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Cardiovascular KATP channels and advanced aging
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With advanced aging, there is a decline in innate cardiovascular function. This decline is not general in nature.

Instead, specific changes occur that impact the basic cardiovascular function, which include alterations in

biochemical pathways and ion channel function. This review focuses on a particular ion channel that couple

the latter two processes, namely the KATP channel, which opening is promoted by alterations in intracellular

energy metabolism. We show that the intrinsic properties of the KATP channel changes with advanced aging

and argue that the channel can be further modulated by biochemical changes. The importance is widespread,

given the ubiquitous nature of the KATP channel in the cardiovascular system where it can regulate processes

as diverse as cardiac function, blood flow and protection mechanisms against superimposed stress, such as

cardiac ischemia. We highlight questions that remain to be answered before the KATP channel can be

considered as a viable target for therapeutic intervention.
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C
ardiovascular health declines with aging. Elderly

patients are more likely to suffer from conditions

such as atherosclerosis, ischemic heart disease,

hypertension and heart failure (1). Cardiovascular dis-

ease remains the leading causes of death in most of the

developed countries, with advanced age as a top risk

factor. The number of aged people is expected to increase

over the next decades. In the United States, for example,

it is estimated that the elderly will soon comprise about

20% of the overall population (2). However, even in the

absence of these underlying diseases, the aging heart

undergoes intrinsic and poorly understood functional

decline (3�5). The overall decline in cardiac function,

however, is not a general phenomenon but appears to

be caused by specific alterations in diverse biochemical

and electrophysiological pathways. These aging-related

changes have been well-documented in the literature

and will only be briefly discussed here. For a more

complete analysis, the reader is referred to reviews on

this subject elsewhere (4,6�8). For potential therapeutic

reasons, it is imperative to understand the cardiovas-

cular decline during advanced aging and the mechanisms

of cardiovascular diseases, when superimposed on this

functional deficit.

Aging-associated electrophysiological and
cellular changes
There is a decline in cardiovascular function during advanced

aging in certain biochemical and cellular pathways (9).

Specific changes in cardiomyocyte function include smaller

contractions (10), due largely to alterations in intracellular

Ca2� handling. In some studies, the L-type Ca2� current

was described to be reduced with advanced age, which would

lead to less Ca2� release from the sarcoplasmic reticulum

(SR) and a smaller contraction amplitude. The rate with

which Ca2� is released from the SR is also slower, which

explains a prolonged time-to-peakof the cardiac contraction.

Relaxation occurs as the Ca2� is taken back up into the SR

by the action of the SR Ca2�pump, sarco/endoplasmic

reticulum Ca2� -ATPase (SERCA). Since SERCA levels and

activity are decreased with advanced age, the relaxation rate

of the cardiac contraction is also impaired (2). For a detailed

description of cardiac excitation contraction performance

with advanced age, see the review by Feridooni et al. (10).
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The action potential of cardiomyocytes is caused by

the action of ion channels, exchangers and pumps. The

shape and duration of the action potential (important

determinants of contractility), heart rate and arrhythmo-

genesis are determined by a coordinated interplay

between all of these ion translocating systems. At least

some of these are specifically altered during advanced

aging, which explains the prolonged action potential

duration that occurs (5,10). There is no general agree-

ment on the exact nature of the changes in individual ion

channel currents, but in general a decrease in outward

K� currents, such as the transient outward K� current

(Ito) (5), would suffice to explain a prolonged action

potential. Age-dependent changes in the slowly activating

delayed rectifying K� current (IKs) and the Na��Ca2�

exchanger (NCX1) have also been reported by some

investigators (10).

