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Abstract

Cardiovascular disease (CVD) is a major comorbidity among HIV-infected individuals.

Common carotid artery intima-media thickness (cCIMT) is a valid and reliable subclinical

measure of atherosclerosis and is known to predict CVD. We performed genome-wide asso-

ciation (GWA) and admixture analysis among 682 HIV-positive and 288 HIV-negative

Black, non-Hispanic women from the Women’s Interagency HIV study (WIHS) cohort using

a combined and stratified analysis approach. We found some suggestive associations but

none of the SNPs reached genome-wide statistical significance in our GWAS analysis. The

top GWAS SNPs were rs2280828 in the region intergenic to mediator complex subunit 30

and exostosin glycosyltransferase 1 (MED30 | EXT1) among all women, rs2907092 in the

catenin delta 2 (CTNND2) gene among HIV-positive women, and rs7529733 in the region

intergenic to family with sequence similarity 5, member C and regulator of G-protein signal-

ing 18 (FAM5C | RGS18) genes among HIV-negative women. The most significant local

European ancestry associations were in the region intergenic to the zinc finger and SCAN

PLOS ONE | https://doi.org/10.1371/journal.pone.0188725 December 4, 2017 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Shendre A, Wiener HW, Irvin MR,

Aouizerat BE, Overton ET, Lazar J, et al. (2017)

Genome-wide admixture and association study of

subclinical atherosclerosis in the Women’s

Interagency HIV Study (WIHS). PLoS ONE 12(12):

e0188725. https://doi.org/10.1371/journal.

pone.0188725

Editor: Gualtiero I. Colombo, Centro Cardiologico

Monzino, ITALY

Received: September 2, 2016

Accepted: November 12, 2017

Published: December 4, 2017

Copyright: © 2017 Shendre et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: As described in the

manuscript, the cohort is in active follow-up. The

cohort has been identified as one with multiple

vulnerabilities (e.g., racial/ethnic minority women, a

history of substance use, commonly HCV-

infected). Whereas participants from the cohort

who contributed to the findings summarized in this

manuscript provided consent for genetic studies,

said consent was collected prior to the most recent

guidelines and requirements for data sharing.

Accordingly, the cohort is currently being re-

https://doi.org/10.1371/journal.pone.0188725
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188725&domain=pdf&date_stamp=2017-12-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188725&domain=pdf&date_stamp=2017-12-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188725&domain=pdf&date_stamp=2017-12-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188725&domain=pdf&date_stamp=2017-12-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188725&domain=pdf&date_stamp=2017-12-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188725&domain=pdf&date_stamp=2017-12-04
https://doi.org/10.1371/journal.pone.0188725
https://doi.org/10.1371/journal.pone.0188725
http://creativecommons.org/licenses/by/4.0/


domain containing 5D gene and NADH: ubiquinone oxidoreductase complex assembly fac-

tor 1 (ZSCAN5D | NDUF1) pseudogene on chromosome 19 among all women, in the region

intergenic to vomeronasal 1 receptor 6 pseudogene and zinc finger protein 845 (VN1R6P |

ZNF845) gene on chromosome 19 among HIV-positive women, and in the region intergenic

to the SEC23-interacting protein and phosphatidic acid phosphatase type 2 domain contain-

ing 1A (SEC23IP | PPAPDC1A) genes located on chromosome 10 among HIV-negative

women. A number of previously identified SNP associations with cCIMT were also observed

and included rs2572204 in the ryanodine receptor 3 (RYR3) and an admixture region in the

secretion-regulating guanine nucleotide exchange factor (SERGEF) gene. We report sev-

eral SNPs and gene regions in the GWAS and admixture analysis, some of which are com-

mon across HIV-positive and HIV-negative women as demonstrated using meta-analysis,

and also across the two analytic approaches (i.e., GWA and admixture). These findings sug-

gest that local European ancestry plays an important role in genetic associations of cCIMT

among black women from WIHS along with other environmental factors that are related to

CVD and may also be triggered by HIV. These findings warrant confirmation in independent

samples.

Introduction

Early diagnosis and treatment of human immunodeficiency virus (HIV) has increased the life

expectancy of infected individuals [1], and shifted the focus to the management of other

comorbidities such as cardiovascular disease (CVD). CVD risk is higher among HIV-positive

individuals compared to HIV-negative individuals [2–4]. HIV infection as well as certain

antiretroviral therapies (ART) were shown to independently increase the risk of CVD [2].

Moreover, disparities in CVD risk by race and sex prevail, specifically, among HIV-positive

individuals [5, 6]. Higher rates of acute myocardial infarction were observed among Blacks as

compared to Whites, and among women as compared to men [3–5]. Similarly, ischemic stroke

rates were reported to be higher among HIV-positive women as compared to HIV-positive

men [7].

Efforts to prevent CVD among HIV-positive individuals have led to the evaluation of sub-

clinical atherosclerotic measures such as carotid artery intima-media thickness (CIMT). CIMT

can predict future CVD events among HIV-negative individuals [8]. CIMT is a non-invasive

measure obtained using B-mode ultrasound, with the common carotid artery measurements

considered the most reliable and reproducible of all CIMT segments [9, 10]. Common CIMT

(cCIMT) measurements were reported to be thicker among HIV-positive as compared to

matched HIV-negative individuals, and also independently associated with HIV infection and

treatment [11, 12]. Racial and sex differences have shown greater cCIMT thickness among

Blacks as compared to Whites, and among women as compared to men beyond traditional

CVD risk factors [13–15].

