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Abstract

The purpose of this study was to investigate whether artificial neural networks (ANN) are able to decode participants’
conscious experience perception from brain activity alone, using complex and ecological stimuli. To reach the aim we
conducted pattern recognition data analysis on fMRI data acquired during the execution of a binocular visual rivalry
paradigm (BR). Twelve healthy participants were submitted to fMRI during the execution of a binocular non-rivalry (BNR)
and a BR paradigm in which two classes of stimuli (faces and houses) were presented. During the binocular rivalry paradigm,
behavioral responses related to the switching between consciously perceived stimuli were also collected. First, we used the
BNR paradigm as a functional localizer to identify the brain areas involved the processing of the stimuli. Second, we trained
the ANN on the BNR fMRI data restricted to these regions of interest. Third, we applied the trained ANN to the BR data as a
‘brain reading’ tool to discriminate the pattern of neural activity between the two stimuli. Fourth, we verified the
consistency of the ANN outputs with the collected behavioral indicators of which stimulus was consciously perceived by the
participants. Our main results showed that the trained ANN was able to generalize across the two different tasks (i.e. BNR
and BR) and to identify with high accuracy the cognitive state of the participants (i.e. which stimulus was consciously
perceived) during the BR condition. The behavioral response, employed as control parameter, was compared with the
network output and a statistically significant percentage of correspondences (p-value ,0.05) were obtained for all subjects.
In conclusion the present study provides a method based on multivariate pattern analysis to investigate the neural basis of
visual consciousness during the BR phenomenon when behavioral indicators lack or are inconsistent, like in disorders of
consciousness or sedated patients.
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Introduction

Multivariate pattern analysis (MVPA) is able to process

information coming from differently located clusters of voxels

and makes it possible to detect particular patterns of neural activity

that may remain hidden to conventional analyses (e.g., univariate

statistical methods) [1]. Indeed, in these last years, MVPA has

been extensively applied as a ‘‘mind reading’’ tool to decode

mental states from functional magnetic resonance imaging (fMRI)

data, such as to assess perceptual states [2] or to evaluate

deception and differentiate lying from truth-telling [3], [4], [5]. A

great interest arose around fMRI studies using MVPA that

allowed the investigation of how the contents of conscious

experience are encoded in the brain [6].

Most of the work on this topic examined only the prediction of

static and unchanging perceptual states during extended periods of

stimulation [7], [8], [9].

A dynamic perceptual phenomenon particularly suitable to be

studied with MVPA is the binocular visual rivalry (BR): two

different visual stimuli are presented, one to each eye, and the two

conflicting monocular images compete for access to consciousness

and the subject usually experiences an alternate perception of the

two images. The perceptual dominance of one image can endure

for a few seconds before switching to the other, fluctuating

stochastically over time [10], [11]. Thus, the visual input is the

same, but the perceptual interpretation changes. Due to this

characteristic, the BR paradigm was shown to be an important

tool to explore the neural correlates of visual conscious experience

[11], [12].

In this framework, Haynes et al. (2005) investigated BR using

MVPA on fMRI signals [13]. They showed that linear discrim-

inant analysis was able to predict in healthy subjects from brain

activity alone the stream of visual consciousness by means of the

fluctuation between two classes of simple stimuli (blue and red

orthogonal rotating gratings). This study also demonstrated that

accurate prediction of the perception during BR could be

established with signals recorded during stable monocular viewing,

suggesting the possibility to use this approach in the absence of

behavioral indicators, such as in animals or patients with locked-in

syndrome.

A seminal study by Tong et al. (1998) demonstrated that during

BR in which houses and faces were presented, the fusiform face

area (FFA) and the parahippocampal place area (PPA) reflected

the perceived stimulus, showing that changes from house to face

led to an increase in blood oxygen level dependent (BOLD) signal
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in FFA and a decrease in PPA, while changes from face to house

led to the opposite pattern. Moreover they showed a striking

resemblance of BOLD signal changes during non-rivalry and

rivalry paradigms, not only in the qualitative pattern but also in

the amplitude of FFA and PPA responses [14]. However, they did

not test for generalization between training with non-rivalry, and

testing with rivalry in absence of behavior.