ATP-sensitive K� channels
A class of K� channels, which open in response to

metabolic demand and stress, has initially been described

in cardiac myocytes (11). They are able to couple intra-

cellular energy metabolism to electrical excitability due

to their sensitivity to the levels of cytosolic high-energy

nucleotide molecules (12). Specifically, their opening pro-

bability is increased when there is a decline in intracel-

lular ATP and an increase in ADP and AMP levels. As

the channel was initially characterized by its sensitivity to

intracellular ATP, it has been named the ATP-sensitive

K� (KATP) channel.

Molecular components of KATP channels

There are several classes of KATP channels throughout

the body, and they differ from each other in terms of

their electrophysiological profiles, their sensitivities to

intracellular nucleotides (ATP and ADP) and to specific

pharmacological compounds that act on these channels

(13). With the molecular cloning of the components of

KATP channels, it has become apparent that these

differences are due largely to the specific combinations

of the different subunits. The K�-permeable pore-forming

component of the channel if formed by the Kir6.1 or

Kir6.2 subunits, which combine with the drug-sensitive

sulfonylurea receptors, SUR1 or SUR2 (12). Two major

SUR2 alternative spice variants (SUR2A and SUR2B)

are commonly studied. Thus, channels that are composed

of Kir6.1/SUR2B subunits (such as those found in

vascular smooth muscle) behave quite differently to

those, for example, which are formed by Kir6.2/SUR2A

subunits (as might be found in ventricular myocytes) (12).

Cardiac KATP channels

The native KATP channel in cardiac ventricular myocytes

In vitro, the metabolic state of a resting isolated cardio-

myocyte is sufficient to keep the KATP channel closed.

As a result, KATP channel blockers (such as glibencla-

mide and tolbutamide) have little or no effect on the

cardiac action potential during patch clamp experiments.

In a beating heart, however, which has a much higher

metabolic demand, the physiological role of KATP channels

is more apparent. For example, with an elevated heart

rate, the action potential gradually shortens over a period

of several minutes. This frequency-dependent adaptation

of the action potential duration is prevented by blocking

KATP channels with glibenclamide or by suppressing the

channel genetically with cardiac-specific overexpression

of dominant-negative Kir6 subunits (14). Presumably,

therefore, the elevated metabolic demand associated with

an increased heart rate (as occurs during exercise) is

sufficient to stimulate KATP channel opening, which in

turn causes the action potential to shorten.

Effects of aging on the ventricular KATP channel

The ventricular KATP channel is inhibited during ad-

vanced aging (15,16). In one study, the amount of whole-

cell current that is activated with a KATP channel opener,

pinacidil, was found to be smaller in ventricular myocytes

isolated from 18-month-old female (but not male) guinea

pigs when compared to those from 8-week-old animals

(15). In another study, in which maximal KATP channel

opening was achieved by metabolic blockade with 2-4

dinitrophenol (DNP), the KATP channel density was

reported to be significantly depressed in ventricular

myocytes isolated from 28- to 30-month-old Fischer 344

male rats (when compared to 5-month old) or from

30-month-old C57BL/6 male mice (compared to 4- to

6-month-old males) (16). The reasons for the apparent

gender differences between these two studies may be due to

species differences or the age of the animals. The rat and

mouse studies were performed at an age where 50%

mortality occurs (about 24 months for the Fischer male

rat and C57BL/6 mice). In contrast, the 18-month-old

guinea pigs were at a relatively young age, since 50%

mortality occurs at about 45 months for male guinea pigs

(17). Thus, the KATP channel may well be inhibited in both

male and female guinea pigs when studied at a more

relevant older age. These two studies show a decreased

whole-cell KATP channel current density, but this observa-

tion does not clarify the mechanism. For example, this

result may be due to a decreased sensitivity of the KATP

channel to metabolic inhibition and pinacidil. A more

likely explanation, however, is that the density of sarco-

lemmal KATP channels is decreased. Indeed, there is a

smaller number of KATP channels in an excised membrane

patch isolated from aged Fischer 344 rat ventricular

myocytes when compared to the young group (16).