The role of genetics as a risk factor for subclinical atherosclerosis, specifically in genome-

wide association studies (GWAS) of cCIMT, has been explored among the HIV-negative [16]

and non-Black populations [16–18]. A recent study on subclinical atherosclerosis that con-

ducted a exome-wide association analysis, reported two SNPs–rs7412 in the apolipoprotein E

(APOE) gene and rs143873045 in the KN Motif and Ankyrin Repeat Domains 2 (KANK2)

gene that were found significantly associated with cCIMT among HIV-negative Blacks [19].

Among HIV-positive individuals, the only GWAS in relation to cCIMT has been conducted
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by our group, among White men from the Fat Redistribution and Metabolic Change in HIV

Infection (FRAM) Study [20]. We observed two single nucleotide polymorphisms (SNPs) in

tight linkage disequilibrium (LD), rs2229116 and rs7177922, in the ryanodine receptor 3

(RYR3) gene on chromosome 15 to be associated with cCIMT. The association of rs2229116

was replicated in another group of HIV-positive White men from the Multicenter AIDS

Cohort Study (MACS) [21]. Given the consistent association with cCIMT in HIV-positive

White men, we further evaluated the association of SNPs within the RYR3 gene among a

racially diverse group of HIV-positive women from the Women’s Interagency HIV Study

(WIHS) [22]. The RYR3 gene association with cCIMT was observed among different SNPs

than those reported earlier, rs2572204 being most significant among Black HIV-positive

women. Haplotype blocks observed among the Black HIV-positive women compared to the

other two racial/ethnic groups were smaller and indicated that SNP associations are possibly

different based on LD, warranting further evaluation specifically in the context of cCIMT

related admixture.

Admixture mapping enables the identification of genetic variations differentially distrib-

uted in ancestral populations associated with a disease–the premise being that associated

variants are observed on chromosomal segments from ancestral populations with higher prev-

alence of the disease/trait [23]. Thus, this approach takes advantage of the extended LD present

in the recently admixed population to discover these variations. Admixture mapping has been

considered a feasible and more powerful tool in contrast to GWAS among individuals of

mixed continental ancestry [24], and advances in statistical techniques and their applications

in a genome-wide set of markers has greatly increased the ability to detect disease loci. We

recently performed genome-wide admixture mapping in relation to cCIMT among HIV-nega-

tive Black individuals from two large prospective cohorts and found a region in the secretion

regulating guanine nucleotide exchange factor (SERGEF) gene that reached genome-wide sig-

nificance [25]. Likewise, we have shown various genomic regions associated with clinical

events in African Americans through admixture mapping [26].

Currently, methods based on principal components are commonly used to control for pop-

ulation stratification in genetic association studies [27]. Recent studies have focused on admix-

ture mapping and related techniques to incorporate ancestry information in association tests

among admixed populations [28–32]. However, there is a lack of consensus in approaches and

whether accounting for local and global ancestries alone or together would sufficiently control

for both type I and type II error rates [31, 32]. In this study, we performed genome-wide

admixture and association analysis to determine single SNP and local European ancestry asso-

ciations with cCIMT among Black women from the WIHS cohort.

Results

The HIV and CVD related characteristics of the 970 Black women included in the current

study are presented in Table 1. In this study, 70% of the women were HIV-positive, and had

similar cCIMT values as well as percent global European ancestry as compared to HIV-nega-

tive women. CVD risk factors including hypertension, diabetes, and current smoking were

similar across the two groups. HIV-positive women were older, had lower CD4 cell count and

HDL cholesterol levels, and were more likely to take medications for hypertension compared

to HIV-negative women.

Genome-wide association results

The genome-wide association results for cCIMT are presented for all women and after further

stratification by HIV status, as shown in the Manhattan plots (Fig 1A–1C). None of the SNPs

GWAS and admixture mapping of cIMT among HIV in WIHS
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reached the genome-wide significance level (S1 Table), but we present the top 5 SNP-cCIMT

associations for all three groups (Table 2) and the regionals plots for the top SNPs in each

group (S1A–S1C Fig). The lambda values for each of the GWAS models were– 1.005 for the

combined model, 1.009 for the HIV-positive model, and 1.013 for the HIV-negative model

(Fig 2A–2C). We also present the admixture analyses results for gene regions that include

these significant GWAS SNPs to determine if local European ancestry at these regions is asso-

ciated with cCIMT in Table 2. The top hit among all women was rs2280828 located in the

intergenic region of mediator complex subunit 30 and exostosin glycosyltransferase 1 (MED30
| EXT1) genes on chromosome 8 (β = -0.0216, p = 8.01x10-7). The same SNP was also signifi-

cantly associated with cCIMT among HIV-positive women (β = -0.0271, p = 2.89x10-7). The

most significant SNP associated with cCIMT among HIV-positive women was rs2907092 in

the catenin delta 2 (CTNND2) gene on chromosome 5 (β = 0.0250, p = 2.37x10-7). Local Euro-

pean ancestry at the corresponding gene region of this SNP was also associated with cCIMT

(β = 0.0089, p = 0.04). Local European ancestry was also associated with cCIMT at the gene

region that includes the GWAS identified rs4761669 intergenic to the transmembrane and

coiled-coil domain family 3 gene and the NADH: ubiquinone oxidoreductase subunit A12

(TMCC3 | NDUFA12) genes on chromosome 12 (β = -0.0084, p = 0.04). Among HIV-negative

women, rs7529733 intergenic to family with sequence similarity 5, member C and regulator of

G-protein signaling 18 genes (FAM5C | RGS18) on chromosome 1 was the top SNP associated

with cCIMT (β = 0.0431, p = 2.92x10-7).

