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Opioidergic pathways and
kisspeptin in the regulation of
female reproduction in
mammals
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Endogenous opioid peptides have attracted attention as critical neuropeptides

in the central mechanism regulating female reproduction ever since

the discovery that arcuate dynorphin neurons that coexpress kisspeptin

and neurokinin B (NKB), which are also known as kisspeptin/neurokinin

B/dynorphin (KNDy) neurons, play a role as a master regulator of pulsatile

gonadotropin-releasing hormone (GnRH) release in mammals. In this study,

we first focus on the role of dynorphin released by KNDy neurons in the

GnRH pulse generation. Second, we provide a historical overview of studies

on endogenous opioid peptides. Third, we discuss how endogenous opioid

peptides modulate tonic GnRH/gonadotropin release in female mammals as

a mediator of inhibitory internal and external cues, such as ovarian steroids,

nutritional status, or stress, on reproduction. Then, we discuss the role of

endogenous opioid peptides in GnRH surge generation in female mammals.

KEYWORDS

endogenous opioid peptides, dynorphin, β-endorphin, enkephalin, GnRH pulse
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Introduction

One of the most important findings on the role of endogenous opioid peptides
in female reproduction over the last two decades is that dynorphin neurons in
the hypothalamic arcuate nucleus (ARC) are involved in gonadotropin-releasing
hormone (GnRH) pulse generation. More specifically, a majority of ARC dynorphin
neurons coexpress kisspeptin and neurokinin B (NKB); thus, the neurons are
also referred to as kisspeptin/neurokinin B/dynorphin (KNDy) neurons and act
as master regulators of pulsatile GnRH release in mammals (Lehman et al.,
2010a; Maeda et al., 2010; Okamura et al., 2013; Uenoyama et al., 2014, 2021b;
Goodman et al., 2018; Moore et al., 2018; Ikegami et al., 2021; Nagae et al., 2021;
Tsukamura, 2022). GnRH is intermittently secreted in the pituitary portal vessel
(Clarke and Cummins, 1982; Moenter et al., 1992) and controls the tonic (pulsatile)
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release of luteinizing hormone (LH) and follicle-stimulating
hormone (FSH) from the anterior lobe of the pituitary gland.
The tonic release of LH and FSH governs follicular development
and corpus luteum function in the ovaries of female mammals.
GnRH pulses are fundamental for reproduction in female
mammals as a pioneer study demonstrated that circulating LH
and FSH levels were maintained only when GnRH was applied
in a pulsatile manner at physiological intervals in female rhesus
monkeys after the blockade of endogenous GnRH release by a
hypothalamic lesion (Belchetz et al., 1978). The neuronal circuit
driving GnRH pulse generation has generally been termed the
GnRH pulse generator (Lincoln et al., 1985; Maeda et al., 1995),
and the intrinsic source of the generator has been a major
enigma until very recently.

The present review mainly focuses on how endogenous
opioid peptides regulate and/or modulate tonic
GnRH/gonadotropin release, which is regulated by KNDy
neurons, in female mammals. We also provide a historical
overview of studies on endogenous opioid peptides and
a summary of our recent understanding of the role of
hypothalamic opioidergic neurons in the mechanism regulating
female reproduction under normal and stressful conditions.

Kisspeptin/neurokinin
B/dynorphin neurons as an
intrinsic regulator of
gonadotropin-releasing hormone
pulses

Since the discovery of KNDy neurons, endogenous opioid
peptides have attracted attention as critical neuropeptides in the
central mechanism regulating female reproduction. Indeed, the
discovery of KNDy neurons is one of the most exciting topics
in reproductive neuroendocrinology over the last two decades.
Using immunohistochemistry, Goodman and colleagues first
demonstrated that dynorphin and NKB are largely coexpressed
in a single population of ARC neurons in ewes (Foradori
et al., 2006) and then revealed that kisspeptin is also expressed
in the majority of the same neuronal population (Goodman
et al., 2007). Importantly, Goodman and colleagues reported
that none of the dynorphin neuronal populations located in
the other hypothalamic regions, such as the paraventricular
nucleus (PVN), supraoptic nucleus (SON), and preoptic area
(POA), colocalized with NKB (Foradori et al., 2006) and
kisspeptin (Goodman et al., 2007). Immediately thereafter, the
coexpression of dynorphin, NKB, and kisspeptin in a population
of ARC neurons was validated in several mammals, including
goats (Wakabayashi et al., 2010), heifers (Hassaneen et al., 2016),
rats (True et al., 2011; Murakawa et al., 2016), mice (Navarro
et al., 2009; Ikegami et al., 2017), pigs (Harlow et al., 2021), and
rhesus monkeys (Ramaswamy et al., 2010; True et al., 2017),

as summarized in our recent article (Uenoyama et al., 2021b).
These findings implied the physiological importance of KNDy
neurons for mammalian reproduction beyond the species,
although colocalization of dynorphin in ARC kisspeptin/NKB
neurons was not evident yet in humans (Hrabovszky et al., 2012,
2019).

