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Can a power law improve prediction of pain
recovery trajectory?
George C. Hartmanna,*, Steven Z. Georgeb,c

Abstract
Introduction: Chronic pain results from complex interactions of different body systems. Time-dependent power laws have been
used in physics, biology, and social sciences to identify when predictable output arises from complex systems. Power laws have
been used successfully to study nervous system processing for memory, but there has been limited application of a power law
describing pain recovery.
Objective: We investigated whether power laws can be used to characterize pain recovery trajectories.
Methods: This review consists of empirical examples for an individual with complex regional pain syndrome and prediction of 12-
month pain recovery outcomes in a cohort of patients seeking physical therapy for musculoskeletal pain. For each example,
mathematical power-law models were fitted to the data.
Results: This review demonstrated how a time-dependent power law could be used to refine outcome prediction, offer alternate
ways to define chronicity, and improve methods for imputing missing data.
Conclusion: The overall goal of this review was to introduce new conceptual direction to improve understanding of chronic pain
development usingmathematical approaches successful for other complex systems. Therefore, the primary conclusions aremeant
to be hypothesis generating only. Future research will determine whether time-dependent power laws have a meaningful role in
improving strategies for predicting pain outcomes.
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1. Introduction

Chronic pain is characterized as nervous system condition
resulting from dynamic and complex interactions among bi-
ological, behavioral, environmental, and societal factors.12

Complex systems science approaches have been advocated
for advancing understanding of movement variability in physical
therapy5 and for better management of other chronic non-
communicable diseases such as obesity.24 It is beyond the
purpose of this review to describe different aspects of complex
systems science, thoroughly described in other sources.2,3

Instead, we focus on time-dependent power laws because of
their use across diverse fields to reveal underlying regularity in

complex systems.20 Specifically, we will consider if power laws
can be used to characterize pain trajectories and enable better
understanding of when pain becomes chronic.

Stevens investigated the relation between the magnitude of
a physical stimulus and the subjective magnitude of the
sensation, finding that often these obey power laws.23 Albert
and Barabási1 reviewed how time-dependent power laws
emerge from different networks under a variety of modeling
assumptions; time-dependent power laws have been derived in
a wide range of settings including physics, biology, and social
sciences.8 Specifically, there is precedent for power-law phe-
nomena involving nervous system processing. Early application
of power laws included investigations of memory. The “forgetting
curve” was first measured by Hermann Ebbinghaus in 1885 and
later replicated byMurre andDros.19 Thiswasmodeled18 to show
that human memory diminishes according to a time-dependent
power law. Power laws have also been used to define the size
distribution of neuronal avalanches in cortical networks.15

Considering similarities between memory and pain13—can
power laws be used to improve understanding of pain
trajectories? This is a viable question for the field to consider
now that it is accepted that chronic pain results from complex and
dynamic interactions between different systems. One reason
a power law is relevant for pain is that updated versions of
biopsychosocial models emphasize how determinants of health
result from a dynamic system, unfolding over time at an individual
level.16 Time-dependent power laws are well suited to

Sponsorships or competing interests that may be relevant to content are disclosed

at the end of this article.

a Strategy and Innovation Group, Xerox Corporate Research and Technology,

Webster, NY, USA [retired], b Musculoskeletal Research, Duke Clinical Research

Institute, Durham, NC, USA, c Clinical Research, Department of Orthopaedic

Surgery, Duke University, Durham, NC, USA

*Corresponding author. E-mail address: ghartmann@nc.rr.com (G.C. Hartmann).

Copyright© 2018 The Author(s). Published byWolters Kluwer Health, Inc. on behalf

of The International Association for the Study of Pain. This is an open access article

distributed under the Creative Commons Attribution License 4.0 (CCBY), which

permits unrestricted use, distribution, and reproduction in anymedium, provided the

original work is properly cited.

PR9 3 (2018) e657

http://dx.doi.org/10.1097/PR9.0000000000000657

3 (2018) e657 www.painreportsonline.com 1

mailto:ghartmann@nc.rr.com
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1097/PR9.0000000000000657
www.painreportsonline.com


characterize such complexity, even on an individual scale.20

Exploration of power law in pain is also justified as an
opportunity to improve on prediction of outcomes. Prediction
models using linear regression approaches have not enabled
large improvements in accuracy, and it is difficult to apply
models validated in groups of patients for prediction of an
individual outcome.4 This is especially true if the prediction
time is a free parameter because many existing prediction
models are based on fixed follow-up time points. If time-
dependent power laws are relevant, a patient or provider could
anticipate when future progress may occur, instead of just
being able to anticipate if progress may occur.