Local ancestry association results

The local European ancestry (LEA) association with cCIMT is presented in Table 3 for the top

5 gene regions for all women and then separately for HIV-positive and HIV-negative women,

and the corresponding Manhattan plots are presented in Fig 1D–1F. The regionals plots for

the top regions are presented in S1D–S1F Fig (all regions in S2 Table). The lambda values for

each of the admixture models were– 1.001 for the combined model, 1.103 for the HIV-positive

model, and 1.000 for the HIV-negative model (Fig 2D–2F). We also present the top GWAS hit

located within the top ancestry gene regions if it was significant at α of 0.05 (Table 3). LEA at

17 gene regions reached genome-wide significance in relation to cCIMT among all women.

These regions were largely located on chromosome 19 over a 3.07 Mb region but also included

Table 1. Characteristics of all women from the Women’s Interagency HIV Study (WIHS) cohort and by HIV status.

Characteristics All (N = 970) HIV positive (N = 682) HIV negative (N = 288)

cCIMT (mm), mean (SD) 0.74 (0.12) 0.75 (0.12) 0.74 (0.12)

Percent global European ancestry, mean (SD) 15.7 (8.5) 15.7 (8.4) 15.7 (8.6)

Age (years), mean (SD) 41.1 (9.3) 41.9 (8.8) ** 39.1 (10.0)

CD4 cell count (cells/mm3), median (IQR) 577 (559) 436 (393) ** 1029 (516)

Anti-retroviral therapy, n (%) - 633 (92.3) -

Hypertension, n (%) 343 (35.4) 250 (36.7) 93 (32.3)

Diabetes, n (%) 135 (13.9) 93 (13.6) 42 (14.6)

Current smoking, n (%) 504 (51.9) 352 (51.6) 152 (52.8)

HDL cholesterol (mg/dL), mean (SD) 51.3 (18.1) 49.2 (18.2) ** 56.1 (16.7)

LDL cholesterol (mg/dL), mean (SD) 100.1 (33.7) 98.9 (33.1) 102.9 (35.0)

HIV: human immunodeficiency virus, SD: standard deviation, IQR: inter-quartile range, HDL: high density lipoprotein, LDL: low density lipoprotein

*P<0.01

**P<0.001

https://doi.org/10.1371/journal.pone.0188725.t001
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one gene region on chromosome 6 spanning 106.38 kb. There were no gene regions that re-

ached genome-wide significance among HIV-positive women. Among HIV-negative women,

a total of 48 LEA gene regions achieved genome-wide significance and were largely located on

chromosome 10 over a span of 4.23 Mb. A single gene region each on chromosomes 2, 4, and

9 also achieved genome-wide significance among HIV-negative women. The most significant

local European ancestry association among all women was observed in the region intergenic to

the zinc finger and SCAN domain containing 5D gene and NADH: ubiquinone oxidoreduc-

tase complex assembly factor 1 pseudogene (ZSCAN5D | NDUF1) on chromosome 19 (β =

0.0134, p = 8.87x10-5). The region on chromosome 6 in the leucine rich repeat containing 1

gene (LRRC1) achieved genome-wide significance among all women but was also observed

among the top 5 regions in HIV-positive women (β = 0.0138, p = 8.42x10-4). The region inter-

genic to the vomeronasal 1 receptor 6 pseudogene and zinc finger protein 845 gene (VN1R6P |
ZNF845) on chromosome 19 was most significant among HIV-positive women (β = 0.0141,

p = 6.86x10-4). Among HIV-negative women, the top association was observed in the region

intergenic to the SEC23 interacting protein gene and phosphatidic acid phosphatase type 2

domain containing 1A gene located on chromosome 10 (SEC23IP | PPAPDC1A) (β = -0.0290,

p = 1.71x10-5).

Meta-analysis and previously significant SNPs

Previously significant SNPs associated with cCIMT that were found significant in the current

GWAS and LEA association analysis are reported in the Tables 4 and 5, respectively. A total of

25 SNPs in the GWAS and 31 SNPs in the admixture analysis were significantly associated

with cCIMT. The most significant SNPs across the combined and stratified GWAS analyses

Fig 1. Manhattan plots for the genome-wide association (threshold p-value = 6.50×10−8) and

admixture analyses (threshold p-value 3.42×10−4). a) All women (GWAS), b) HIV-positive women

(GWAS), c) HIV-negative women (GWAS), d) All women (admixture), e) HIV-positive women (admixture),

and f) HIV-negative women (admixture). Negative log10 p-values are plotted against each SNP’s respective

position on each chromosome.

https://doi.org/10.1371/journal.pone.0188725.g001
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were—rs445925 in the apolipoprotein C-1 (APOC1) gene among all women (β = -0.0081,

p = 0.0018), rs2572204 in the ryanodine receptor 3 (RYR3) among HIV-positive women (β =

0.0153, p = 0.0027), and rs854571 in paraoxonase 1 (PON1) gene in the HIV-negative women

(β = 0.0107, p = 0.02). The most significant SNPs in the LEA association included rs1436023 in

LOC105375856 gene in the combined analysis (β = -0.0099, p = 0.005), the region between

17.809 to 18.035 Mb in the SERGEF gene significantly associated with cCIMT among the HIV-

positive women (β = -0.0093, p = 0.02) whereas the SNP rs11120748 in the CD55 molecule

(Cromer blood groups) (CD55) gene was significant among HIV-positive women (β = -0.0156,

p = 0.02).

Meta-analysis results for both GWAS and LEA associations reflect the results observed in

the combined analyses (S1 and S2 Tables).

