
TYPE Mini Review
PUBLISHED 10 November 2022| DOI 10.3389/fpain.2022.959609
EDITED BY

Ausaf Bari,

University of California,

United States

REVIEWED BY

Daniel Lu,

University of California,

United States

*CORRESPONDENCE

Cory A. Alcon

calcon@highpoint.edu

SPECIALTY SECTION

This article was submitted to Neuromodulatory

Interventions, a section of the journal Frontiers

in Pain Research

RECEIVED 01 June 2022

ACCEPTED 24 October 2022

PUBLISHED 10 November 2022

CITATION

Alcon CA and Wang-Price S (2022) Non-

invasive brain stimulation and pain

neuroscience education in the cognitive-

affective treatment of chronic low back pain:

Evidence and future directions.

Front. Pain Res. 3:959609.

doi: 10.3389/fpain.2022.959609

COPYRIGHT

© 2022 Alcon and Wang-Price. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.
Frontiers in Pain Research
Non-invasive brain stimulation
and pain neuroscience
education in the cognitive-
affective treatment of chronic
low back pain: Evidence and
future directions
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Chronic low back pain (CLBP) is among the leading causes of disability
worldwide. Beyond the physical and functional limitations, people’s beliefs,
cognitions, and perceptions of their pain can negatively influence their
prognosis. Altered cognitive and affective behaviors, such as pain
catastrophizing and kinesiophobia, are correlated with changes in the brain
and share a dynamic and bidirectional relationship. Similarly, in the presence
of persistent pain, attentional control mechanisms, which serve to organize
relevant task information are impaired. These deficits demonstrate that pain
may be a predominant focus of attentional resources, leaving limited reserve
for other cognitively demanding tasks. Cognitive dysfunction may limit one’s
capacity to evaluate, interpret, and revise the maladaptive thoughts and
behaviors associated with catastrophizing and fear. As such, interventions
targeting the brain and resultant behaviors are compelling. Pain
neuroscience education (PNE), a cognitive intervention used to
reconceptualize a person’s pain experiences, has been shown to reduce the
effects of pain catastrophizing and kinesiophobia. However, cognitive deficits
associated with chronic pain may impact the efficacy of such interventions.
Non-invasive brain stimulation (NIBS), such as transcranial direct current
stimulation (tDCS) or repetitive transcranial magnetic stimulation (rTMS) has
been shown to be effective in the treatment of anxiety, depression, and pain.
In addition, as with the treatment of most physical and psychological
diagnoses, an active multimodal approach is considered to be optimal.
Therefore, combining the neuromodulatory effects of NIBS with a cognitive
intervention such as PNE could be promising. This review highlights the
cognitive-affective deficits associated with CLBP while focusing on current
evidence for cognition-based therapies and NIBS.
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Introduction

Chronic low back pain (CLBP) is among the leading causes

of disability worldwide (1). Nearly one-third of the world’s

population lives with some form of ongoing pain, with low

back and neck pain contributing the most to years lived with

disability (2). This high rate of disability is associated with

significant individual, social, and financial impact along with

high rates of recurrence (3, 4). Despite its prevalence, CLBP

often lacks a specific, identifiable cause, making it difficult to

treat (5). Besides physical and functional impairments, many

other factors influence the prognosis of CLBP, including a

person’s beliefs, cognitions, and perceptions of their pain.

Those suffering from persistent pain often demonstrate altered

cognitive and affective behaviors, such as pain catastrophizing,

kinesiophobia, and executive control deficits (6–8). These

alterations are believed to have arisen from maladaptive

reorganization of brain networks, including cognitive-

evaluative and affective cortical networks, and often are

predictive of poorer recovery and development of chronic

pain (9, 10). Elements of pain catastrophizing, fear of

movement, and executive function deficits can be observed

clinically through behaviors, such as magnification of pain,

rumination, avoidance, withdrawal, and other adverse

responses. These variables share a dynamic relationship with

subjective reports of pain severity in that these behaviors can

be both a consequence of pain and a predictor of chronicity.