Importantly, dynorphin receptors (i.e., κ-opioid receptors;
KORs) were found in a majority of rat and ovine KNDy
neurons (Weems et al., 2016; Tsuchida et al., 2020) and a
portion of KNDy neurons in female mice (Navarro et al., 2009;
Ikegami et al., 2017). In addition, the NKB receptors (also
known as NK3R) were found in a majority of rodent and
ovine KNDy neurons (Navarro et al., 2009; Amstalden et al.,
2010; Ikegami et al., 2017). On the other hand, kisspeptin
receptors (also known as GPR54) were found in the majority
of GnRH neurons and were scarcely found in KNDy neurons
of mice and rats (Herbison et al., 2010; Higo et al., 2016).
These findings suggest that KNDy neurons communicate with
each other by dynorphin-KOR and NKB-NK3R signaling in an
autocrine/paracrine manner. As shown in Figure 1, the most
plausible interpretation of the cellular mechanism regulating
synchronized KNDy neuronal activity to drive GnRH pulses
is as follows: we envisage that dynorphin released from KNDy
neurons arrests KNDy neuronal activity via the inhibitory Gi/o-
coupled KOR, NKB initiates synchronized KNDy neuronal
activity via stimulatory Gq-coupled NK3R to release kisspeptin,
and kisspeptin, in turn, stimulates GnRH release via stimulatory
Gq-coupled GPR54 expressed in GnRH neurons (Navarro et al.,
2009; Lehman et al., 2010a,b; Okamura et al., 2013; Uenoyama
et al., 2014, 2021b; Goodman et al., 2018; Moore et al., 2018;
Ikegami et al., 2021). Indeed, in female goats, the frequency
of multiple unit activity (MUA) volleys, which were recorded
in the vicinity of ARC KNDy neurons and accompanied by
LH pulses, was decreased by the central administration of
dynorphin and increased by the administration of a KOR
antagonist (nor-binaltorphimine; nor-BNI) or NKB (Ohkura
et al., 2009; Wakabayashi et al., 2010). These findings suggest
that dynorphin-KOR signaling and NKB-NK3R signaling play
a role in determining the frequency of GnRH pulse generator
activities. Furthermore, central or peripheral administration
of dynorphin or NK3R antagonists (SB223412 and SB222200)
suppressed LH pulses, whereas KOR antagonists (nor-BNI and
PF-4455242); NKB, an NK3R agonist (senktide); and kisspeptin
stimulated LH pulses in several mammalian species, such as
rodents (Gottsch et al., 2004; Irwig et al., 2004; Kinoshita et al.,
2005; Messager et al., 2005; Pheng et al., 2009; Navarro et al.,
2011; Mostari et al., 2013; Ruiz-Pino et al., 2015) and ruminants
(Messager et al., 2005; Ohkura et al., 2009; Sakamoto et al., 2012;
Tanaka et al., 2012; Goodman et al., 2013; Naniwa et al., 2013;
Yamamura et al., 2015; Nakamura et al., 2017; Sasaki et al., 2019,
2020).

Recently, we rescued Kiss1 (which is the gene that encodes
kisspeptin) expression in ARC dynorphin/NKB neurons in
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FIGURE 1

Schematic illustration of the hypothetical mechanism of
gonadotropin-releasing hormone (GnRH) pulse generation in
female mammals. Dynorphin (Dyn) released from KNDy neurons
arrests KNDy neuronal activity via inhibitory Gi/o-coupled
κ-opioid receptors (KORs), and neurokinin B (NKB) initiates
synchronized KNDy neuronal activity via stimulatory
Gq-coupled NKB receptors (also known as NK3R) to release
kisspeptin, and kisspeptin, in turn, stimulates GnRH release via
stimulatory Gq-coupled kisspeptin receptors (also known as
GPR54) expressed in GnRH neurons.

global Kiss1-knockout rats utilizing adeno-associated virus
(AAV) vectors carrying Kiss1 cDNA (Nagae et al., 2021).
Rescuing Kiss1 expression in 20–50% of ARC NKB neurons
could recover pulsatile LH release and folliculogenesis up to
the preovulatory follicles in global Kiss1-knockout female rats.
These findings provide direct evidence that ARC KNDy neurons
serve as an intrinsic source of the GnRH pulse generator
in female mammals.

Brief history of studies on
endogenous opioid peptides

Endogenous opioid peptides were found to be endogenous
substances that produce the same analgesic effect as morphine,
an opiate alkaloid derived from opium poppies (Brownstein,
1993; Snyder and Pasternak, 2003; Waldhoer et al., 2004;
Gruber et al., 2007; Przewlocki, 2013; Devereaux et al., 2018).
Opiate alkaloids have a long history of medicinal use since
the time of ancient Greeks and Romans (Brownstein, 1993;
Waldhoer et al., 2004; Gruber et al., 2007; Devereaux et al.,
2018), and the active ingredient morphine was isolated in the
middle of the 1800s (Devereaux et al., 2018). Morphine was
introduced for pain treatment in the 1820s (Przewlocki, 2013;
Devereaux et al., 2018), and then morphine, like original opiate
alkaloids, was found to be an addictive drug (Brownstein,
1993; Przewlocki, 2013). In search of a safe analgesic, many
opiate agonists and antagonists were developed (Brownstein,
1993; Gruber et al., 2007), and by the middle of the 1960s,

it was becoming clear that the analgesic effect of morphine
and opiate agonists could be explained by the presence of
specific receptors for the opiates in the brain (Snyder and
Pasternak, 2003; Devereaux et al., 2018). In 1973, a radioreceptor
assay with tritium-labeled and non-labeled opiate agonists
or antagonists (Table 1) revealed the stereospecific binding
of opiates, namely, opiate or morphine receptors, in rat
brain homogenates (Pert and Snyder, 1973; Simon et al.,
1973; Terenius, 1973). These findings implied the presence
of endogenous opioidergic ligand(s) as neurotransmitters in
the central nervous systems of mammals. In 1975, two
pentapeptides, Tyr-Gly-Gly-Phe-Met (termed Met-enkephalin)
and Tyr-Gly-Gly-Phe-Leu (termed Leu-enkephalin), were found
in the pig brain as endogenous ligands for opiate or morphine
receptors (Hughes et al., 1975a,b). It soon became obvious that
the Met-enkephalin sequence was present on the N terminus
of another endogenous opioid peptide, that is, β-endorphin,
in 1976 (Birdsall and Hulme, 1976; Li and Chung, 1976).
Subsequently, the Leu-enkephalin sequence was found at the N
terminus of another endogenous opioid peptide, dynorphin, in
1979 (Goldstein et al., 1979, 1981). To date, these endogenous
opioid peptides have been classified into three families and
were reported to be derived from three distinct precursors
encoded by Pomc, Penk, and Pdyn genes (Nakanishi et al.,
1979; Kakidani et al., 1982; Noda et al., 1982; Akil et al.,
1984; Froehlich, 1997; Benarroch, 2012). Figure 2 shows
three precursors—preproopiomelanocortin, preproenkephalin,
and preprodynorphin—of endogenous opioid peptides, such as
β-endorphin, Met- and Leu-enkephalins, and the dynorphin
family [dynorphin A, and α- and β-neoendorphins, leumorphin,
and rimorphin (also known as dynorphin B)], respectively, in
humans and rats.

TABLE 1 Representative opiate agonists and antagonists used in the
radioreceptor assay.