Discussion

The current study presents the genome-wide admixture and association findings for cCIMT

among Black HIV-positive and HIV-negative women from the WIHS cohort. We ran separate

analyses for the two methods but also noted whether any of the GWAS SNPs within the top

admixture regions, and any of the admixture regions including the top GWAS SNPs were sig-

nificant for cCIMT. We observed SNPs in the GWA that showed suggestive associations

(p<10−6) with cCIMT (included in Table 2 in bold). The comparison to the admixture results

yielded two significant regions observed among HIV-positive women (included in Table 2 in

bold). Conversely, several regions with LEA associations revealed GWAS SNPs that were nom-

inally significant. Meta-analysis results suggest that some SNPs and gene regions are common

Fig 2. QQ plots for the genome-wide association analyses and admixture analyses. a) All women

(GWAS, λ = 1.005), b) HIV-positive women (GWAS, λ = 1.009), c) HIV-negative women (GWAS, λ = 1.013),

d) All women (admixture, λ = 1.001), e) HIV-positive women (admixture, λ = 1.103), and f) HIV-negative

women (admixture, λ = 1.000). Observed negative log10 p-values are plotted against the expected negative

log10 p-values.

https://doi.org/10.1371/journal.pone.0188725.g002
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across HIV-positive and HIV-negative women and may therefore play a role in atherosclerosis

beyond HIV associated risk factors. Lastly, we observed associations with SNPs that have been

previously reported to have significant associations with cCIMT.

The top GWAS hit rs2280828 observed in the combined analysis was in the region inter-

genic to the MED30 and EXT1 genes on chromosome 8, approximately 50 kb from the EXT1
gene. The EXT1 gene encodes for a transmembrane glycoprotein on the endoplasmic reticu-

lum (ER) of the cell which is involved in the synthesis and polymerization of heparan sulfate

[33, 34]. Heterozygous loss of function mutation in the EXT1 and EXT2 genes have been pos-

tulated to improve endothelial function by increasing the bioavailability of nitric oxide (NO)

[35]. Calcium ion concentrations in the cell regulate the activity of nitric oxide synthase via cal-

modulin, indirectly influencing the release of nitric oxide when shear stress is exerted on the

endothelium [36]. The RYR3 receptor encoded by the RYR3 gene is a calcium-ion channel

Table 4. Genome wide association results (GWA) for common carotid artery intima media thickness

with previously significant single nucleotide polymorphisms (SNPs).

Chromosome Position SNP Minor

allele

Gene Location Beta P from

GWAS

Combined

19 45415640 rs445925 T APOC1 -0.0081 0.002

7 68047178 rs10248387 G LOC102723427,

LOC100507468

-0.0074 0.006

9 106487753 rs4436177 G LINC01492,

LOC101928523

0.0099 0.02

15 33795710 rs2572204 A RYR3 0.0098 0.02

7 94954619 rs854571 C PON1 0.0058 0.02

15 31421676 rs783026 G TRPM1 0.0057 0.02

5 149176945 rs1012543 C PPARGC1B 0.0083 0.03

18 8797189 rs566890 G MTCL1 -0.0051 0.03

2 239128117 rs6722019 T ILKAP, LOC151174 0.0051 0.04

13 106376128 rs1328070 T LINC00343 0.0074 0.04

6 135237158 rs6569979 G HBS1L 0.0049 0.04

HIV-positive

15 33795710 rs2572204 A RYR3 0.0153 0.003

7 68047178 rs10248387 G LOC102723427,

LOC100507468

-0.0095 0.004

9 106487753 rs4436177 G LINC01492,

LOC101928523

0.0139 0.005

19 45415640 rs445925 T APOC1 -0.0079 0.01

15 98680170 rs2871596 C LINC01582,

FAM169B

-0.0067 0.03

HIV-negative

7 94954619 rs854571 C PON1 0.0107 0.02

20 56157341 rs6025645 A PCK1 -0.0105 0.02

4 2906707 rs4961 T ADD1 0.0189 0.02

18 8797189 rs566890 G MTCL1 -0.0096 0.02

4 75683594 rs4352548 C BTC 0.0209 0.03

10 45917376 rs3780901 C ALOX5 0.0098 0.03

7 33701425 rs10246872 G BBS9, BMPER 0.0091 0.04

1 92076523 rs1041159 C CDC7, TGFBR3 -0.0088 0.04

5 13214852 rs28207 T LOC105374659,

RPS23P5

-0.0131 0.04

https://doi.org/10.1371/journal.pone.0188725.t004
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present on the ER and is involved in calcium homeostasis [37]. Thus, EXT1 may play a role in

atherosclerosis by regulating endothelial function in conjunction with RYR3. On the other

hand, the MED30 gene is part of a large group of genes that encode the mediator complex pro-

teins, constituting a multi-subunit complex, known to regulate the RNA polymerase II enzyme

[38]. Silencing of this gene was shown to inhibit the transcription of HIV, in part via the HIV-

Tat protein [38]. The HIV-Tat protein causes endothelial dysfunction and brings about an

inflammatory response as well as triggers loss of calcium through the RYRs on the ER [39].

These factors are part of the biological mechanisms that could contribute to atherosclerosis in

HIV. Therefore, MED30 gene-related functions may play a role in mitigating the downstream

Table 5. Admixture (LEA) results for common carotid-artery intima media thickness association with

previously significant single nucleotide polymorphisms (SNPs).