Structural and functional changes, including alterations of

brain matter volume and network activation (11), also occur

throughout the nervous system and correlate with the

presence of pain behaviors (12). Interestingly, these cortical

changes have been shown to reverse when pain is successfully

treated (13). Historically, conservative management of LBP

has focused on pain reduction and function improvement,

with interventions targeting injured tissues taking priority

(Figure 1). However, this approach could be further enhanced

by also addressing coexisting psychosocial deficits (14).

As the high prevalence of CLBP continues and the evidence

for the psychological contributors has grown, the effort to

develop evidence-based interventions that address these

behaviors has expanded. Many treatment methods are now

utilized by clinicians to reduce the deleterious effects that

maladaptive beliefs and behaviors can cause. Approaches such

as pain neuroscience education (PNE) aim to reconceptualize

a person’s pain experience away from a biomedical model of

pain and towards a biopsychosocial model that incorporates

all facets of the pain experience. PNE consists of patient

education about neurophysiology, typical pain processing,

neuroplasticity, and psychosocial factors associated with acute

and chronic pain. This helps patients develop more effective

strategies to cope with and recover from the various

dimensions of pain (15).
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Considering that alterations in the cortical structure and

subsequent behavioral changes are influenced by the amount

of excitability within the brain regions responsible for

processing the experience of pain, non-invasive brain

stimulation (NIBS) techniques, such as transcranial direction

current stimulation (tDCS) or repetitive transcranial magnetic

stimulation (rTMS), could potentially modulate pain

perception and subsequent pain behaviors (16, 17). As is the

case with the treatment of most physical and psychological

diagnoses, an active multimodal approach is considered

optimal. Therefore, in theory, combining the neuromodulatory

effects of NIBS with an active, cognitive intervention such as

PNE could be promising. This review highlights cognitive-

affective deficits in chronic pain, specifically CLPB, and

focuses on current evidence and future directions for the

therapeutic combination of cognitive therapies and NIBS for

CLBP.
Pain catastrophizing and
kinesiophobia in chronic pain

Because pain is a biopsychosocial experience, the cognitive

and emotional components, such as pain catastrophizing and

kinesiophobia, cannot be ignored when assessing and treating

patients with pain, particularly those with chronic pain. Pain

catastrophizing is a maladaptive pain response characterized

by rumination, helplessness and magnification regarding one’s

pain experience (18, 19). A person with high levels of pain

catastrophizing may report feeling that their pain will

continue only to worsen, progress until they are unable to

function, or be caused by sinister pathology. They often have

difficulty shifting their focus from painful or potentially

painful stimuli and report higher threat values to non-painful

stimuli (20, 21). Kinesiophobia or fear of movement is an

excessive, irrational, and debilitating fear to carry out a

physical movement due to a feeling of vulnerability to a

painful injury or re-injury (22). Catastrophizing and

kinesiophobia often coexist with an increased attentional

awareness of one’s pain leading to avoidance of activity based

on the belief that movement will lead to further harm (23).

Pain catastrophizing and kinesiophobia involve the persistence

of distressing cognitive and emotional responses to pain or in

anticipation of future pain, suggesting that although these

behaviors can be a consequence of pain, they may also be a

precursor of chronic pain (24). Evidence has shown that

catastrophic thoughts and behaviors could predict the

development and persistence of chronic pain (25–31).

Catastrophizing also has been shown to increase attentional

interference, a form of cognitive deficit, in those with chronic

pain, likely a result of hypervigilance towards one’s pain or in

avoidance of pain that diminishes cognitive resources (32, 33).
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FIGURE 1

Multidimensional nature of chronic low back pain and it’s traditional management approaches.
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Cognitive deficits in chronic pain

The experience of pain is a complex cognitive process by

which a person must evaluate their situation, make

comparisons to previous experiences, choose a reaction, and

ultimately form a mental representation of the event (34).

Cognition can be defined as the procurement, processing,

storage, and retrieval of information by the brain and is

comprised of many factors, such as attention, perception,

memory, reasoning, psychomotor skill, and executive function

(35). Strong evidence has shown a close relationship between

chronic pain and deficits in cognitive function, as

approximately one-third of patients with chronic pain have

cognitive dysfunction including difficulty with attention,

learning, memory, and decision making (34, 36). Pain can be

demanding of one’s attention as the nervous system

upregulates the amount of information needed for protection.