References Agonists Antagonists

Pert and Snyder, 1973 Codeine Naloxone

Levorphanol Levallorphan

Methadone Nalorphine

Morphine

Pentazocine*

Propoxyphene

Simon et al., 1973 Etorphine Nalorphine

Levorphanol Naloxone

Methadone

Morphine

Terenius, 1973 Codeine Naloxone

Dihydromorphine

Heroin

Levorphanol

*Partial agonist.
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FIGURE 2

Schematic illustration of β-endorphin, Met- and Leu-enkephalins, and the dynorphin family (dynorphin A, α- and β-neoendorphins, leumorphin,
and rimorphin) in their precursors in humans and rats based on UniProtKB (https://www.uniprot.org/uniprot/). The precursors comprise a signal
peptide at the N-terminal. (A) β-Endorphin consists of 31 amino acids cleaved from the precursor preproopiomelanocortin in humans and rats.
Note that the five N-terminal amino acids (YGGMF, yellow squares) of β-endorphin, identical to Met-enkephalin, are commonly found in the
mammals examined. (B) Met- (YGGMF, yellow squares) and Leu-enkephalins (YGGML, orange squares) consist of five amino acids cleaved from
the precursor preproenkephalin. Note that human and rat preproenkephalin possess six Met-enkephalin and one Leu-enkephalin motifs, and
two of six Met-enkephalin motifs are processed to eight or seven amino acid peptides (Met-enkephalin-Arg-Gly-Leu and
Met-enkephalin-Arg-Phe). (C) Dynorphin A, α- and β-neoendorphins, leumorphin, and rimorphin (also known as dynorphin B) consist of 8–28
amino acids cleaved from the single precursor preprodynorphin. Note that the five N-terminal amino acids (YGGML, orange squares) of all
dynorphin family peptides are identical to Leu-enkephalin. The amino acid sequence of dynorphin A is identical among the mammals examined.

It is well known that β-endorphin, Met- and Leu-
enkephalins, and the dynorphin family share three types of
opioid receptors—µ-, δ-, and κ-opioid receptors (MOR, DOR,
and KOR)—encoded by Oprm1, Oprd1, and Oprk1 genes,
respectively (Snyder and Pasternak, 2003; Waldhoer et al., 2004;
Stein, 2016). As shown in Table 2, β-endorphin has been

reported to predominantly bind to both MOR and DOR with a
similar affinity and with a lower affinity for KOR; Met- and Leu-
enkephalins predominantly bind to the DOR with much higher
affinity than the MOR and KOR; all dynorphin family peptides
predominantly bind to the KOR, rather than the MOR and DOR
(Yasuda et al., 1993; Raynor et al., 1994; Mansour et al., 1995b).
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We should note that morphine was reported to predominantly
bind to the MOR, followed by the KOR, with a low affinity for
the DOR (Mansour et al., 1995b). These opioid receptors were
cloned in rats and mice during the early 1990s (Evans et al., 1992;
Kieffer et al., 1992; Chen et al., 1993a,b; Fukuda et al., 1993; Li
et al., 1993; Minami et al., 1993; Nishi et al., 1993; Thompson
et al., 1993) and were found to belong to the large superfamily
of seven-transmembrane G protein-coupled receptors. After
the binding of an agonist, conformational changes of all three
opioid receptors predominantly allow intracellular coupling
of a heterotrimeric Gi/o protein (Connor and Christie, 1999;
Waldhoer et al., 2004; Stein, 2016). Therefore, opioid receptor
activation leads to inhibited adenylyl cyclase activity and
reduced cAMP levels in target neurons (Connor and Christie,
1999; Waldhoer et al., 2004; Stein, 2016). In addition, opioid
receptor activation leads to the opening of G protein-coupled
inwardly rectifying K+ channels, thereby preventing neuronal
excitation and/or propagation of action potentials of target
neurons (Connor and Christie, 1999; Waldhoer et al., 2004;
Stein, 2016). From these findings, it is well accepted that
endogenous opioid peptides serve as inhibitory signals in the
central nervous system via inhibitory Gi/o-coupled opioid
receptors in mammals.

TABLE 2 Binding affinity and specificity of morphine and endogenous
opioid peptides to opioid receptors.

Agents Specificity Species References

Morphine µ- >>> κ- ≥ δ- Mouse/rat1 Raynor et al., 1994

µ- >> κ- >> δ- Rat2 Mansour et al., 1995b

β-endorphin δ- > κ- Mouse3 Yasuda et al., 1993

µ- ≥ δ- >>> κ- Mouse/rat1 Raynor et al., 1994

µ- ≥ δ- >> κ- Rat2 Mansour et al., 1995b

Met-enkephalin δ- >>> κ- Mouse3 Yasuda et al., 1993

µ- > δ- >>> κ- Mouse/rat1 Raynor et al., 1994

δ- > µ- >>> κ- Rat2 Mansour et al., 1995b

Leu-enkephalin δ- >>> κ- Mouse3 Yasuda et al., 1993

µ- ≥ δ- >>> κ- Mouse/rat1 Raynor et al., 1994

δ- >>> µ- >>> κ- Rat2 Mansour et al., 1995b

Dynorphin A1−17 κ- >> δ- Mouse3 Yasuda et al., 1993

κ- > µ- > δ- Mouse/rat1 Raynor et al., 1994

κ- > δ- > µ- Rat2 Mansour et al., 1995b

α-neoendorphin κ- >>> δ- Mouse3 Yasuda et al., 1993

κ- >> µ- ≥ δ- Rat2 Mansour et al., 1995b

β-neoendorphin κ- > δ- > µ- Rat2 Mansour et al., 1995b

Leumorphin κ- >> δ- ≥ µ- Rat2 Mansour et al., 1995b

Rimorphin κ- >>> δ- Mouse3 Yasuda et al., 1993

κ- > µ- ≥ δ- Rat2 Mansour et al., 1995b

>>>, more than 10 times; >>, more than 5 times; >, more than 2 times; ≥,
less than 2 times.
1Cloned mouse DOR and KOR and rat MOR cDNA were examined.
2Cloned rat MOR, DOR, and KOR cDNA were examined.
3Cloned mouse MOR, DOR, and KOR cDNA were examined.

Inhibitory roles of endogenous
opioid peptides on tonic
gonadotropin-releasing
hormone/gonadotropin-releasing
systems

Immediately after the isolation and characterization of
the endogenous opioid peptides, the inhibitory effect of
endogenous opioid peptides on pulsatile GnRH/gonadotropin
release was intensively studied using the opioid receptor
antagonist naloxone as a probe. As mentioned later in detail,
peripheral and central administration of naloxone or other
opioid antagonists facilitated tonic (pulsatile) LH release in
female mammals at several stages of the reproductive cycle
(Table 3) and under stressful conditions such as malnutrition
and infection (Table 4). Thus, we envision that opioidergic
neurons serve as mediators of inhibitory internal and external
cues, such as ovarian steroids, nutritional status, or stress, on
tonic GnRH/gonadotropin release in female mammals.