Chromosome Position SNP Gene Beta P from GWAS

Combined

8 58843783 rs1436023 LOC105375856 -0.0099 0.005

8 56847170 rs13249338 LYN -0.0099 0.005

2 98017804 rs11901495 LOC107985919 0.0096 0.005

8 55340313 rs13272749 LOC105375841 -0.0096 0.006

8 55327862 rs6987174 MRPL15, SOX17 -0.0096 0.006

8 55318559 rs7834421 MRPL15, SOX17 -0.0096 0.006

8 55369597 rs12234926 SOX17 -0.0095 0.007

5 4241397 rs7702251 IRX1, LOC101929153 0.0078 0.02

8 42045655 rs2070713 PLAT -0.0071 0.04

HIV-positive

11 17.809–18.035 rs1236207-

rs6486402

SERGEF -0.0093 0.02

5 4241397 rs7702251 IRX1, LOC101929153 0.0097 0.02

9 74974635 rs11143274 ZFAND5 -0.0091 0.02

8 58843783 rs1436023 LOC105375856 -0.0094 0.03

7 151255751 rs4726047 PRKAG2 -0.0089 0.03

1 102423144 rs4907957 OLFM3 0.0098 0.03

9 7815105 rs1360583 TMEM261, PTPRD 0.0090 0.03

19 45415640 rs445925 APOC1 0.0083 0.03

19 45814860 rs7260463 CKM 0.0081 0.04

19 35052255 rs2199639 WTIP, SCGB1B2P 0.0086 0.04

19 45740771 rs17356664 EXOC3L2 0.0080 0.04

2 98017804 rs11901495 LOC107985919 0.0082 0.04

HIV-negative

1 207524541 rs11120748 CD55 -0.0156 0.02

8 56847170 rs13249338 LYN -0.0148 0.03

2 98017804 rs11901495 LOC107985919 0.0132 0.03

9 71316454 rs1412990 LINC01506, PIP5K1B 0.01285 0.04

8 55369597 rs12234926 SOX17 -0.0141 0.04

8 55340313 rs13272749 LOC105375841 -0.0141 0.04

8 55327862 rs6987174 MRPL15, SOX17 -0.0141 0.04

8 55318559 rs7834421 MRPL15, SOX17 -0.0141 0.04

18 75938925 rs1587893 LOC10042152, LOC645321 0.0120 0.04

12 63178779 rs2641558 PPM1H -0.0126 0.04

12 63174735 rs337515 PPM1H -0.0126 0.04

https://doi.org/10.1371/journal.pone.0188725.t005
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effects of HIV in atherosclerosis and other cardiovascular complications. Spliced variants of

the gene have been observed in circulating endothelial progenitor cells and are hypothesized

to have potential diagnostic or therapeutic roles in cardiovascular disease in the future [40].

Rs2907092 was the top GWAS hit among HIV-positive women and is located in the intro-

nic region of the CTNND2 gene on chromosome 5. This gene encodes for the δ–catenin pro-

tein, a neuronal protein that is also expressed in the vascular endothelium [41]. The protein

binds cadherins to the cytoskeleton and is involved in pathways and mechanisms that modu-

late vascular remodeling. They are responsible for endothelial cell motility, angiogenesis and

wound repair regulated by inflammatory responses and are specifically observed during patho-

logic states. This gene showed a strong association with cerebral malaria in an environmental

correlation analysis (ECA), whereby the involved mechanisms such as luminal blockade by

infected cells, increased shear stress, presence of reactive oxygen species (ROS) and the ensu-

ing inflammatory response follow a pattern that is similar to atherosclerosis [42]. ECA identi-

fies genes that are enriched as a result of local environmental effects within a population that

has likely been isolated for a long period of time. As a result, the CTNND2 gene may likely

have an admixture component, which was precisely noted in our admixture results.

The most significant GWAS SNP among HIV-negative women was rs7529733 in the

regions intergenic to the FAM5C and RGS18 genes on chromosome 1. The FAM5C gene has

been associated with myocardial infarction [43] and functional studies have shown that it

increases the production of ROS, nuclear factor-kappaB (NF-κB) activity, and expression of

the intercellular and vascular cell adhesion molecules, ICAM-1 and VCAM-1 [44]. These fac-

tors induce vascular inflammation and facilitate monocyte adhesion to the endothelium. HIV

proteins such as HIV-Tat trigger this mechanism indirectly by activating the monocyte che-

moattractant protein-1 (MCP-1) resulting in migration of the monocytes and their transfor-

mation into macrophages, steps integral to the atherosclerotic process [39]. The regulator of

G-protein signaling 18 GTPase-activating protein is encoded by the RGS18 gene. This protein

is involved in the activation and inhibition of platelets through the G-α-q subunit of the het-

erotrimeric G-protein [45]. The RGS18 protein is in turn regulated by thrombin resulting in

the phosphorylation of one of its residues, and subsequent release of calcium ions to induce

platelet aggregation. A similar process is involved during platelet inhibition whereby prostacy-

clin and NO regulate RGS18 resulting in reduced intracellular calcium levels. Thus, the RGS18

effect on platelets is mediated through calcium homeostasis and therefore genetic interactions

between RGS18 and RYR3 gene are possible, and may play a substantial role in atherosclerosis

as platelets are involved in its inflammatory response.

The top admixture mapping results for the combined, and stratified analyses among HIV-

positive women revealed genes that are pseudogenes, and which have not yet been evaluated

for associations with human complex diseases or traits. The second top hit involves the gala-

nin-like peptide encoded by the GALP gene on chromosome 19. It is a neuropeptide of the

galanin family and has been shown to play a role in homeostatic processes of the central ner-

vous system (CNS) [46]. These include but are not limited to hormonal regulation of food

intake with the potential to develop obesity and other weight gain related complications like

diabetes. Additionally, a splice variant of the peptide called alarin was observed to have vasoac-

tive properties and induced vasoconstriction and decrease in water retention in the epidermis.

Diabetes and obesity are risk factors for atherosclerosis and CVD, and vascular perturbations

in the microvasculature are known to induce downstream effects that play a role in the athero-

sclerotic process. The TRPM6 gene located on chromosome 9 was associated with cCIMT

among HIV-positive women. This gene encodes for the transient receptor potential melastatin

6 channel which acts as both a channel and an enzyme involved in the regulation of magne-

sium (Mg2+) in the body [47]. TRPM6 and TRPM7 were both found in the vascular smooth
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muscle cells and were shown to regulate hypertension via Mg2+ homeostasis. Reduced Mg2+

increases blood pressure by increasing the reactivity and contractility of the blood vessels

and is also responsible for endothelial dysfunction, inflammation and vascular remodeling.