In addition to the decreased number of surface KATP

channels, interesting and important changes occur in

the channel’s sensitivity to inhibitory nucleotides since

KATP channels from the aged rodent heart were more
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sensitive to the inhibitory effect of ATP (16). An int-

eresting change occurred in the nucleotide sensitivity.

Normally, the relationship between the ATP concentra-

tion and KATP channel activity can be described by a

modified Hill equation (18). In aged hearts, however,

ATP inhibition was best described by assuming a model

where two ATP binding affinities contribute to the overall

ATP sensitivity (16). ATP binds to the Kir6.x subunit to

inhibit channel activity (12), but the KATP channel’s ATP

sensitivity is determined by its overall composition

(12,19,20). The possibility is therefore raised that age-

dependent changes occur in the molecular makeup of

KATP channels, but this idea remains to be investigated

experimentally. Regardless of the underlying mechanism,

the consequences remain the same: not only are there

fewer channels per unitary surface area, but they are also

more readily closed at physiological ATP concentrations.

The result would be that substantially fewer channels are

available for biological activity.

Apart from the intrinsic changes in ventricular KATP

channel function and ATP sensitivity, one must also

consider implications of its regulation. Given that the

KATP channel directly senses and responds to changes in

intracellular nucleotides, changes in energy metabolism

during advanced again may directly affect the ATP:ADP

ratio, and hence KATP channel open probability. There are

important biochemical changes that occur in the aging

heart, which is a topic beyond the scope of this review and

the reader is referred to reviews on this subject (21,22).

Not only is mitochondrial metabolism affected, but

also defects occur in glucose uptake and glycolytic ATP

production (23�29). The limited availability of glycolytic

ATP may be particularly important for KATP channel

function, given that glycolysis preferentially regulates the

ventricular KATP channel (30,31) and that glycolytic

enzymes are key components of the KATP channel mega-

dalton complex (32�34). Thus, alterations in glycolytically

produced ATP might have significant effects on KATP

channels during advanced aging. This issue may become

even more important during early ischemia, when both

KATP channel opening and glycolysis may have protective

effects (12,35). The interplay between these events in the

aging heart, however, remains to be elucidated.

Vascular KATP channels

The native channel in blood vessels

KATP channels in coronary arterial smooth muscle help

to maintain constant blood flow to the myocardial tissue

(36,37). They regulate coronary flow alterations in

response to metabolic demand (38). Their contribution

to regulating membrane potential of smooth muscle cells

(and thus blood flow) increases as the coronary diameter

decreases along the vascular bed, consistent with a

significant role for KATP channels in smaller resistance

vessels. Coronary smooth muscle KATP channels also

contribute to the maintenance of flow in the coronary

microvasculature in response to changes in blood pres-

sure (autoregulation). Vascular KATP channels exist in

two forms: there is evidence for a small/medium con-

ductance channel, with a unitary conductance ranging

between 10 and 50pS and for a large conductance (135�
200pS) channel (39). Nucleoside diphosphates (NDP) are

required for the opening of the small/medium conduc-

tance channel, and they are therefore often referred to as

KNDP channels. The opening of vascular KNDP channels

is stimulated by metabolic impairment, including intra-

cellular ATP depletion, hypoxia, and metabolic inhibition

(40�42). Pharmacologically, their opening is promoted by

‘classical’ KATP channel openers such as levcromakalim,

pinacidil, nicorandil, and diazoxide (41,43�48) and

inhibited by KATP channel blockers such as glibenclamide

(41,42,45).