Involvement of endogenous opioid
peptides in mediating the negative
feedback action of ovarian steroids on
tonic gonadotropin-releasing
hormone/gonadotropin release

It is well established that the frequency of
GnRH/gonadotropin pulses is fine-tuned by the negative
feedback action of ovarian steroids such as estradiol-17β

(E2) and progesterone (P4) to keep circulating LH and FSH
at proper levels to promote follicular development in the
follicular phase of the estrous/menstrual cycle and maintain
corpus luteum function in the luteal phase and pregnancy
period (Nishihara et al., 1999; Herbison, 2020; Uenoyama
et al., 2021a). Endogenous opioid peptides are suggested to be
mediators of the negative feedback action of gonadal steroids
on tonic GnRH/gonadotropin release in female mammals
(summarized in Table 3). An intravenous (IV) injection of
naloxone increased plasma LH levels during the late follicular
(E2 dominant) and mid-luteal (P4 dominant) phases of the
menstrual cycle, but not during the early follicular phase, in
humans (Quigley and Yen, 1980). In addition, an IV injection
of naloxone increased serum LH levels during the luteal phase,
but not the follicular phase, in rhesus monkeys (Van Vugt
et al., 1983). Likewise, subcutaneous (SC) injection of naloxone
increased plasma LH levels in ovary-intact rats (Petraglia et al.,
1984). An IV injection of naloxone stimulated LH secretion
during the luteal phase, but not during the non-luteal phase,
in ewes (Malven et al., 1984; Brooks et al., 1986). Furthermore,
it has been noted that IV or SC administration of naloxone
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TABLE 3 Effects of opioid receptor antagonists on tonic luteinizing hormone (LH) secretion in female mammals.

Antagonists Receptors Treatment routes Effects Species Ovarian states References

Naloxone µ- > κ- >> δ- i.v. Stimulatory Human Late follicular phase Quigley and Yen, 1980

i.v. Stimulatory Human Mid-luteal phase Quigley and Yen, 1980

i.v. No effect Human Early follicular phase Quigley and Yen, 1980

i.v. Stimulatory Rhesus monkey Luteal phase Van Vugt et al., 1983

i.v. No effect Rhesus monkey Follicular phase Van Vugt et al., 1983

s.c. Stimulatory Rat Ovary-intact Petraglia et al., 1984

s.c. No effect Rat OVX Petraglia et al., 1984

i.v. Stimulatory Sheep Luteal phase Malven et al., 1984

i.v. No effect Sheep Non-luteal phase Malven et al., 1984

i.v. Stimulatory Sheep Early and mid-luteal phase Brooks et al., 1986

i.v. No effect Sheep Late-luteal phase Brooks et al., 1986

i.v. No effect Human Post-menopausal Reid et al., 1983

3V Stimulatory Rat Pregnant Gallo, 1990

MBH, POA Stimulatory Sheep Luteal phase Goodman et al., 2004

WIN44,441-3 κ- i.v. Stimulatory Sheep Luteal phase Whisnant and Goodman, 1988

i.v. No effect Sheep Follicular phase Whisnant and Goodman, 1988

i.v. Stimulatory Sheep Luteal phase Yang et al., 1988

nor-BNI κ- 3V Stimulatory Rat Pregnant Gallo, 1990

3V Stimulatory Rat OVX+ low E21 Mostari et al., 2013

3V No effect Rat OVX Mostari et al., 2013

MBH, POA Stimulatory Sheep Luteal phase Goodman et al., 2004

PF-4455242 κ- i.v., s.c. Stimulatory Goat OVX+ low E22 Sasaki et al., 2019

Naloxonazine µ- POA Stimulatory Sheep Luteal phase Goodman et al., 2004

MBH No effect Sheep Luteal phase Goodman et al., 2004

ICI 174864 δ- 3V No effect Rat Pregnant Gallo, 1990

Naltrindole δ- MBH, POA No effect Sheep Luteal phase Goodman et al., 2004

nor-BNI, nor-binaltorphimine.
1Ovariectomized (OVX) rats treated with a diestrous level of E2. 2OVX goats treated with a luteal phase level of E2.

TABLE 4 Effects of opioid receptor antagonists on tonic luteinizing hormone (LH) secretion in female mammals under stressful conditions.

Antagonist Receptors Effects Treatments Species Ovarian states References

Naloxone µ- > κ- >> δ- Restored Electric shock stress Rat Proestrus Hulse and Coleman, 1983

Restored 120-h fasting Rat OVX Dyer et al., 1985

Restored 48-h fasting Rat OVX+ low E21 Cagampang et al., 1991

Restored hypoglycemia by insulin Sheep OVX Clarke et al., 1990

Restored lipopolysaccharide Cattle OVX Kujjo et al., 1995

Restored lipopolysaccharide Rhesus monkey OVX Xiao et al., 2000

Restored CRH Rhesus monkey OVX Gindoff and Ferin, 1987

Restored AVP Rhesus monkey OVX Xiao et al., 1996

Restored CGRP Rat OVX Bowe et al., 2005

β-funaltrexamine µ- Restored CRH Rat OVX Rivest et al., 1993

Naloxonazine µ- Restored CRH Rat OVX Rivest et al., 1993

CTOP µ- Restored Glucoprivation by 2DG Rat OVX+ low E21 Tsuchida et al., 2021

nor-BNI κ- No effect CRH Rat OVX Rivest et al., 1993

Restored Glucoprivation by 2DG Rat OVX+ low E21 Tsuchida et al., 2020

CTOP, D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 ; CRH, corticotropin-releasing hormone; AVP, Arg-vasopressin; CGPR, calcitonin gene-related peptide; 2DG, 2-deoxy-D-glucose.
1OVX rats treated with a diestrous level of E2.
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was unable to increase plasma LH levels in post-menopausal
women (Reid et al., 1983) and ovariectomized (OVX) rats
(Petraglia et al., 1984). In addition, naloxone administration
into the third cerebroventricle (3V) facilitated LH pulses in
rats during pregnancy (Gallo, 1990). These findings suggest
that endogenous opioid peptides mediate the negative feedback
action of E2 and P4 on pulsatile GnRH/LH release in female
mammals. Furthermore, the local implant of crystalline
naloxone into the mediobasal hypothalamus (MBH) or POA
facilitated pulsatile LH release during the luteal phase in ewes
(Goodman et al., 2004), suggesting that the MBH and POA,
in which KNDy and GnRH neurons were found, respectively,
in ewes (Lehman et al., 1986, 2010b; Goodman et al., 2007),
could be possible action sites of endogenous opioid peptides
to exert the negative feedback action of ovarian steroids on
tonic GnRH/gonadotropin release. The expression of opioid
receptors in KNDy and GnRH neurons will be discussed later.

