in AD patients can overcome its adverse effects to allow
a more comfortable life for the patients and their families, but further clinical studies are
needed to elucidate cevimeline’s therapeutic effect against AD.

3. Evoxac® (Cevimeline Hydrochloride) in the Treatment of Sjögren’s Syndrome

Increased salivation and tearing in animal and human trials with cevimeline became
an inspiration for the treatment of xerostomia (subjective sensation of dry mouth) and
keratoconjunctivitis sicca (syndrome of dry eye), which are the most common symptoms
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in patients with Sjögren’s syndrome. The clinical studies with cevimeline turned their
attention toward the patients with Sjögren’s syndrome for the evaluation of safety and
efficiency. Petrone et al. performed double-blind, randomized, placebo-controlled study
in patients with the syndrome. In the study, patients received either placebo, 15 mg of
cevimeline, or 30 mg of cevimeline, each 3 times per day for 12 weeks. The treatment
with the highest dose (30 mg) resulted in the significant improvement of salivation and
lachrymation in the patients. The authors reported that subjective symptoms in this group
(30 mg), such as dry eyes, dry mouth, and overall dryness were improved. The group of
patients with the lower dosage of cevimeline (15 mg) also relieved some symptoms. Both
dosages (15 mg and 30 mg) were well tolerated by the patients. The most common adverse
effects in the study include increasing sweating, headache, abdominal pain, and nausea [81].
In the same year, Fife et al. performed a double-blind, randomized, placebo-controlled
study of cevimeline’s safety and efficiency in the treatment of xerostomia in Sjögren’s
syndrome patients. In the study, participants received either placebo, 30 mg of cevimeline
or 60 mg of cevimeline, each 3 times per day for 6 weeks. The study, completed on
61 participants, revealed that both dosages provided symptomatic improvement. However,
the lower dosage of cevimeline (30 mg) was well tolerated, whereas the highest dosage of
cevimeline (60 mg) was associated with adverse effects, commonly of a gastrointestinal
nature. The most common adverse effects usually reported in the group with the highest
dosage (60 mg) involve: increasing sweating, nausea, headache, rigors, diarrhea, dyspepsia,
dizziness, and abdominal pain. Nevertheless, the authors concluded that therapy with
cevimeline at the dose of 30 mg 3 times per day provided significant improvement of
xerostomia, and this dosage seems to be well tolerated [82].

Evoxac®, the brand name of cevimeline hydrochloride, was approved in January 2000
by the Food and Drug Administration (FDA) in the USA, as a drug for the treatment of
Sjögren’s syndrome. Evoxac® is available as white capsules containing 30 mg of cevimeline
hydrochloride with recommended dosage of one capsule 3 times per day. The package
leaflet of Evoxac® involves the information of adverse reactions from the worldwide clinical
trials in 1777 patients, including Sjögren’s patients and patients with other conditions. The
adverse events observed in the clinical trials of cevimeline in Sjögren’s syndrome patients
associated with muscarinic agonism include excessive sweating (18.7%), nausea (13.8%),
rhinitis (11.2%), diarrhea (10.3%), excessive salivation (2.2%), and other [83]. In 2021,
Fox et al. reported that the only approved oral secretagogue agents by the FDA were
cevimeline and pilocarpine, and according to the European Medicines Agency (EMA),
it was pilocarpine [84]. These agents act by stimulating M1 and M3 receptors on the
salivary glands, resulting in the increased function of secretion [85]. Cevimeline and
pilocarpine were investigated by Farag et al. in patients with hyposalivation to compare
their effectiveness and frequency of adverse effects. The authors reviewed a total of
110 patients’ charts and concluded that the effectiveness of both agents was comparable;
however, pilocarpine seemed to be more linked with the reporting of side effects [86]. To the
best of our knowledge, there is only one example of cevimeline overdose reported to date.
A 47-year-old female intentionally ingested 20 capsules of cevimeline (30 mg), 2 tablets
of lorazepam (0.5 mg) earlier in the day, and drank some alcohol. The sose of cevimeline
was reported to reach approximately 10 mg/kg and the symptoms of moderate muscarinic
toxicity were observed. In the patient, extremely diaphoresis and nausea were reported
with several episodes of emesis. At the emergency department, the electrocardiogram
monitoring of the patient demonstrated that sinus rhythm, axis, and QRS width were
at regular levels. To get rid of nausea, ondansetron was administered to the patient, as
well as activated charcoal (50 g). Further monitoring revealed that the patient remained
normotensive and without dysrhythmia. The patient was fully recovered during the
hospitalization and did not exhibit any delayed impairment of ingestion [19].