KATP channels are also expressed in the vascular

endothelium. In most studies, membrane hyperpolariza-

tion of endothelial cells occurs in response to KATP

channel openers such as levcromakalim, rimakalim,

pinacidil, minoxidil, and diazoxide (49�53). Moreover, a

glibenclamide-sensitive KATP channel current can be

elicited in whole-cell patch clamp experiments with freshly

isolated cerebral microvascular and rat aortic endothelial

cells (49,53,54). It is possible that endothelial KATP

channels are constitutively active since glibenclamide

inhibits basal membrane currents in bovine pulmonary

endothelial cells (55). In isolated inside-out patches, the

KATP channel may have a unitary conductance of about

40pS (54), although another study described the presence

of two types of KATP channels with unitary conductances

of 25 and 150pS (49). Endothelial KATP channels may

help to regulate blood flow (56,57), possibly by regulating

the release of vasoactive compounds such as nitric oxide

and endothelin-1 (58,59). Thus, endothelial KATP chan-

nels may be an important link between the metabolic

status and coronary function.

Molecular studies

Vascular smooth muscle expresses high levels of the KATP

channel subunits Kir6.1 and SUR2B, with little or no

expression of SUR1 or SUR2A (60�63). Credence of the

premise that these two subunits are molecular compo-

nents of smooth muscle KATP channels comes from the

arguments that 1) overexpression of these subunits leads

to the formation of channels with properties similar to

those of smooth muscle KNDP channels (64) and that

2) genetic deletion of either Kir6.1-/- or SUR2-/- in mice

abolish KATP channel activity in aortic smooth muscle

myocytes (65,66). The endothelial KATP channel is not

fully characterized and published reports show the

expression of Kir6.1, Kir6.2, and SUR2B in the en-

dothelium (52,53,67). Transgenic overexpression of Kir6

dominant-negative subunits in the endothelium lead to
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impaired coronary artery function, elevated blood pres-

sure, and defects in ET1 release (59). A permissive role for

Kir6.2 is demonstrated by the finding that pulmonary

artery endothelial cells isolated from Kir6.2-/- mice have

an impaired response in membrane potential changes and

reactive oxygen species (ROS) generation associated with

shear stress (68).

Effects of aging on vascular KATP channels

Natural aging is associated with structural and functional

changes in blood vessels. These changes may contribute to

the development of vascular diseases, such as coronary

artery disease, heart failure, essential hypertension, and

postural hypotension. Structural changes include the

development of vascular stiffness and deficits in compli-

ance. Functional changes take place both in the vascular

smooth muscle and in the endothelium (69). The func-

tional defects appear to be associated with (or caused by)

deficits in intracellular Ca2� homeostasis, and process

that regulate intracellular Ca2� homeostasis, such as

the activity of the Na�/K�-ATPase (69). Little is known

about how aging affects vascular smooth muscle or

endothelial KATP channels. In brain stem vessels, the

dilator responses of the basilar artery branches (but not

of the main artery itself) in response to KATP channel

openers levcromakalim or Y-26763 were diminished in

aged (24�26 months) Sprague-Dawley rats (70). Similarly,

in intact aortic segments from 3-year-old rabbits, the

vasodilator response induced by cromakalim was signifi-

cantly impaired (71). In contrast, the intrinsic activity of

the KATP channel to PKA or to the KATP channel opener,

nicorandil, appears to be largely unaffected (70,72). There

is evidence that impaired PKA signaling may attenuate

KATP channel opening in cultured rat aortic vascular

smooth muscle cells (72), which would translate to im-

paired PKA-mediated vasodilatation and blood pressure

regulation if this results holds in vivo. Indeed, isoproter-

enol-induced hyperpolarization of isolated mesenteric

arteries was found to be impaired in aged rats (73). In

summary, there are very few studies that investigated how

the aging process affects vascular and endothelial KATP

channels. There is evidence that endothelium-dependent

hyperpolarization (produced by acetylcholine) is markedly

impaired in aged Wistar-Kyoto (WKY) rats (74). Overall,

based on the literature, it is likely that the contribution of

endothelial and smooth muscle KATP channels to vasor-

eactivity is strongly impaired in the aged vascular system.