Another reason to explore power laws for pain is the potential
for imputing missing outcomes data, a common problem with
longitudinal databases or registries.17,21 The question of how to
account for missing data will be important to address as more of
these databases accumulate specific to pain. Commonly used
imputation methods (eg, last value forward and mean value
substitution) are known to bias results.14 A power-law function
could be a viable alternative method for imputing missing data
because it has the appropriate curvature for interpolating
adjacent data points.

Therefore, the purpose of this review is to investigate whether
trajectories for pain recovery can be represented by time-
dependent power laws. This review will be completed using 2
empirical examples. The first is a case study of complex regional
pain syndrome (CRPS) as a proof-of-concept demonstration; the
second is a cohort of patients seeking care for musculoskeletal
pain to determine accuracy of future pain-intensity ratings.

2. Methods

2.1. Application of power law to individual pain recovery

In March 2015, a 75-year-old man (G.C.H.) fell, causing an
intertrochanteric fracture of the left leg that was repaired
surgically. Complex regional pain syndrome developed postsur-
gically and was treated with medication and exercise. After 24
months, the patient continued to have pain and used his pain-
medication dose history to reconstruct his pain trajectory and
predict future improvements. Doctors prescribed oxycodone for
3 months followed by gabapentine for 6 months. Over time, pain
intensity decreased, and medication dose was correspondingly
reduced.

There is little evidence supporting the effectiveness of long-
term opioid use for chronic pain conditions7 and wide
variability in prescribing patterns for orthopedic conditions.22

As a result, in every day clinical practice, opioid dosages are
titrated to an individual response.9 In this case example, as the
pain situation improved, the dosage was gradually decreased
over many weeks. The individual patient experience was that
when the no-medication-pain was high intensity, the pain-
medication dose had to be increased to reduce the after-
medication-pain to a tolerable level, denoted by the patient as
“residual pain.” To estimate the time dependence of the
patient’s no-medication-pain intensity level, we assumed that
the no-medication-pain was approximately proportional to the
individual dose. When switching medications, the patient’s
perception was that 1 mg oxycodone had about the same
effect as 300 mg gabapentine.

After pain medication was discontinued, the remaining pain
gradually diminished another 50% over the following year. The
trajectory of no-medication-pain intensity is shown in Figure 1. A
time-dependent power law of the form

PðtÞ ¼ Constant
�
tP (1)

was fitted, providing an indication of how the no-medication-pain
intensity decreased over time and might decrease in the future.
These findings motivated us to further explore the utility of
a power-law model using data from a cohort study.

The pain trajectory in Figure 1 raises the question of how the
no-medication-pain scale, which spans almost 2 decades, maps
to the numerical rating scale (NRS) pain scale. One possibility is
that “no-medication-pain” is related to the NRS by a geometric
series, specifically 2N, whereN represents theNRSpain level. The
step ratio was estimated by comparing 2 widely separated points
of the pain record: the NRS was judged to be 8 in month 2,
masked by 70 mg daily oxycodone; the residual NRS level was 2
at month 24, with no medication. Because there are 6 steps from
level 8 to 2, the step ratio is approximately 2. We emphasize that
this relationship is incidental to the applicability of a power-law
model and that this n5 1 case served only as a conceptual study.

Figure 1 also shows the recovery of left leg strength, atrophied
due to CRPS. Physical recovery was followed by tracking the
average S(t) of 7 strength tests performed on gym machines
(expressed as left/right leg strength ratios) and plotting the
strength gap QðtÞ5 12SðtÞ against time. This strength gap
decline also follows a time-dependent power law.

2.2. Application of power law for pain recovery in
a musculoskeletal pain cohort

Pain-intensity ratings from the Optimal Screening for Prediction of
Referral and Outcome (OSPRO) validation cohort were used for
this analysis.10 This cohort consisted of 440 individuals seeking
physical therapy with primary complaint of neck, shoulder, knee,
or shoulder pain. Patients could have chronic or acute pain
complaints, as well as have postoperative pain.

Pain-intensity scores on a 0 to 10 NRS were collected at initial
physical therapy consultation and then at 4weeks, 6months, and
12 months later. At each session, the NRS was used to rate
current, best and worst pain intensity. These scores were
averaged to create an average-NRS-pain-intensity rating. There
were 243 patient records that reported pain intensity for every

Figure 1. Log–log plot of no-medication CRPS pain (left scale) and muscle
strength gap Q(t) (right scale) vs time. CRPS, complex regional pain syndrome.
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time point. Figure 2 displays the cumulative frequency distribu-
tion of all 243 records. Overall, the distributions are broad with an
approximately constant SD at each time (average value 1.9).