In the presence of persistent pain, attentional control

mechanisms are impaired (37). Deficits in performing tasks

that require attentional shifting and the ability to selectively

inhibit extraneous stimuli indicate that pain may be a

predominant focus of attentional resources, leaving limited

reserve for other cognitively demanding tasks (38). Similar

deficits in attentional control are found in those with high

pain catastrophizing (39). Impaired cognitive flexibility,

attentional inhibition, attentional interference, learning, and

memory are also associated with high levels of pain
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catastrophizing (40, 41). Cognitive dysfunction may limit

one’s capacity to evaluate, interpret, and revise the

maladaptive thoughts and behaviors associated with

catastrophizing and fear. Therefore, better understanding the

cognitive profile of patients in pain can improve intervention

selections and outcomes.
Cortical changes in chronic pain

Considerable neuroanatomical and neurophysiological

overlap exists between pain, emotion, and cognition. Although

not clinically apparent, structural and functional changes in

the brain are associated with altered cognitive and emotional

processing in patients with CLBP (42). In individuals with

CLBP, changes occur in areas and networks involved in the

cognitive-emotional processes rather than those

characteristically related to the sensory processing of pain.

Specifically, the dorsolateral prefrontal cortex (DLPFC) is

primarily involved in cognitive and affective processing in

addition to pain processing (11). Decreased gray matter in the

DLPFC has been observed in those suffering from chronic

musculoskeletal pain, including LBP (43–45). Studies also

have demonstrated that as levels of pain catastrophizing

increase, gray matter density in the DLPFC decreases (46–48).

Moreover, the DLPFC has been shown to have a role in top-

down modulation of appropriate behavioral responses (49),
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cognition (50), decision-making (51), and emotional control

(52). Functional abnormalities involving the DLPFC are

associated with the above-mentioned dysfunction in patients

with depression (53), a common clinical manifestation of

catastrophizing (54). Therefore, researchers proposed the

abnormal functional connectivity of the DLPFC evident in

patients with depression and post-traumatic disorders to be

the underlying mechanism of chronic pain behaviors (i.e.,

catastrophizing and kinesiophobia) and cognitive deficits (42).

The DLPFC is thought to serve as an interface between the

three major brain networks, the resting-state default mode

network (DMN), the salience network (SN) responsible for

detecting behavior-relevant stimuli and allocating cognitive

resources to those stimuli, and the fronto-parietal network

(FPN), which coordinates behavior in a rapid, accurate and

flexible goal-driven manner (11). Pain, being a relevant

stimulus, typically results in the SN reducing activity of the

DMN and increasing FPN activity in order to attend to the

situation at hand (55, 56).

Increased DLPFC connectivity to the DMN has been

observed in patients with increased levels of pain

catastrophizing (45). This relationship may be partially

explained by the coupling of pain and the DMN. As pain

persists, it becomes part of one’s identity, promotes sustained

worry and fear, and progresses to functional and structural

changes as the DLPFC remains activated to sustain cognitive

engagement with the pain (57, 58). Further aberrant

connectivity of the DLPFC to the DMN and the FPN has

been shown to influence one’s ability to balance cognitive

demands and attention to new salient information (59, 60).

For a simple task in which cognitive demand is low, patients

with CLBP and high pain catastrophizing have elevated

DLPFC activation, whereas healthy controls have relative

deactivation (13, 47, 59). Therefore, interventions that aim at

altering DLPFC activation may change pain behaviors.
Pain neuroscience education for
chronic pain

PNE is a cognitive-behavioral therapy (CBT) strategy, which

aims to restructure a person’s perception of pain and to

promote a positive impact on the multidimensional

experience of pain. When compared with other conservative

strategies of pacing and self-management, participants with

chronic pain who received PNE demonstrated superior

knowledge of pain physiology and a significant reduction in

pain catastrophizing (61). These findings have been replicated

by providing participants with a booklet containing PNE

metaphors and stories. Interestingly, these positive responses

occurred without significant improvement in pain or self-

reported disability (62, 63). PNE has also been found to

reduce worry and improve physical function, mental health,
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and health perceptions in those diagnosed with fibromyalgia

(FM) (64). When comparing PNE to biomedically focused

education, small-to-moderate effect sizes were found in favor

of PNE in patients with chronic spinal pain who had

improved catastrophizing, kinesiophobia, and illness

perceptions. However, no significance was found for perceived

disability (65).