Both KOR and MOR signaling are considered to
mediate the negative feedback action of ovarian steroids
on GnRH/gonadotropin release in female mammals. An IV
injection of WIN44,441-3 (a specific KOR antagonist) facilitated
LH pulses during the luteal phase of the estrous cycle (Whisnant
and Goodman, 1988; Yang et al., 1988) but failed to facilitate
LH pulses during the follicular phase in ewes (Whisnant
and Goodman, 1988). Likewise, a 3V injection of nor-BNI
(another KOR antagonist), but not ICI 174864 (a specific DOR
antagonist), facilitated LH pulses in pregnant rats (Gallo, 1990).
Our previous study showed that a 3V injection of nor-BNI
stimulated the baseline levels of LH pulses in OVX rats treated
with a diestrous level of E2, but not in OVX rats (Mostari
et al., 2013). In addition, IV and SC injections of PF-4455242
(another KOR antagonist) facilitated LH pulses in OVX goats
treated with a luteal phase level of E2 (Sasaki et al., 2019).
Furthermore, the local implant of crystalline nor-BNI into the
MBH or POA and the local implant of crystalline naloxonazine
(a specific MOR antagonist) in the POA facilitated pulsatile
LH release during the luteal phase in ewes (Goodman et al.,
2004). By contrast, the local implant of crystalline naltrindole
(a specific DOR antagonist) failed to facilitate pulsatile LH
release during the luteal phase in ewes (Goodman et al., 2004).
These results are consistent with the finding that naloxone was

reported to predominantly bind to the MOR, followed by the
KOR, with a low affinity for the DOR (Mansour et al., 1995b).
Taken together, these findings suggest that endogenous opioid
peptides may mediate the negative feedback action of ovarian
steroids via KOR signaling in the MBH and KOR and MOR
signaling in the POA in female mammals.

Involvement of endogenous opioid
peptides in mediating stress-induced
suppression of tonic
gonadotropin-releasing
hormone/gonadotropin release

The frequency of GnRH/LH pulses is often suppressed
under stressful conditions, such as malnutrition and infection
(Chatterton, 1990; Tilbrook et al., 2000, 2002). Endogenous
opioid peptides have attracted attention as mediators of the
stress-induced suppression of GnRH/gonadotropin release in
female mammals (summarized in Table 4). Previous studies
have demonstrated that peripheral administration of naloxone
blocks stress-induced LH suppression in several female
mammals (Hulse and Coleman, 1983; Dyer et al., 1985; Clarke
et al., 1990; Cagampang et al., 1991; Kujjo et al., 1995; Xiao
et al., 2000). Concretely, an IV injection of naloxone blocked
electric shock stress-induced LH suppression in proestrous
female rats (Hulse and Coleman, 1983). Subcutaneous injections
of naloxone blocked 48-h fasting-induced LH suppression
in ovary-intact (Dyer et al., 1985) and OVX rats treated
with a diestrous level of E2 (Cagampang et al., 1991). Our
recent studies showed that the 3V administration of D-Phe-
Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP, another MOR
antagonist) or nor-BNI restored suppression of LH pulses
induced by peripheral or central injection of 2-deoxy-D-glucose
(2DG, an inhibitor of glucose utilization) in OVX rats treated
with a diestrus level of E2 (Tsuchida et al., 2020, 2021).
Furthermore, IV administration of naloxone restored LH pulses
that were suppressed by insulin-induced hypoglycemia in OVX
ewes (Clarke et al., 1990), and IV injections of naloxone restored
LH pulses that were suppressed by the administration of an

TABLE 5 Effects of opioid receptor antagonists on tonic luteinizing hormone (LH) secretion in pre-pubertal female mammals.

Antagonist Receptors Treatment routes Effects Species Ovarian states References

Naloxone µ- > κ- >> δ- s.c. Stimulatory Rat Ovary-intact Ieiri et al., 1980

i.v. Stimulatory Sheep Ovary-intact Ebling et al., 1989

i.v. Stimulatory Sheep OVX+ E2 Ebling et al., 1989

i.v. Stimulatory Sheep OVX Ebling et al., 1989

i.v. Stimulatory Sheep OVX+ E2 Wood et al., 1992

nor-BNI κ- i.p. Stimulatory Rat Ovary-intact Nakahara et al., 2013

i.v. Stimulatory Sheep OVX+ E2 Lopez et al., 2016

Frontiers in Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2022.958377
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-958377 August 6, 2022 Time: 21:15 # 8

Uenoyama et al. 10.3389/fnins.2022.958377

endotoxin lipopolysaccharide in OVX heifers (Kujjo et al.,
1995) and OVX rhesus monkeys (Xiao et al., 2000). Taken
together, these findings suggest that endogenous opioid peptides
mediate acute stress-induced suppression of GnRH/LH pulses
under stressful conditions, such as malnutrition and infection,
in female mammals.

It is well known that the stress response is mainly
driven by the hypothalamic–pituitary–adrenal axis in mammals
(Brooks and Challis, 1989; Senn et al., 1995; Bale and Vale,
2004; Papadimitriou and Priftis, 2009). Accumulating evidence
has demonstrated that both corticotropin-releasing hormone
(CRH) and Arg-vasopressin (AVP) neurons located in the PVN
govern pituitary corticotrophin release and adrenal functions
in response to various stressors (Brooks and Challis, 1989;
Senn et al., 1995; Bale and Vale, 2004; Papadimitriou and
Priftis, 2009). Thus, administration of CRH and AVP has
been used to mimic stressful conditions to determine the
role of opioids as mediators. As shown in Table 4, IV and
lateral ventricle (LV) administration of naloxone restored
CRH- and AVP-induced suppression of the frequency of
LH pulses in OVX rhesus monkeys, respectively (Gindoff
and Ferin, 1987; Xiao et al., 1996). These findings suggest
that opioidergic signaling may mediate CRH/AVP-induced
suppression of tonic GnRH/gonadotropin release in female
mammals. Specifically, administration of β-funaltrexamine and
naloxonazine (specific MOR antagonists), but not nor-BNI (a
KOR antagonist), into the POA partially restored CRH-induced
LH suppression in OVX rats (Rivest et al., 1993), suggesting that
MOR signaling mainly mediates the suppression. In addition,
O’Byrne and colleagues (Bowe et al., 2005) demonstrated that
the LV injection of naloxone restored LH pulses that were
suppressed by LV administration of calcitonin gene-related
peptide, another mediator of stress-induced LH suppression (Li
et al., 2004), in OVX rats.