The brain regions involved in the processing of these stimuli are

the bilateral occipital area, collateral sulcus, PPA, occipital face

area (OFA), and FFA. In particular FFA and OFA were identified

as areas responding more to face stimuli, whereas bilateral PPA as

more reactive to houses and objects [15], [16].

These results allowed us to investigate whether multivariate

classification methods are able to decode a dynamic perception

phenomenon of complex and ecological stimuli using rivalry and

non-rivalry paradigms.

The aim of our study was to provide a method based on

artificial neural networks (ANN) [17] able to identify the different

neural pattern of activity related to the processing of two classes of

visual stimuli (houses and faces) during a visual rivalry paradigm,

applicable in the absence of behavioral indicators, indicating

which stimulus is perceived by participant.

We studied 12 healthy subjects with fMRI as they viewed

binocular non-rivalry (BNR) and BR tasks. First we used the BNR

to identify brain areas involved in face and house decoding, then

we trained the ANN on these data, and finally we employed the

trained ANN in order to discriminate the pattern of activity in BR

task analysis and verified the consistency of these results with the

behavioral response.

A major challenge of this study was the signal decoding due to a

low signal to noise ratio (SNR). Many system imperfections and

physical phenomena (eddy currents, asymmetric anti-aliasing filter

response, concomitant magnetic field, mismatched gradient group

delays, and hysteresis) affected echo planar imaging (EPI), and

especially sequences with short TR, by artifacts and signal loss

[18]. Hence, a processing protocol for signal optimization was

implemented in order to increase the network performance.

Materials and Methods

Participants
We recruited 12 healthy volunteers for this study (mean age

32.5 years, range 18–47 years) with no history of neurological

disease, 5 of whom were female. The experimental protocol was

approved by the ethics committee (Comitato Etico) of IRCCS

Carlo Besta Neurological Institute and all the participants gave

written informed consent. All clinical investigation has been

conducted according to the principles expressed in the Declaration

of Helsinki.

MRI acquisitions
Anatomical and functional data were collected using a 3.0 Tesla

MRI scanner (Achieva TX, Philips Medical Systems BV, Best,

NL) equipped with a 32 channel phase-array head coil. Each

participant underwent to an imaging protocol including anatom-

ical 3D T1 (TFE with FOV = 2406240 mm2 and vox-

el = 16161 mm3, TR/TE = 9.8/4.6 ms) and two EPI sequences,

one for the BNR (200 volumes) and the other for the BR fMRI

paradigm (600 volumes). Both fMRI sequences had a

FOV = 2406240 mm2, an isotropic voxel (36363 mm3), a 90u
flip angle and a TE = 40 ms. The TR of the BNR-localizer

sequence was 3000 ms, while for the rivalry sequence TR was

1000 ms. We chose a short TR of 1000 ms for the BR sequence in

order to be sure to capture the rapid alternate perception between

the two images. The perception dominance of one image was

shown to be in the range between 2.5 to 5.5 s [14]. Because of the

different TR, slices number of the package was set to 30 for the

first EPI sequence and 16 for the second.

fMRI paradigms
All participants performed two fMRI block design tasks (Fig. 1):

the BNR-localizer and the BR paradigm. During the BNR-

localizer task participants were presented with 5 blocks showing a

set of faces alternating with 5 blocks showing a set of houses,

spaced out by 10 rest blocks. Each block duration was 30 seconds

and included 10 stimuli, each shown for 3 seconds.

During the BR task participants were presented with 15 picture

blocks broken up by 15 rest blocks. For the picture blocks, a house

was shown to one eye and a face was shown to the other

simultaneously. These two pictures were chosen from those used

for the BNR-localizer task. Each block duration was 20 seconds.

The house and face images were presented to the right and left

eye, respectively, for half of the participants, and vice versa for the

other half. For both tasks a white fixation cross on a black

background was presented during rest blocks. Additionally the

house pictures were red-filtered while the face pictures were blue-

filtered in order to employ stimuli similar to the ones used in the

previous literature [13], [14] and to increase the perceptual

differences between the two classes of stimuli.