Systematic reviews support the use of PNE for

musculoskeletal disorders to improve pain catastrophizing,

fear-avoidance, unhealthy attitudes and behaviors, and

healthcare utilization (66). While demonstrating limited short-

term efficacy for measures of pain, PNE shows consistent

ability to modulate the cognitive-affective domains of pain,

many of which contribute to the chronicity and severity of

chronic pain (67, 68). The literature on PNE contains several

limitations that make results difficult to generalize, including

heterogenous study designs, participant populations, outcomes

measures, and PNE delivery approaches.

Neuroimaging has been used to study the underlying

mechanism of CBT effects on cortical changes (71, 72). An

fMRI study in FM showed that CBT normalized activation of

several cortical regions related to cognitive and emotional

regulations, including the DLPFC, with a concurrent

reduction in depression, and anxiety symptoms (73). These

fMRI results suggest that CBT could change the brain’s

processing of pain through increased access to executive

centers for the reappraisal of pain behaviors such as

catastrophizing and fear (73). The study results indicate a

strong top-down control of pain, enhanced cognitive function,

and altered perception of stimuli generated by CBT. To date,

only two, single-subject fMRI reports have investigated the

effects of PNE on brain function. Both studies showed

marked differences between pre- and post-treatment fMRI

scans, indicating that PNE appears to have neuromodulating

effects on frontal, cingulate, and insular cortices (69, 70).

Despite limited evidence, PNE, a type of CBT, could influence

structural and functional connectivity changes via reduction

of pain catastrophizing and kinesiophobia that may be

occupying cognitive reserves.
Non-invasive brain stimulation for
chronic pain

tDCS and rTMS are two common NIBS techniques which

have been advocated for chronic pain management although

its use for chronic pain is still in the investigative phase. tDCS

uses a low-intensity current that passes between two

electrodes on the head, whereas rTMS uses an electromagnetic

field that directs an electric current to modulate neuronal

activity in targeted areas of the brain. These techniques are

widely used to treat various impairments associated with

depression, anxiety, stroke, spinal cord injury, Parkinson’s
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disease, and chronic pain. Evidence also supports the use of

these techniques for improving memory, attention, and

learning in cognitively-impaired, and pain-suffering

participants when the DLPFC was targeted (74–76). While the

therapeutic mechanisms are not entirely understood, the

techniques appear to be able to modulate cortical excitability

and to facilitate neuroplastic changes (77–79). The effects of

NIBS are shown to be related to long-term potentiation (LTP)

and long-term depression (LTD)-like results depending on the

direction of the tDCS current or frequency of the rTMS

pulses (80, 81). Anodal tDCS leads to depolarization of the

neuronal membranes that increases cortical excitability while

cathodal stimulation induces hyperpolarization that decreases

excitability (82). rTMS produces LTP or LTD based on pulse

frequency at high (≥5 Hz) or low (≤1 Hz) frequencies

respectively (78, 83–86).

Meta-analyses have demonstrated that NIBS has significant

effect on pain reduction for FM, migraine, CLBP, and spinal

cord injury-related pain (87–92). Studies also demonstrated

that NIBS targeting the primary motor cortex (M1) had

greater pain reduction than NIBS targeting the DLPFC (83–

86). However, considering the cognitive-evaluative and

motivational-affective domains of pain, the overlap in

symptoms between those with anxiety or depression and

those of chronic pain makes the DLPFC a promising

therapeutic target. When targeting the left DLPFC, both tDCS

and rTMS have been found to consistently and positively

affect measures of depression, anxiety, and cognitive

dysfunction in patients with depression (93, 94). Furthermore,

NIBS targeting the DLPFC has been found to reduce

depression and anxiety in patients with FM, likely as a result

of targeting the two conditions that share neurological

substrates. For example, a RCT showed that when tDCS

targeted the DLPFC, improvements in measures of cognition

and depression were superior to the intervention targeting M1

(95). Two studies investigated the influence of home-based

tDCS targeting the DLPFC and showed significant

improvement in pain catastrophizing, depressive symptoms,

and sleep quality for FM (96, 97). Similar results have been

shown following rTMS targeting the DLPFC on the affective

domain of pain, including short-term improvement of

depression symptoms and pain catastrophizing (98–100).