Involvement of endogenous opioid
peptides in mediating pre-pubertal
restraints of tonic
gonadotropin-releasing
hormone/gonadotropin release

It has been established that pre-pubertal restraints of
GnRH/gonadotropin pulses are tightly associated with the
negative feedback action of estrogen in rats and sheep (Foster
and Ryan, 1979; Uenoyama et al., 2019). Endogenous opioid
peptides are likely to mediate the estrogen-dependent pre-
pubertal restraint of tonic GnRH/gonadotropin release in
female mammals (summarized in Table 5). Ieiri et al. (1980)
showed that SC administration of naloxone increased serum
LH levels in pre-pubertal female rats. Ebling et al. (1989)
suggested that endogenous opioidergic signaling mediates the
estrogen-negative feedback action on pre-pubertal restraints of

GnRH/gonadotropin pulses in lambs because IV administration
of naloxone stimulated LH pulses in ovary-intact and E2-treated
pre-pubertal OVX lambs. Ebling et al. (1989) also reported
that naloxone was able to further increase the frequency of
LH pulses shown in OVX pre-pubertal lambs in this study.
Similarly, Wood et al. (1992) showed that naloxone was
able to stimulate LH pulses in OVX pre-pubertal lambs in
an estrogen-dependent manner. Furthermore, Nakahara et al.
(2013) showed that chronic intraperitoneal infusion of nor-
BNI increased LH pulses and hence advanced puberty onset
in ovary-intact female rats. Similarly, Lopez et al. (2016)
showed that LV infusion of non-BNI stimulated LH pulses
in pre-pubertal E2-treated OVX lambs. Taken together, these
findings suggest that central opioidergic signaling, at least
KOR signaling, mediates the estrogen-dependent restraint of
GnRH/gonadotropin pulses during the pre-pubertal period and
may serve as a key determinant of puberty onset, at least in
rats and sheep. It should be noted that Lopez et al. (2016)
also showed that E2 replacement failed to increase dynorphin
immunoreactivity in the ARC of pre-pubertal lambs, although
P4 replacement increased dynorphin immunoreactivity in the
ARC of post-pubertal female sheep. Thus, non-ARC dynorphin
neurons may play a key role in the pre-pubertal restraint of
GnRH/gonadotropin pulses in female sheep.

It has also been established that puberty onset is associated
with body growth in mammals. Indeed, growth retardation
resulted in delayed puberty onset in rats and sheep (Foster
and Olster, 1985; Bronson, 1986; Majarune et al., 2019).
Our previous study showed that chronic food restriction
(negative energy balance) during the pre-pubertal phase caused
suppression of ARC Pdyn and Kiss1 expression and subsequent
pubertal failure in growth-retarded female rats and that
ad libitum feeding (positive energy cues) caused an acute
increase in the number of Pdyn- and Kiss1-expressing cells in
the ARC, triggering puberty onset in growth-retarded female
rats (Majarune et al., 2019). Similarly, Aerts et al. (2021) showed
pubertal increases in Pdyn and Kiss1, but not Tac3, expression in
the ARC of lambs. These findings suggest that dynorphin-KOR
signaling and Kiss1 (as components of KNDy neurons) serve
as critical regulators of GnRH pulse generation at the onset of
puberty in female mammals. The completion of KNDy mRNA
and peptide expression at puberty onset is likely a prerequisite.
On the other hand, there might be species differences in pubertal
changes in KNDy mRNA and peptide expression: Harlow et al.
(2022) demonstrated that OVX lambs with all three KNDy
mRNA and peptide expression showed apparent LH pulses,
whereas OVX lambs under food restriction showed suppression
of Kiss1/kisspeptin and NKB, but not Tac3 and Pdyn/dynorphin,
expression and the suppression of LH pulses. It should also
be noted that our and other previous studies showed that
ARC Kiss1 expression was found even in neonates and did
not alter peripubertal female pigs (Ieda et al., 2014; Harlow
et al., 2021). Interestingly, Ebling et al. (1990) showed that
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IV administration of naloxone failed to affect pre-pubertal
restraints of LH secretion in growth-retarded OVX lambs.
Given that endogenous opioid peptides may mediate estrogen-
dependent pre-pubertal suppression of GnRH/LH pulses in
lambs, this finding suggests that inhibitory input(s), other than
endogenous opioid peptides, may mainly mediate such steroid-
independent inhibition of GnRH/LH secretion in pre-pubertal
lambs under chronic malnutrition conditions.

Candidate populations of opioidergic
neurons inhibiting tonic
gonadotropin-releasing
hormone/gonadotropin release

It is likely that dynorphin neurons in multiple hypothalamic
nuclei—such as POA, anterior hypothalamus (AHA),
and PVN—and β-endorphin neurons (also known as
proopiomelanocortin neurons) located in the ARC serve
as mediators of the inhibitory effect of ovarian steroids and/or
stressors on GnRH/gonadotropin release in female mammals.

Foradori et al. (2005) showed that ovariectomy decreased
the number of Pdyn-expressing neurons in the POA, AHA,
and ARC compared to that in ewes at the luteal phase of
the estrous cycle. The study also showed that P4 replacement
restored the number of Pdyn-expressing cells in the POA and
AHA, but not the ARC, to the level noticed in ewes at the
luteal phase (Foradori et al., 2005). Our recent study showed
that a systemic E2 implant that mimicked the diestrous stage
significantly increased Pdyn-expressing cells in the PVN of OVX
rats compared to OVX rats without E2 replacement (Tsuchida
et al., 2020). Such a stimulatory effect of E2 on Pdyn mRNA
expression was not found in the ARC and SON, in which
dynorphin neurons were also abundantly found in female rats
(Kanaya et al., 2017; Tsuchida et al., 2020). Taken together,
these results suggest that POA, AHA, and/or PVN dynorphin
neurons may mediate the negative feedback action of ovarian
steroids on pulsatile GnRH/gonadotropin release in female
mammals. It is likely that P4 directly activates Pdyn mRNA
expression in the POA and AHA because previous studies using
in situ hybridization or immunohistochemistry revealed that the
majority of dynorphin neurons in the POA and AHA expressed
nuclear progesterone receptors (PR) in ewes (Foradori et al.,
2002). In addition, the majority of ARC dynorphin (KNDy)
neurons expressed PR and estrogen receptor α (ERα) in ewes
(Foradori et al., 2002; Franceschini et al., 2006; Smith et al., 2007)
and ERα in rodents (Kinoshita et al., 2005; Smith et al., 2005;
Adachi et al., 2007). It is still unclear whether PVN dynorphin
neurons express ERα in rats.