Mitochondrial KATP channels

The native channel

In the heart, mitochondrial oxidation is an important fuel

under normal conditions and the role of mitochondria

to heart function cannot be underestimated. There is

strong evidence for a type of a KATP channel in the inner

mitochondrial membrane, which differs in many respects

from the cardiomyocyte or vascular KATP channels. The

mitochondrial KATP channel (mito-KATP channel) has

first been identified in the inside out with patch clamp

approaches in giant mitoplasts from rat liver (75). Opening

of the channel was inhibited by millimolar concentrations

of ATP (as opposed to the micromolar ATP concentra-

tions needed to block cardiac or vascular KATP channels).

Moreover, the single channel conductance of the mito-

KATP channel was reported to be very small (about 10pS)

as opposed to the 30�85pS unitary conductances of other

plasma/sarcolemmal KATP channels (12). There have

been further patch clamp studies of mito-KATP channels

(76�78), but data are not consistent, with reported

unitary conductances ranging from 24 to 220pS. More-

over, not all studies were successful in finding evidence

for KATP channels in mitochondria with patch clamp

techniques (79�83). Many studies do not directly measure

mito-KATP channels with electrophysiological recordings,

but rely on surrogate methods, such as K�, 86Rb� or Tl�

flux assays of reconstituted channels in liposomes or

isolated mitochondrial preparations (84�88). In these

studies, MgATP more efficiently blocks the mito-KATP

channel. The mito-KATP channel has an overlapping

pharmacology with other types of KATP channels, being

activated by compounds such as pinacidil, cromakalim,

and diazoxide, and blocked by tolbutamide, glibencla-

mide, and 5-hydroxydecanoate (5-HD) (12,89).

Molecular subunits and knockout approaches

The molecular composition of mito-KATP channels is

debated and is not well defined. Initially, the Kir6.1

subunit was proposed to be a candidate (90), but not

all subsequent studies are in agreement (12). The

observation that mitochondrial function and mito-KATP

channel activity are unaffected in Kir6.1-/- or Kir6.2-/-

mice (91,92) argues against the premise that these sub-

units are essential components of the mitochondrial

channel. Current data suggest instead a potential role

for a Kir1.1 splice variant (93) and/or a short splice

variant of the SUR2 subunit (94). To date, no genetic

knockout approaches have been confirmed the molecular

identity of the mito-KATP channel.

Changes in mito-KATP channels with advanced age

A decline in mitochondrial morphology, density and

function occurs with advanced aging, cell senescence

and cell death. This is observed in a variety of tissues and

organs, including the heart. The decline in mitochondria

function may potentially directly contribute to the aging

process (95), although some would argue that the mito-

chondrial theory of aging is overestimated (96). Regardless,

the question remains of how the mito-KATP channel

is affected by aging and whether any potential changes

may contribute to a deficit in mitochondrial capacity.

Unfortunately, this question is not resolved in the pre-

vailing literature. There are indications that the mito-

chondrial potassium cycle is impaired in 24-month-old
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Wistar male rats and that the intra-mitochondrial K�

concentration is decreased (97). Some studies show that

diazoxide has protective effects on mitochondrial func-

tion during advanced age (98,99). However, diazoxide is

an effective inhibitor of succinate dehydrogenase and

complex II respiration (100�103) and it is not entirely

clear whether the protective effects of diazoxide result

from an action on mito-KATP channels or the inherent

protective nature of complex II inhibition (104,105).

Patch clamp studies are needed to examine whether the

mito-KATP channel is affected by advanced age and

genetic studies are also needed (once the subunit compo-

sition has been established) to determine how mito-KATP

channels contribute to mitochondrial function during

advanced age.

Possible roles for KATP channels in the aging-
related physiological and pathophysiological
processes
We will briefly review the possibility that KATP channels

may be involved in physiological and pathophysiological

processes during advanced aging. It should be noted that

the literature is scant and some sections are somewhat

speculative.