All the above-mentioned mechanisms are involved in the ongoing process of atherosclerosis

and subsequent CVD and therefore TRPM6 may play a part in the development of CVD.

Among HIV-negative women, the top LEA region was on chromosome 10 and located in the

intergenic region of the SEC23IP and PPAPDC1A genes. The rs1571099 SNP in PPAPDC1A
was significantly associated with interventricular septal wall thickness among African Ameri-

cans in a recent GWAS using the Candidate Gene Association Resource (CARe) Study [48].

This gene is involved in pathways related to innate immunity, phagocytosis and triacylglycerol

synthesis [49]. Therefore, this gene may also play a role in atherosclerosis, albeit an indirect

one.

Replication revealed associations with some of the cCIMT-SNPs found significant in earlier

studies. Previously, we had reported the association of two SNPs in RYR3 –rs2229116 and

rs7177922 that had achieved genome-wide significance among HIV-positive men of European

ancestry [20], with successful replication of rs2229116 in another group of HIV-positive White

men [21]. However, we did not find any association with these SNPs in the current analysis.

Instead, we found another SNP–rs2572204 in RYR3 that was associated with cCIMT among

HIV-positive women of WIHS. We reported the same association among Black HIV-positive

women in our previous candidate-gene study on RYR3 in WIHS. The different SNP associa-

tions within this gene may either be because of the differences in race or sex between the two

studies. WIHS women are also noted to have different heart disease risk because of differences

in their immunosuppression or duration of ART as compared to HIV-positive men [50, 51].

Nonetheless, RYR3 appears to play a role in HIV-related atherosclerosis risk based on some of

the possible gene (or protein) interactions found significant in this study. The admixture asso-

ciation of the SERGEF gene in the HIV-positive women provides further support for the role

of this gene in atherosclerosis. However, the direction of association was opposite to that

observed in the HIV-negative population in our previous study. The gene encodes a guanine

nucleotide exchange factor that may play a role in atherosclerosis through immune or inflam-

matory mechanisms via guanosine-triphosphatases and serotonin [25]. We speculate that

lower cCIMT associated with SERGEF in the HIV-positive women may be a result of immuno-

suppression because of ART or HIV itself or in conjunction with the gene as it appears to

mediate atherosclerosis through immune-related mechanisms.

Population stratification is an issue that needs to be addressed during GWAS to avoid spu-

rious associations, more so in admixed populations. Literature on genetic association studies

among admixed populations has persistently examined different approaches to account for

population structure. An initial and basic approach was genomic control [52] which was

improved upon by Price et al. [27] who suggested controlling for principal components. This

is currently the mostly widely used approach in GWAS and other genetic association studies

among admixed populations. However, recent studies argue that adjusting for global ancestry

is not sufficient and does not account for ancestry at the marker level for each individual SNP

which is commonly referred to as local ancestry [28]. To this effect, joint testing of admixture

and association was proposed and demonstrated an increase in statistical power and accuracy

of the results compared to existing methods [30, 31]. In the current study, we compared the

performance of two different methods based on level of ancestry adjustment; the methods are

described in the supplementary methods section (S1 File) and the results are presented in S3

Table. The comparison shows that the power is highest for the QSUM test that adjusts for

both local and global ancestries using the MIXSCORE program. Pasaniuc et al. reported that

the QATT test performed better for quantitative traits but also noted that the QSUM test
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might perform better given a set of conditions where high signals of admixture associations

were observed [30]. The BMIX test as proposed by Shriner et al. performs even better than the

QSUM test with a power of ~72% to detect phenotype-genotype associations in the overall

analysis [31]. Both results support the hypothesis that joint testing with adjustment for both

local and global ancestries is more powerful than the current association tests in use. There-

fore, we performed a secondary analysis using BMIX and present our results in the supplemen-

tal S4 Table. Of note, the top SNPs in Table 2 showed similar significance after adjustment for

local ancestry using BMIX (if available). Since BMIX uses the local ancestry information avail-

able through admixture mapping, as such the two analyses are not independent of each other.

In our study, we did not conduct the primary GWAS analyses using the BMIX method as we

could only estimate local ancestry in 473,732 SNPs, and so adjustment with local ancestry

would have dramatically reduced the number of informative SNPs available for GWAS. Never-

theless, this approach of adjustment for both local and global ancestry has not been extensively

explored and needs further validation to ensure broader application in future genetic studies

among admixed populations and also tease shared traits across ancestries [53].

The advantage of using the WIHS cohort is that a higher proportion of women in the

cohort were African American, especially among the HIV-positive subpopulation. It also pre-

sented us with an opportunity to evaluate the common CIMT association exclusively among

women. However, we recognize that the homogeneity of the population also reduces the gen-

eralizability of our findings. As the WIHS participants are relatively young and the incidence

of clinical CVD events is low, we could not assess the association of CVD events at the

genome-wide level. Therefore, we assessed cCIMT which is a reliable and reproducible sub-

clinical measure of atherosclerosis that has been shown to predict future CVD events. Most of

the HIV-positive women were also on combination ART including multiple antiretroviral

drugs which prevented us from evaluating the independent effect of specific ART agents on

cCIMT. Furthermore, our admixture analysis only included a subset of the SNPs that were

part of the GWAS (N = 473,732), and so we were limited in our ability to assess local ancestry

associations at the excluded SNPs. This also limited our ability to adjust for both local and

global ancestry during GWAS using the joint admixture and association testing method. We

acknowledge that the sample size was small for a genome-wide analysis, however, WIHS is

currently the largest prospective cohort of HIV-positive women in the U.S. with the cCIMT

measurements since cCIMT is not readily available, specifically among HIV-positive women.