Palkovits (2000) demonstrated that several stressors, such
as immobilization and formalin injection, induced Pdyn
expression in the PVN, and immobilization stress induced
dynorphin-immunoreactivity in the SON of female rats. Our

previous study showed that glucoprivation induced by central
and peripheral injection of 2DG increased the number of
activated (fos-positive) dynorphin neurons in the PVN in OVX
rats treated with a diestrous level of E2 (Tsuchida et al.,
2020). Thus, it might be possible that PVN and/or SON
dynorphin neurons likely mediate the suppression of pulsatile
GnRH/gonadotropin release induced by stress or malnutrition
in female mammals.

Interestingly, both fasting and glucoprivation suppressed
LH pulses in female rats in an estrogen-dependent manner
(Cagampang et al., 1991; Nagatani et al., 1996). Our previous
studies showed that 48-h fasting induced de novo ERα

expression in the PVN (Estacio et al., 1996) and that the
local E2 implant into the PVN is needed for the fasting-
induced suppression of LH in OVX rats (Nagatani et al.,
1994). Thus, it is tempting to speculate that PVN dynorphin
neurons may integrate ovarian steroid-negative feedback
and stressor-induced signals to suppress GnRH/gonadotropin
pulses, although the detailed phenotype of PVN ERα-expressing
cells is currently unknown.

Whisnant et al. (1992) and Broad et al. (1993) showed
that both E2 and P4 increased Pomc mRNA levels in the
ARC of OVX ewes, suggesting that ARC β-endorphin neurons
may mediate the negative feedback action of ovarian steroids
on pulsatile GnRH/gonadotropin release at least in sheep.
On the other hand, Wilcox and Roberts (1985) showed that
E2 decreased Pomc mRNA levels in the ARC of OVX rats,
indicating that there is a potential species difference in the
regulation of Pomc mRNA expression by ovarian steroids. Little
is known about stress-induced Pomc mRNA upregulation in
female rodents, while fasting increased β-endorphin release
from the hypothalamic explant of male rats (Mitev et al.,
1993). Thus, further studies are needed to clarify how ARC
β-endorphin neurons mediate the inhibitory effect of ovarian
steroids and/or stressors on tonic GnRH/gonadotropin release
in female rodents.

Possible action sites of endogenous
opioid peptides to inhibit tonic
gonadotropin-releasing
hormone/gonadotropin release

Receptors for endogenous opioid peptides are widely
distributed in the brain of rodents (Mansour et al., 1988, 1993,
1994, 1995a; Desjardins et al., 1990; George et al., 1994). The
receptor distribution was initially examined by autoradiography
(at the brain nucleus level) and later examined by in situ
hybridization (at the cell body level) and immunohistochemistry
(at the cell body and fiber levels) (Mansour et al., 1995a). The
difference between the localization of binding sites (detected by
autoradiography) and mRNA expression (detected by in situ
hybridization) could be explained by receptor transportation
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from the cell bodies to the axon terminals. It was reported
that the MOR and KOR are widely distributed throughout
the hypothalamus, whereas the DOR is scarcely distributed
in the hypothalamus in rodents (Mansour et al., 1993, 1994,
1995a; George et al., 1994). Importantly, the distribution of
opioid receptors are largely consistent between rodents and
humans: the MOR and KOR mRNA are widely expressed, and
DOR mRNA is rarely expressed in the human hypothalamus
(Peckys and Landwehrmeyer, 1999).

Table 6 shows opioid receptor expression in GnRH neurons
and KNDy neurons, which are considered a core component
of the GnRH pulse generator, in female mammals (Lehman
et al., 2010a; Okamura et al., 2013; Uenoyama et al., 2014,
2021b; Goodman et al., 2018; Moore et al., 2018; Ikegami et al.,
2021). Immunohistochemical analysis revealed that the KOR
is expressed in a large majority of ovine KNDy neurons and
ovine and rat GnRH neurons (Lopez et al., 2016; Weems et al.,
2016). In addition, in situ hybridization analyses revealed that
KOR mRNA is expressed in the majority of ARC kisspeptin
neurons in female rats (Tsuchida et al., 2020) and less than
half of the ARC kisspeptin neurons in female mice (Navarro
et al., 2009). Likewise, our quantitative RT-PCR analysis showed
that KOR mRNA expression was detected in two of six pools
of KNDy neurons (each pool consists of 10 green fluorescent
protein-labeled kisspeptin cells) in female mice (Ikegami et al.,
2017). On the other hand, previous in situ hybridization analyses
revealed little MOR mRNA expression in both KNDy and
GnRH neurons in female rats (Mitchell et al., 1997; Sannella
and Petersen, 1997; Tsuchida et al., 2021), while MOR mRNA
expression was observed in one-third of GnRH-immunoreactive
cells in female guinea pigs (Zheng et al., 2005). MOR mRNA
expression was found in a number of ARC non-KNDy and

POA non-GnRH neurons in female rats (Mitchell et al., 1997;
Sannella and Petersen, 1997; Tsuchida et al., 2021). Taken
together, these findings suggest that dynorphin-KOR signaling
in the majority of KNDy and GnRH neurons may mediate the
negative feedback action of ovarian steroids and stress-induced
suppression of tonic GnRH/gonadotropin release in female
mammals (Figure 3). In addition, inhibitory β-endorphin-MOR
signaling on interneurons may somehow transmit to KNDy and
GnRH neurons to suppress tonic GnRH/gonadotropin release
(Figure 3). To date, studies on DOR expression in KNDy or
GnRH neurons are limited, while a previous study reported no
DOR mRNA expression in GnRH neurons in female rats under
various steroid milieus (Sannella and Petersen, 1997).