Exercise

During advanced aging, the ability of the cardiovascular

system to respond to stress is significantly decreased. This

includes physiological stressors such as exercise, which

results in a decreased maximum cardiac output and im-

paired reserve capacity of the aging heart (106). The

decline in physical endurance is associated with a decrease

in cardiac KATP channel currents (see ‘Effects of aging on

the ventricular KATP channel’). Interestingly, transgenic

overexpression of the KATP channel subunit, SUR2A, in

mice is associated with improved physical endurance

(107), suggestive of a permissive role for KATP channels.

In the latter study, the SUR2A subunit was expressed

under the control of a strong and ubiquitous CMV

promoter, which makes it difficult to assign the protective

role to KATP channels in the heart. Likewise, global

knockout of the Kir6.2 KATP channel subunit leads to

reduced exercise tolerance in mice (108). Since cardiac-

specific overexpression of a dominant-negative KATP

channel subunit in mice also results in a phenotype of

reduced exercise tolerance (109), it is very likely that

cardiac KATP channels are in fact involved. Studies in rats

also support the concept that cardioprotection afforded

by chronic exercise is mediated by sarcolemmal KATP

channels (110,111). In humans, the Kir6.2 E23K variant

was found to be overrepresented in heart failure and to be

associated with impaired exercise stress response (112).

Interestingly, upregulation of cardiac KATP channels

occurs vary rapidly with exercise, suggesting the possibi-

lity that the beneficial effects of exercise in advanced aging

might be, at least in part, due to upregulated cardiac KATP

channel currents.

Ischemia/reperfusion injury

In an aging society, where advanced age independently

adds to the already high cardiovascular risk, our nation

faces a health and financial problem in the years to come.

Not only is there an inherent decline in cardiovascular

function in the aged heart, but the aged heart becomes

much more vulnerable to superimposed stresses such as

cardiac ischemia (113,114). Thus, when ischemia is super-

imposed on the already impaired aged heart, enhanced

susceptibility to ischemia/reperfusion (I/R) injury occurs

(115�118). In general, KATP channels (both the sarcolem-

mal and mitochondrial subtypes) are considered to have

protective roles during cardiac ischemia (12). The decline

in KATP channel function and regulation during advanced

aging therefore leads to the expectation that the increased

susceptibility to ischemic stress might (at least in part)

be due to the KATP channel deficit. The KATP channel

opener, nicorandil, however, remains highly cardiopro-

tective in aged rats (119,120). Nicodandil is a nicotina-

mide derivative with a nitrate group and it is unclear

to what extent the protective effects of this compound

are related to blood flow improvement independent of

KATP channels. Another KATP channel opener, minoxidil,

was found to induce necrosis in aged (but not young)

rat hearts (121). The KATP channel opener, diazoxide, is

very effective against cardiac ischemic injury (12,89), but

loses its protective effects against cardiac I/R in the aged

(�32 months) rabbit (122).

Ischemic and pharmacological preconditioning
Not only is the decline in innate cardiovascular function

with advanced age associated with increased injury

resulting from I/R, but the endogenous protection mech-

anisms of the heart against I/R injury is also greatly

diminished (117,123�126). The best known protective

mechanism is that of ischemic preconditioning (IPC), in

which short bursts of ischemia that precedes a longer

(index) ischemic event paradoxically protects the heart

from injury, for example by reducing the amount of

infarcted tissue (127). KATP channel blockers, such as

glibenclamide and 5-hydroxydecanoic acid (5-HD), effec-

tively reduces the protective effects of IPC. Furthermore,

pretreatment of a heart with a variety of KATP channel

openers, including cromakalim, aprikalim, bimakalim,

diazoxide, nicorandil, and pinacidil, mimics the cardio-

protective effects of IPC (12), which led to the premise

that KATP channels are involved in the protective effects

of IPC. Consistent with a decline in KATP channel, the

protective effects of IPC during advanced age is signifi-

cantly reduced (123�125). This is also observed in humans.