The heterogeneity index I2 (S1 and S2 Tables) also shows that there are some consistent results

(both in direction of association and significance) but also inconsistent ones between HIV-

positive and HIV-negative groups. These results may suggest differences in underlying biologi-

cal mechanism, i.e. some of the genes or pathways maybe specific in the context of HIV (virus

itself or treatment) and others similar in both with or without infection, or they could be arti-

facts as a result of the small sample size. While we cannot conclude the reason of heterogeneity

in the two groups, the suggestive results should be examined in other populations.

In summary, we report several novel associations in relation to common CIMT among a

group of Black HIV-positive and HIV-negative women observed through genome-wide asso-

ciation and admixture analysis. The results suggest that GWAS results do not completely cap-

ture associations in regions of local ancestry and vice-a-versa among admixed populations and

both approaches may still be necessary to evaluate genotype-phenotype associations in specific

settings. These findings need to be confirmed in larger studies with local ancestry available for

a denser set of markers to allow equal comparisons across GWAS and admixture results.

Future studies may also benefit from combining data from other HIV cohorts and performing

a meta-analysis to detect novel or stronger associations.
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Methods

Ethics statement

The parent WIHS study and this sub-study conformed to the procedures for informed written

consent approved by institutional review boards (IRB) at all sponsoring organizations and to

human-experimentation guidelines set forth by the United States Department of Health and

Human Services, and finally reviewed and approved by the University of Alabama Institute

Review Board.

Study population

WIHS is a large prospective cohort of HIV-positive and risk-matched HIV-negative women

enrolled across six sites in the United States [54, 55]. The women in the study were enrolled

during the initiation phase in 1994/95 (2054 HIV-positive and 569 HIV-negative), the expan-

sion phase in 2001/02 (737 HIV-positive and 406 HIV-negative), and most recently during

2011/2012 to replace the women who had died during follow-up (270 HIV-positive and 93

HIV-negative). The study was designed to comprehensively evaluate the impact of HIV infec-

tion in U.S. women, and provide comparisons with the HIV-negative group having similar

characteristics and a high risk of acquiring the infection themselves. The women in the expan-

sion phase were included to examine the risks and benefits associated with ART. A vascular

disease sub-study was initiated in April 2004 to examine the effect of HIV and ART on subclin-

ical atherosclerosis over time, focusing specifically on inflammation, coagulation and lipid

pathways [50]. The measurements for cCIMT were obtained among 1331 HIV-positive and

534 HIV-negative women in WIHS through the vascular sub-study. In the current study, 970

Black, non-Hispanic women (682 HIV-positive and 288 HIV-negative) with complete geno-

type, phenotype and covariate information were included, after confirming the race/ethnicity

for these women using the principal components method.

Data collection. The collection and processing of data in WIHS was standardized with

centralized training of all staff before initiation of enrollment. Interviews with structured ques-

tionnaires were conducted to obtain participant-reported information on demographic, life-

style, socio-economic and clinical factors. In addition, anthropometric measures such as

weight and height; physiologic measures such as blood pressure (BP); laboratory measures

such as markers of HIV, and lipid profile were obtained using standardized protocols; and

gynecologic examinations were conducted. Follow-up every six months included collection of

interview related information and medication use [54].

CIMT images were obtained via high-resolution ultrasound by sonographers trained cen-

trally at the University of Southern California Atherosclerosis Research Unit Core Imaging

and Reading Center using a standard protocol across all study sites [56]. CIMT was measured

by the automated computerized edge-tracking method (patents 2005, 2006, 2011) [57]. The

coefficient of variation was 1.8% (intraclass correlation = 0.98; n = 113) for repeated CIMT

measurements with the initial images guiding the repeat scans. The complete ultrasound

included: 1) standardized measurements of the far-right wall of the distal common carotid

artery for CIMT, stiffness and lesions, and 2) scanning the proximal internal carotid, external

carotid and right carotid bulb at the bifurcation for lesions [50]. In the current study, we uti-

lized the common carotid artery measurements from the distal far right wall. The mean right

wall cCIMT was log base 10 transformed for normalization.

Genotyping. DNA isolation, quantification and the microplate reading were performed

using the Pure-gene DNA isolation kit (Gentra Systems, Minneapolis, MN), the PICO Green

dsDNA quantification kit (Molecular Probes, Eugene, OR) and the Perkin Elmer HTS7000
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BioAssay Reader, respectively [58]. All samples were stored at -20 oC. The genome-wide scan

was performed using the Illumina HumanOmni2.5-quad beadchip (NCBI build 37, hg19, Illu-

mina, San Diego).

Statistical analysis

Both the genome-wide and ancestry association analyses were initially conducted for all indi-

viduals followed by stratified analyses among HIV-positive and HIV-negative Black women.

Common CIMT was associated with all CVD risk factors except HDL cholesterol, and was

also not associated with ART or CD4 cell count in bivariate analysis. However, HIV related

risk factors such as ART and CD4 cell counts have been previously associated with cCIMT and

were therefore included in the final analysis.[11, 50] Analyses among all and the HIV-positive

individuals were adjusted for age, CD4 cell count, ART use, hypertension (systolic BP�140

mmHg, diastolic BP�90 mmHg, antihypertensive medication use or self-report), diabetes

mellitus (anti-diabetic medication use, fasting glucose�126mg/dl, HgbA1C�6.5%, or self-

report), current smoking, low-density lipoprotein (LDL), and high-density lipoprotein (HDL)

cholesterol. Covariate adjustment for HIV-negative individuals was the same except for ART

use.