The mean value of the average-NRS-pain-intensity data was
plotted against time in Figure 3, and a power law was fitted. We
examined whether an alternative model, a simple time-
dependent exponential, could provide a faithful representation
of the data. A key difference between these 2 models is that the
power-law model is more skewed, with a long tail that declines
much more slowly with time compared with an exponential
model. The goodness-of-fit was gauged using x2. For the power-
lawmodel, we found x25 1.0 and 2.6 for average-NRS-pain and
pain-geometric scales, respectively, whereas for the alternative
exponential model, x2 5 22 and 25 for the same respective
scales. This difference in goodness-of-fit was an order of
magnitude more favorable for the power-law model, suggesting
that it better represents the time dependence of the data
compared with an exponential model.

Next, we examined how accurately 12-month outcomes could
be predicted from individual pain records. Two calculation
approaches were investigated. In the first approach, each of
the 243 patient records was separately fitted by a power law with
1 free parameter. This approach yielded 243 values of the
prefactor, whereas the exponent was constrained to a single
value. To assess prediction accuracy of the first calculation
approach, we made 3 projections for each patient record using
data from 3 combinations of time marks: I (0 and 6 months); II (0,
1, and 6 months); and III (0 and 1 month). In the second
calculation approach, each patient record was separately fitted
by a power lawwith 2 free parameters yielding 243 values for both
the exponent and prefactor. The accuracy of the second
calculation approach was assessed with projection IV (0, 1, and
6 months).

For the first calculation approach, the value of the free
parameter (prefactor) for every patient record was computed at
each time mark, Ck 5Ykt

P
k (Yk represents the pain data), then

averaged across the time marks. The pain predicted at a future
time T was computed using Yprediction

k 5Cavg
k =TP. A single value of

the exponent was used (P 5 0.3) determined from projection IV.
For the second calculation approach, the values of 2 free
parameters (prefactor and exponent) were found by linear
regression for every patient record.

To quantify the predictive accuracy, Figure 4 presents the
frequency distribution of the difference between the observed
and predicted 12-month pain values,
DYðTÞ5YðTÞpredicted 2YðTÞobserved. These frequency distribu-
tions provided the accuracy metric reported in Table 1, which
estimates the percentage of time that the power-law prediction at
12 months is within a tolerance band 61, 1.5, or 2 units on the
average-NRS-pain scale. Figure 5 shows that the frequency
distribution of P for projection-method IV is narrow, with a mean
value of about P5 0.3. The narrow shape suggests that the data
are well represented by a power law.

Comparing projections II and IV, Table 1 and Figure 4 show
that these are essentially identical. Projection IV (2 degrees of
freedom) might be expected to be somewhat better than
projection II (1 degree of freedom). They are essentially identical
because both use the power-law shape, and the power-law
exponent values are similar. A marginally less accurate result is
obtained whenever data at time mark t 5 0 are included. The
cumulative distributions in Figure 2 suggest that the data scatter
at each time mark is similar. However, the cumulative distribution
of the scatter of slope values transitioning from t5 0 to t5 1 is 6
times as broad as the scatter for other time transitions. Thus, the
cross-correlations within each patient record change with time
and include stronger correlations at later time points, suggesting
why the inclusion of t 5 0 data marginally (but consistently)
reduced the projection accuracy.

Finally, we performed a preliminary examination of using
a power law for imputing missing data by omitting timemark t5 6
and using t5 1 and t5 12 data to impute t5 6. We compared 2
interpolation methods as part of this preliminary examination. The
first was linear interpolation with 2 free parameters (slope and
intercept) and the secondwas power-law interpolation with 2 free
parameters (prefactor and exponent). The cumulative frequency
distributions of the difference between the actual t 5 6 data

Figure 2. Cumulative frequency distribution of the average-NRS-pain-
intensity. NRS, numerical rating scale.

Figure 3. Time dependence of the average-NRS-pain-intensity, on a log–log
plot. NRS, numerical rating scale.
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measurement and the imputed data are displayed in Figure 6.
Linear interpolation gives a systematic discrepancy of about 2
NRS pain units, together with a markedly asymmetric distribution
around the midpoint, whereas power-law projection was
centered solidly at zero with a symmetric distribution. Linear
interpolation systematically overestimates the value because the
data trend is concave upward. This preliminary investigation
suggests that power lawmay be useful for imputingmissing data.