Possible involvement of
endogenous opioid peptides in
gonadotropin-releasing
hormone/luteinizing hormone
surge generation

Previous studies suggest that a transient decrease in the
endogenous opioid tone contributes to the initiation of the
preovulatory LH surge in female mammals (Gabriel et al., 1983;
Allen and Kalra, 1986; Rossmanith et al., 1988; Walsh and
Clarke, 1996; Smith and Gallo, 1997). Concretely, IV or SC
administration of naloxone advanced the onset of LH surge
induction and increased the amplitude of LH surge in women
with normal cycles (Rossmanith et al., 1988) and in proestrous
or estradiol benzoate (EB)-treated OVX rats (Gabriel et al., 1983;
Allen and Kalra, 1986). Furthermore, Smith and Gallo (1997)

TABLE 6 Expression of opioid receptor mRNAs in gonadotropin-releasing hormone (GnRH) and KNDy neurons in female mammals.

Neurons Receptors Expression rates Species Gonadal states Methods References

GnRH µ- 0% Rat Proestrus ISH Mitchell et al., 1997

µ- 0% Rat Intact/OVX/OVX+ E2/OVX+ E2+ P4 ISH Sannella and Petersen, 1997

µ- 33.3% Guinea pig OVX ISH+ IHC1 Zheng et al., 2005

µ- 0% Rat OVX+ E2 ISH Tsuchida et al., 2021

δ- 0% Rat Intact/OVX/OVX+ E2/OVX+ E2+ P4 ISH Sannella and Petersen, 1997

κ- 0% Rat Proestrus ISH Mitchell et al., 1997

κ- 0% Rat Intact/OVX/OVX+ E2/OVX+ E2+ P4 ISH Sannella and Petersen, 1997

κ- 95.4% Sheep luteal phase IHC Weems et al., 2016

κ- 95.4% Rat OVX+ E2+ P4 IHC Weems et al., 2016

KNDy µ- 0.4% Rat OVX+ low E2 ISH Tsuchida et al., 2021

κ- 20% Mouse OVX/OVX+ E2 ISH Navarro et al., 2009

κ- 33% Mouse OVX qRT-PCR2 Ikegami et al., 2017

κ- 97.8% Sheep luteal phase IHC Weems et al., 2016

κ- 62% Rat OVX+ low E2 ISH Tsuchida et al., 2020

ISH, in situ hybridization; IHC, immunohistochemistry.
1GnRH neurons were detected by IHC.
2Oprk1 (coding KOR) expression in pooled KNDy cells was analyzed by qRT–PCR.
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FIGURE 3

Schematic illustration showing a current interpretation of the
opioidergic pathway in the regulation of GnRH/gonadotropin
release in mammals: hypothalamic dynorphin and β-endorphin
neurons serve as mediators of the inhibitory effect of ovarian
steroids (internal cues) and/or stressors (e.g., malnutrition and
infection; external cues) on GnRH/gonadotropin release in
female mammals. It is likely that dynorphin directly acts on the
majority of KNDy and GnRH neurons via the KOR, whereas
β-endorphin indirectly (dotted line) acts on KNDy and GnRH
neurons via µ-opioid receptor (MOR)-expressing interneurons.

showed that nor-BNI infusion into the medial POA advanced
the onset of LH surge in proestrous female rats. In addition,
Walsh and Clarke (1996) showed that an MOR agonist, but not
KOR and DOR agonists, delayed the onset of the EB-induced
LH surge in OVX ewes. These findings suggest that endogenous
opioid peptides may exert an inhibitory influence on GnRH/LH
surge generation.

It is well accepted that another population of hypothalamic
kisspeptin neurons, which are located in the anteroventral
periventricular nucleus (AVPV) in rodents (Smith et al., 2005,
2006; Adachi et al., 2007; Clarkson et al., 2008) and the POA
in several mammalian species, including macaque monkeys
(Smith et al., 2010; Watanabe et al., 2014), sheep (Smith et al.,
2009), goats (Matsuda et al., 2015), cattle (Hassaneen et al.,
2016), and musk shrews (Inoue et al., 2011), as well as in
the periventricular nucleus in pigs (Tomikawa et al., 2010),
have been considered to serve as a target of estrogen-positive
feedback action to induce GnRH surge in female mammals (see
review article for details, Uenoyama et al., 2021a; Goodman
et al., 2022; Tsukamura, 2022). Interestingly, previous studies
showed coexpression of Penk/Met-enkephalin and Pdyn in
the majority of AVPV kisspeptin neurons in female mice
(Porteous et al., 2011; Stephens and Kauffman, 2021). To the
best of our knowledge, little is known about the physiological
roles of Met-enkephalin and dynorphin in AVPV kisspeptin
neurons, although these findings tempt us to speculate that Met-
enkephalin and/or dynorphin may have a role as a regulatory
signal for LH surge generation in an autocrine/paracrine fashion
in mice. Stephens and Kauffman (2021) showed that Pdyn
expression was higher in OVX mice than E2-treated OVX mice,

suggesting that dynorphin may suppress the onset of LH surge
in an autocrine/paracrine fashion. Further studies are needed
to uncover the precise mechanism by which endogenous opioid
peptides regulate LH surge generation in female mammals.

Conclusion and perspectives

Based on the findings currently available, we can envisage
that hypothalamic opioidergic neurons play several important
roles in the brain mechanism, regulating reproduction in
female mammals. In particular, ARC dynorphin neurons,
which are now known as KNDy neurons because of the
coexpression of NKB and kisspeptin, are recognized as the
GnRH pulse generator that governs female reproduction by
controlling tonic GnRH/gonadotropin release throughout the
estrus/menstrual cycles. In addition, dynorphin neurons located
in several hypothalamic nuclei, such as the POA, AHA, and/or
PVN, are likely to serve as mediators of ovarian steroid-
negative feedback action on tonic GnRH/gonadotropin release
by suppressing KNDy and/or GnRH neuronal activity via the
KOR expressed in KNDy and/or GnRH neurons in female
mammals. It is also postulated that ARC β-endorphin neurons
may also mediate ovarian steroid-negative feedback action
and suppress KNDy and GnRH neuronal activity via MOR-
positive interneurons. Furthermore, hypothalamic opioidergic
neurons are also likely to serve as mediators of external
adverse cues, such as malnutrition and infection, and suppress
tonic GnRH/gonadotropin release under stressful conditions.
To date, findings have mainly been accumulated for MOR
and KOR signaling, and little is known about whether DOR
signaling serves as a mediator of ovarian steroid-negative
feedback action and/or stress-induced suppression of tonic
GnRH/gonadotropin release in female mammals. To uncover
the precise roles of hypothalamic opioidergic neurons in
mammalian reproduction as a whole, further studies are needed
to clarify precise opioidergic neural pathways that control KNDy
and GnRH neuronal activity in female mammals.
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