Quality control of genomic data and GWA analysis. Multivariable linear regression

analysis using an additive model was performed in PLINK (v1.9) with default settings [59]. In

the current study, genotype information for a total of 1,590,141 SNPs was available. Quality

control resulted in the removal of 2 SNPs because of missingness at>10%, 6,433 because of

Hardy-Weinberg equilibrium <0.001, and 459,405 because of minor allele frequency (MAF)

<5%, leaving a total of 1,124,301 SNPs to be included in the genome-wide association analysis

(S5 Table). Genetic ancestry components were evaluated with principal component (PC) anal-

ysis using 168 ancestry informative markers (AIMs) as previously described [60]. Briefly, the

number of PCs which distinguished the major racial/ethnic groups in the sample was sought

by visual inspection of scatter plots of orthogonal PCs (i.e., PC 1 versus PC2, PC2 versus

PC3). This procedure was repeated until no discernible clustering of individuals by their self-

reported race/ ethnicity was possible (data not shown) [60, 61]. Based on the scree plot (S2

Fig), GWAS analysis was adjusted for 2 principal components (PCs) in addition to the other

covariates, described above. We also tested for genomic inflation of the GWAS results by

obtaining the lambda values as well as QQ plots for both the combined as well as stratified

models. Correction for multiple testing was performed using a method proposed by Shriner

et al [31]. The method estimates the effective number of tests by fitting an autoregressive

model to the additively coded genotypes and choosing the order of the model based on the

lowest Akaike information criteria (AIC). The total number of independent tests estimated

using this method were 769,204, resulting in a threshold significance level of 6.50 x 10−8.

Local ancestry estimation. Local ancestry was estimated using the Local Ancestry in

adMixed Populations using Linkage Disequilibrium (LAMP-LD) program [62]. The program

incorporates a dense set of markers to determine ancestry at each SNP for each individual

based on haplotype sets from ancestral populations. Phased haplotype data for the reference

populations was obtained from HapMap phase II and III data from Utah residents with

North-West European ancestry (CEU) and Yorubans from Ibadan, Nigeria (YRI) for African

ancestry (HapMap phase 3, release 2). The reference haplotype data was used to determine

parameters for the Hidden Markov Model (HMM) with 15 state spaces. The local ancestry was

estimated using the HMM parameters within a 300 SNP-long window-based framework. Each

chromosome was analyzed separately and the local ancestry coded as the number of European

ancestry alleles at each SNP (i.e., 0, 1, or 2 where “0” means both chromosomal regions had
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African ancestry, “1” means the chromosomal region is admixed, one with European ancestry

and the other with African ancestry, and “2” means both chromosomal regions had European

ancestry). Before ancestry estimation, the physical coordinates for the remaining 1,124,301

SNPs were converted from hg19 to hg18 build to match the coordinates with the HapMap

phased data using the UCSC table browser [63]. As a result, 119 SNPs were lost during conver-

sion. Furthermore, 648,814 SNPs were not available in HapMap, 1,259 had ambiguous A/T or

G/C SNPs with MAF >35% and could not be resolved for strand annotation, and 63 were

duplicates; this resulted in 473,732 autosomal SNPs remaining for inclusion in the admixture

estimation and association analyses (S5 Table).

A SNP most significantly associated with the clinical events along with the block of neigh-

boring SNPs with similar number of European ancestry (“0”, “1” or “2”) were denoted as a

“LEA region”. Additionally, blocks of same ancestry LEA regions were further defined based

on whether the SNPs were in the genic or intergenic regions. A genic region included the 5’

and 3’ untranslated regions, the exons and the introns; the intergenic regions were those that

fell between two genic regions as described above. Gene nomenclatures were obtained from

the National Center for Biotechnology Information’s (NCBI) Reference Sequence database

through the web ANNOVAR program [64].

Local ancestry association with cCIMT. Association testing in relation to cCIMT was

performed using the PLINK (v1.9) software with default settings [59]. We conducted an addi-

tive linear regression analysis to evaluate the association of local ancestry coded as homozy-

gous European ancestry (11), heterozygous European/African ancestry (12) and homozygous

African ancestry (22), controlling for global European ancestry in the model. Since ancestry

estimates are highly correlated, it is necessary to calculate the total number of effective inde-

pendent tests to arrive at a threshold genome-wide significance level. We calculated the total

number of effective independent tests using the method proposed by Shriner et al for admix-

ture analysis as well [31, 65]. The total number of independent tests in our analyses was 146

resulting in a threshold significance level of 3.42 x 10−4.

Meta-analysis. Meta-analysis was performed on the results from the GWAS and admix-

ture analyses separately. The coefficients obtained from the stratified analyses of HIV-positive

and HIV-negative women were combined to obtain a pooled estimate. The analysis was con-

ducted using PLINK (v1.9) for quantitative traits with both fixed- and random-effects analysis,

including the detection of heterogeneity of the results (between HIV-positive and HIV-nega-

tive) using the heterogeneity index I2 (S1 and S2 Tables).

Evaluation of previously significant cCIMT SNPs

We identified 377 SNPs based on previous cCIMT-genetic association studies (S6 Table). Of

these, 145 SNPs were obtained from a combination of candidate gene, genome-wide (GWAS)

or meta-analysis studies [16, 19, 20, 22, 66–87], 232 SNPs from a GWAS conducted by Melton

et. al. [17]. We assessed the GWAS results and LEA regions that contained these SNPs and

report the associations for those found significant at P<0.05 in our cCIMT analysis.
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S1 File. Supplemental methods. Comparing test performance after ancestry adjustment.
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S1 Fig. Regional plots for the topmost hit from the genome-wide association and admix-

ture analyses. a) All women (GWAS), b) HIV-positive women (GWAS), c) HIV-negative
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