Despite the above-mentioned cevimeline’s adverse effects, its application in the treat-
ment of Sjögren’s syndrome provides an improvement of symptoms, such as dry mouth
and dry eye. Moreover, a dosage of cevimeline 3 × 30 mg per day is approved by the
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FDA and mediates observable benefits only with reduced side effects. Extensive use of
cevimeline in the treatment of Sjögren’s syndrome provided valuable information about
the pharmaceutical profile of the agent. Although cevimeline has been used as the drug for
decades, many questions about its extended application, such as its use in the AD therapy
or in the improvement of cognitive functions, still remain unanswered. Its potential was
suggested in previous studies, but further studies are needed. This request is still present
in recently reported literature. Even if cevimeline’s benefits will not overcome its adverse
effects, its structure can be used as a template for a novel group of potential therapeutics.

4. Methods

The authors performed a systematic literature review of available studies on the
research describing cevimeline in association with neurodegenerative disease. The method-
ology follows the Preferred Reporting Items for Systematic Reviews and Meta-Analysis
(PRISMA) guidelines (Figure 5). The end of the search period is limited by 31 March 2021.
The research studies were selected based on research topics, such as “Cevimeline, Evoxac,
AF102B, SNI2011, cognition, memory, neurodegeneration, Alzheimer disease” found in
the world’s acknowledged databases Web of Science, PubMed, Springer, and Scopus. The
terms used were searched using AND to combine the keywords listed and using OR to
remove search duplication where possible. With the aim of deeper insight, a backward
search was also performed; i.e., the authors evaluated the references of the detected studies
to find other relevant research studies that authors might have missed during their search.
Moreover, the identification of unpublished (gray) literature was conducted using a Google
search. Furthermore, an independent quality assessment of selected studies was performed.
These basic quality criteria were selected by authors using the Health Evidence Quality
Assessment Tool for review articles. The primary outcome of this review was to explore if
there is any possibility of using cevimeline into new neurodegenerative disease treatment
or prevention.

Figure 5. Selection workflow.

Altogether, 274 studies were identified in all these databases. The following selection
consisted of removing duplicates and studies unrelated to the research topics (considering
title/abstract) and provided 35 English-written studies. Of these, the authors selected
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30 articles relevant for the research topic. These studies were fully investigated and consid-
ered against the following inclusion and exclusion criteria:

• Only peer-reviewed English-written full-text journal articles were involved.
• The time of publishing the article was limited by 31 March 2020.

The exclusion criteria were as follows:

• Reviews.
• The articles focusing on different research topics (such as xerostomia, dry mouth, etc.).
• Outcomes were not reported or were inconsistent.

Considering the above-described criteria, 19 articles were eventually included in the
final analysis.

5. Conclusions

Cevimeline is a parasympathomimetic and muscarinic agonist with special effects
on M1 and M3 receptors. It is usually indicated for the treatment of the symptoms of dry
mouth in patients with Sjögren’s syndrome. However, this systematic literature review
indicated other possibilities for its use in medicine. The results of the detected studies
indicate that cevimeline has shown an improvement in experimentally induced cognitive
deficits in animal models. Furthermore, it has demonstrated to positively influence tau
pathology and reduce the levels of amyloid-β (Aβ) peptide in the cerebral spinal fluid of
Alzheimer’s patients. Although this drug has not been approved by the FDA for its use
among AD patients, and there is a lack of clinical studies confirming and extending this
finding, cevimeline might represent a potential remedy in the treatment of AD.
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