It has been speculated that the analgesic effects derived from

NIBS targeting the DLPFC are the result of modulation of

cognitive function (11), as DLPFC stimulation has been

shown to reduce response time during working memory tasks

(101) and improve sustained attention. An RCT compared

effects of active vs. sham rTMS targeting the DLPFC on

participants with experimentally induced elbow pain and

found that participants who received active rTMS showed a

trend toward improved cognitive task performance (102). In

another RCT, patients with FM also demonstrated an increase

of orienting and executive attentional performance following
Frontiers in Pain Research 05
rTMS (75, 103, 104). Imaging studies suggest that tDCS to

DLPFC modulates the connectivity to other areas involved in

the emotional and motivational aspects of pain such as the

cingulate cortex, insula, amygdala, and thalamus (105).

Significant changes, including normalization of DMN and

FPN connectivity have been found after anodal tDCS to the

DLPFC compared to sham stimulation (106). rTMS to the

DLPFC also has been shown to activate inhibitory circuits

involved in pain reduction in healthy participants (107).

Furthermore, higher pain thresholds and functional

connectivity changes have been demonstrated with tDCS and

rTMS targeting the DLPFC (108–110). These findings support

that targeting the DLPFC modulates both sensory and

affective networks, confirming the role of the DLPFC in pain

modulation both specifically and beyond that of pain

processing.
Combined therapies: Future
directions

Few studies have investigated the augmentative effect of

combining NIBS with another non-pharmacological therapy.

Due to its ability to alter cortical excitability, tDCS and rTMS

are thought to produce a priming effect on subsequent

interventions (111, 112). To date, studies have combined

tDCS or rTMS to the M1 with exercise, visual illusion, and

peripheral electrical stimulation (113–117). Most of these

studies have shown a greater effect on pain reduction with

combined interventions than isolated interventions alone (115,

116, 118, 119). Few studies (120, 121) have assessed the

effects of combined NIBS with CBT for pain. However, these

studies investigated either a sample of healthy participants

(97) or a heterogeneous sample (98). In addition, these

studies targeted the M1 for NIBS. Furthermore, these studies

did not use outcome measures that can capture change of

pain behaviors. A single-subject case report demonstrated that

rTMS combined with CBT is a feasible intervention that

significantly reduced depression (122). To date, no study has

yet examined the combined effects of NIBS to the DLPFC

and PNE, using outcome measures that were designed to

detect changes of pain behaviors and cognition. Considering

the influence of pain catastrophizing and kinesiophobia have

on various domains of cognition, CBT techniques such as

PNE could benefit from a precursory intervention such as

tDCS or rTMS that normalize the brain function of

subsequent CBT.
Discussion

Many conservative approaches exist for the treatment of

CLBP such as exercise, manual therapy, electrotherapeutic
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modalities, and medications. These interventions primarily

focus on the injured tissues. The effects of these interventions

often are small and likely due to the poorly understood

mechanisms that underlie CLBP itself and typically neglect

the complex cognitive and emotional factors facilitating

symptom progression. However, specific assessment and

determination of central nervous system mediators of pain,

such as cognition/executive function, pain catastrophizing,

and kinesiophobia provides insight into matching

interventions with mechanisms (123, 124). Patients with

CLBP who exhibit pain catastrophizing and kinesiophobia

appear to be less responsive to standard, conservative

interventions due to these central barriers. Therefore,

approaches aimed at modulating involved brain regions, such

as tDCS or rTMS, could potentially allow subsequent

behavioral therapies (e.g., PNE) targeting the same regions to

be more effective. Despite supporting evidence for these

individual approaches, the combined effects of these two

interventions have not been investigated. It remains unclear if

priming the cognitive-affective circuitry that is conceptualized

to support PNE with NIBS will augment the behavioral effect

of PNE. However, more rigorously designed clinical trials may

elucidate a novel approach to treatment of the cognitive-

affective domains of pain and result in improved management

of persistent pain that has grown to become one of the largest

public health issues of our time.
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