3. Discussion

This review described how time-dependent power law may have
application for better understanding of musculoskeletal pain
recovery trajectories. The included examples provide conceptual
direction for considering whether using complex system
approaches, such as power laws, can be used to better describe
pain recovery, similar to what has been performed in movement
variability5 and to explore new management models in obesity.24

Pain recovery modeled by a time-dependent power law may be
a better mathematical match for updated biopsychosocial
models that emphasize the dynamic, individual influence on
health outcomes.16 Finally, this review demonstrated that there
may be potential for power-law functions to be considered as an
alternative to existing methods of missing data imputation.

A physical model for a pain trajectory power law and its
derivation is provided in the Appendix. If a power-law model
faithfully replicates the pain trajectory, it can be used to estimate
the time required for a given pain intensity level to reduce by half.
FromEquation 1, the ratioM of the 2 times is M5 t2=t1 5 21/P. As
an example, for the CRPS case study P5 1.7, soM5 1.5. At day
30, a 50% pain reduction is anticipated by 30M 5 45 days
(another 15 days). At month 24, 50% pain reduction occurs by
24M 5 36 months (another 12 months). If future pain reduction
continues in this fashion, one can set realistic expectations for
time of recovery. This approach is quite different from a prediction
which focuses on the probability of an event occurring at a fixed
time. Furthermore, additional research in this area is needed to
determine whether commonly used pain scales (eg, NRS)
operate in a scalar or geometric manner when the goal is
predicting pain reduction.

In the cohort study, we demonstrated 2 ways that a power-law
model can be used to project recovery from care seeking for
musculoskeletal pain. One method is to monitor recovery
progress over a time interval of modest duration to confirm that
the symptoms are indeed following a power law, and use this time
sequence to estimate the power-law exponent. Then, Equation 1
can then be used to project future improvements. A second
method is to use an a priori value of P determined from previous
work. Progress can be projected straightaway using Equation 1,
extrapolating from early patient pain assessments.

In the cohort example, the values of the exponent Pwere quite
small, resulting in a largeM value and a correspondingly large time
interval for 50% decrease to occur. Consider for example,
a patient with a small exponent value P 5 0.4 and an NRS-pain-
intensity rating of 2 at 1 year; theM value projects that 5 additional
years will be required for a 50% decrease. This may not be such
an unrealistic prediction given that pain improvement often
plateaus after the first 6 months. Within the framework of a power
law, if the exponent P is small, progress can appear to be very
slow as illustrated by Figure 7. This may be a different way to
characterize “chronic pain.” It would simply be a consequence of
a small value of P. Conversely, rapidly improving pain would
manifest with larger P values. The advantages to this approach
would be that the recovery trajectory of the individual is used to
define a chronic state, instead of relying on definitions that may
not universally apply to a given population.

In moving forward, several points need to be addressed. First,
cohorts with more than 3 time points should be used to further
explore whether time-dependent power law is a good fit for
describing recovery trajectories. From a predictive modeling per-
spective, we demonstrated in the Appendix that a time-dependent
power law20 can emerge from situations where exponential decay of
many ensemble elements is aggregated. The power-law exponent
value depends on the shape of the distribution of the exponential
decay time constants. Therefore, future work remains to propose

Table 1

Parameters of pain projections at T 5 12 months

Projection No. of time marks, K Data times Probability that projected pain is within 6 (tolerance) of observed pain

61 NRS unit (%) 61.5 NRS units (%) 62 NRS units (%)

P fixed I 2 1, 6 57 70 83
II 3 0, 1, 6 56 64 70
III 2 0, 1 43 60 65

P fitted IV 3 0, 1, 6 53 62 68

For projection I, II, and III, we assume that P is known (we chose P5 0.3 based on projection IV). With this assumption, there is 1 free parameter for each patient data record—the power-law prefactor. For projection IV, there

are 2 free parameters for each patient data record—the power-law exponent and prefactor.

NRS, numerical rating scale.

Figure 4. Frequency distributions of deviation between projected and
observed 12-month pain scores using a power law with a fixed exponent
(projection I, II, and III) and a fitted exponent (projection IV). The 4 curves in the
upper group are cumulative frequency distributions; the 4 curves in the lower
group are frequency distributions.
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a physical model for what biological factors might determine this
shape and to confirm that a power law is the best fit for this shape in
comparison with other functions. In our investigation, there were
a small percentage of patients who experienced a worsening of pain

included together with the majority of patients experiencing
a lessening of pain. This was an intentionally conservative approach
for this review; future work remains to determine whether patients
who have worsening pain reports should be modeled by other
nonlinear time-dependent functions.