The protective effects of preconditioning is absent in

elderly patients undergoing coronary angioplasty; an
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effect that can be overcome by the KATP channel opener

nicorandil (128).

It should be noted that IPC has a complex mechanism

and intracellular signaling, notably by PKC, has an

essential role (129). Thus, IPC can also be mimicked by

receptors (e.g. by adenosine or a-adrenoceptors) that

signal though PKC. This form of precondition is often

referred to as pharmacological preconditioning (PPC).

Interestingly, pretreatment of cardiomyocytes with the a-

adrenoceptor agonist, phenylephrine, not only is protec-

tive against ‘ischemic’ injury, but also upregulates KATP

channel current density, also suggesting a key role for

KATP channels in this form of cardioprotection (130). In

support, we recently demonstrated that KATP channels

are essential to mediate the infarct-limiting effects of IPC

(since it was absent on mice that lack cardiac KATP

channels). Moreover, ischemia caused internalization of

the protective KATP channel; an effect that was prevented

by IPC and was mediated by PKC (131). Interestingly, the

protective effects of PPC with adenosine is lost in aged

(16�18 months) mice, whereas the KATP channel opener

diazoxide reduced ischemic damage in both young and

old hearts (132). This result suggests an uncoupling of the

intracellular pathways underlying IPC during advanced

age, but mechanistic insights await further research.

Arrhythmias

Cardiac arrhythmias is a serious health concern, with

atrial fibrillation (AF) the most common abnormal heart

rhythm in the aged population (133,134). The molecular

mechanisms of AF and ventricular tachycardia (VT) are

diverse (135), with potential roles for altered ion channel

activities and impaired intracellular Ca2� handling (136).

KATP channels have a potential role in the genesis of arrhy-

thmias, as demonstrated by the observation of a predis-

position to adrenergic AF originating from the vein of

Marshall in a patient with a missense mutation (Thr1547Ile)

in the ABCC9 gene (which codes for the SUR2 KATP

channel subunit) (137). Moreover, a KCNJ8 mutation was

also found to be associated with early repolarization and

AF (138) and the KATP channel current density was found

to be decreased during chronic human AF (139). A

curious result was observed in aged (about 24 months

old) rat hearts, in that glycolytic inhibition was found to

cause spontaneous ventricular fibrillation in the aged (but

not young) hearts, which was suppressed by the KATP

channel blocker glibenclamide (140). It is unclear to what

extent this result relates to the regulation of KATP channels

by glycolytically derived ATP (33,141). The specific role of

KATP channels during arrhythmogenesis in the aging

heart, however, has not been formally investigated.

Conclusion and future directions
The literature is clear in that the aging cardiovascular

system undergoes an innate decline in function and

metabolism, and becomes less adaptive to superimposed

stresses, such as exercise and cardiac ischemia. It is also

clear that the KATP channel is diminished (and possibly

dysregulated) during advanced age. The protective role of

the KATP channel is therefore expected to be diminished

during advanced age, a premise that is supported by the

literature. Roles appear to exist for the contribution of

several types of KATP channels, including those in the

heart, vasculature, and mitochondria (Fig. 1). Many

questions, however, remain unanswered, and future re-

search is warranted to determine the cellular and mole-

cular mechanisms that cause KATP channel dysfunction.

Systematic studies are needed to examine transcriptional

profiles of KATP channel subunits and their regulation by

transcription factors and histone modification. Post-

transcriptional regulation of the KATP channel subunits

by processes such as phosphorylation and ubiquitination

must be closely examined. The regulation of channel

function during aging, for example by intracellular

metabolism (which is known to be pliable during aging)

and ROS must also be defined. These studies may reveal

targets for therapy and intervention. Attractive pathways

to explore are those known to be beneficial during aging,

such as combating changes in cellular NAD� levels (142),

caloric restriction, resveratrol, and melatonin (143).
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