Furthermore, an important question remains regarding how
pain medication or other pain interventions received during
recovery might modify the power-law pain trajectory. Future
research could focus on determining if power-laws could be used
to make comparisons of treatment effectiveness that are more
sensitive than current statistical methods.

Finally, there is potential for power-law functions to be used to
impute missing data from longitudinal cohort studies. This is an
important area for future study because reviews of the literature
suggest that suboptimal methods are often used in registries21 or
cohort studies.14,17 Specifically, comparisons of power-law
interpolation to a current state-of-art approach, such as multiple
imputation,11 might provide meaningful information on how best
to account for the inevitable problem of missing data.

4. Conclusions

This review demonstrated how time-dependent power laws can
be applied to pain recovery trajectories for a case study of CRPS
and a cohort of patients with musculoskeletal pain. This review
was intended to be hypothesis generating and to introduce new
conceptual direction for pain by using mathematical approaches
successful in describing other complex systems. Future research
will determine whether time-dependent power laws have
a meaningful role in predicting pain outcomes, determining
treatment effectiveness, or accounting for missing data.
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Figure 6. Cumulative frequency distributions that compare linear and power-
law interpolation methods for data missing at time mark t 5 6, using data at
time marks t 5 1 and t 5 12.

Figure 7. Power-law model F(t) calculated using Equation 6. The time-series
plotted on logarithmic scales (right and upper) asymptotically become straight
lines when t is large. The same time-series plotted on linear scales (left and
lower) show long tails that diminish very slowly with time, especially if P is small.

Figure 5. Frequency distribution of the power-law exponent determined by
linear regression against individual patient records for projection IV.
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Appendix A. Derivation of Power-law Model

A power law can arise from the summation of many elements,
weighted by their frequency of occurrence in a specific way—with
each element decaying exponentially with time, e2at, where a is
the decay rate. Conceptually, these decaying elements may
represent the healing trajectories of injured nerve ormuscle fibers.
The starting point is to express the ensemble decay as the sum of
many individual exponential decays having a range of decay rates
between 2 limits 0 and am,

FðtÞ ¼
Z am

0

fðaÞe2atda: (2)

Here, f(a) is a frequency distribution function for the parameter a,
normalized so that

R am

0 fðaÞda5 1. The normalization assures
that F(0) 5 1.
The value of the power-lawexponentP turns out to depend on the
unknown shape of the distribution function f(a). We do not
propose which biological factors might determine the shape of
this function. Instead, we temporarily represent the shape
parametrically using P. After numerically investigating several
possibilities, useful insights were obtained if the distribution is
shaped like aP21, with a between 0 and am. The normalized
distribution function is

fðaÞ ¼ PaP2 1

aP
m

(3)

This functional shape is quite simple; for example, if P 5 1, the
distribution is uniform; if P 5 2, the distribution is triangular.
Results for these special cases are given below.
Substituting Equation 3 into Equation 2,

FðtÞ ¼
Z am

0

PaP21e2at

aP
m

da (4)

The asymptotic time dependence of F(t) for any value of P can be
revealed by a transformation of variables, u 5 at. With this
substitution, Equation 4 becomes

FðtÞ ¼ P

ðamtÞP
Z um

0

uP2 1e2udu (5)

The integral was numerically evaluated and found to be a number
of order 1. Thus, the asymptotic form for large values of t is a time-
dependent power law, Equation 1 in the main text. A formula valid
for any value of t and P can be derived from Equation 4 by
expanding the exponential under the integral sign in a power
series and integrating term-by-term,

FðtÞ ¼ P

ðamtÞP
+
‘

n¼ 0

ð2 1ÞnðamtÞP1 n

n!ðP1 nÞ (6)

Equation 6 was used to calculate the curves in Figure 7 when P is
noninteger.

Closed-form formulas for F(t) can be found from Equation 4 for
P 5 1 and 2 as shown by Chen in a different context.6 They can
also be derived from Equation 6.

FðtÞ ¼
Z am

0

e2atda

am
¼ 12 e2amt

amt
; P ¼ 1 (7)

FðtÞ ¼ 2
R am

0 ae2atda

a2
m

¼ 2½12 ðamt1 1Þe2amt�
a2
mt

2
; P ¼ 2 (8)

As expected, these equations show that when amt is large, the
asymptotic form Equation 1 is recovered. They also trace the
rollover of F(t) near t 5 0; see Figure 7. The timescale where
the rollover occurs is controlled by am.
If the observations include no data in the rollover region near t5 0,
Equation 1 can be used to determine the power-law parameters.
If there is data near t5 0, Equation 6 can be used to determine the
parameters (P and am) by regression.
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