All the participants were provided with a pair of stereo LCD

goggles for visual stimulation, a pair of headphones, and two

keypads (VisuaStim, Resonance Technology Inc., Northridge CA,

USA). During the BR task participants were asked to indicate

which picture they perceived by pressing a button on the keypad at

transition points from one stimulus perception to the other, and

behavioral data were collected.

Data Analysis
In order to illustrate the multiple steps of the method employed,

a flow chart is provided in Fig. 2.

For all the data analyses we used SPM 8 (Statistical Parametric

Mapping, http://www.fil.ion.ucl.ac.uk), MatLab 7.13 (The Math-

Works Inc., Natick, MA, 2012), and SPSS 17.0 (SPSS Inc.,

Chicago, 2008).

Behavioral data analysis
During the BR task, the mean value of the duration of the

perceptual dominance for each image (house or face) and its

standard deviation were calculated for each participant and for the

whole group.

Figure 1. Diagrams showing the fMRI block tasks design. The
letter H in the red box represents the house block, the letter F in the
blue box represents the face block, and the white cross in the black box
represents the rest block. The BNR task is shown on the top, while the
BR task is shown on the bottom.
doi:10.1371/journal.pone.0105206.g001
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Data preprocessing
Both fMRI acquisitions (i.e., BNR and BR scans) were co-

registered to the T1 and pre-processed to correct 3D motion

artifacts, linear drifts, and low-frequency non linear drifts. Spatial

smoothing was applied using a Gaussian kernel with a 5 mm full

width at half maximum isotropic. For the BR scan, a slice timing

correction was also performed.

Single-subject analysis and ROIs identification
In order to identify the functional regions of interest (ROIs) (i.e.,

FFA, PPA, and OFA) necessary to extract the time course signals

to train and to run the ANN we performed standard single-subject

analyses [19] on the BNR-localizer data in the framework of the

general linear model (GLM). In the design matrix we modeled the

presentations of faces and houses as predictors. We performed two

t-contrasts: faces.houses and houses.faces [14]. The package

volume of the sequence, employed in the BR task, was applied as

an inclusive mask to the obtained con-images in order to verify

that the identified areas were included in the BR acquisition

package and to control for I type error [20]. For every single

subject the activations clusters, resulting from the analysis, were

selected as ROIs with a voxel-level threshold of P,0.05 FWE-

corrected and a minimum cluster size of 5 voxels. If using these

threshold at least N = 3 ROIs (1 ROI for the first t-contrast and 2

ROIs for the second) were not identified, the voxel-level threshold

was moved to p,0.05 FDR corrected. A maximum of 3 ROIs for

contrast was extracted based on higher T-score. The peak MNI

coordinates of every activation cluster, selected as ROI for each

subject, is provided in Table 1.

Network input signal preparation
For both BNR and BR datasets, we extracted the fMRI signal

time-courses from each voxel in the identified N ROIs and the

mean fMRI signal time-course from the whole brain. The ROIs

and the mean whole brain signal time-courses obtained from both

fMRI task scans were detrended with a third degree polynomial

function to eliminate the signal drift. Afterwards, the k-means

clusterization algorithm [21] was employed to split the BR

detrended ROI signal time-courses in two clusters. Considering

that the ROIs were selected by the analysis on BNR data, we

employed the clusterization algorithm in order to discriminate the

voxels participating in BR phenomenon and remove the voxels not

involved in the activation pattern and also affected by higher noise.

Then, the mean fMRI signal time-course of the remaining voxels

of each ROI was calculated.

Figure 2. Diagram illustrating signal processing steps. In the
green boxes the steps concerning the BNR ROI signals are described, in
the blue boxes the steps concerning BR ROI signals are described, and
in the orange boxes the steps in common for both signals are
described.
doi:10.1371/journal.pone.0105206.g002

T
a

b
le

1
.

Se
le

ct
e

d
R

O
Is

co
o

rd
in

at
e

s.

F
a

ce
s-

h
o

u
se

s
t-

co
n

tr
a

st
H

o
u

se
s-

F
a

ce
s

t-
co

n
tr

a
st

F
F

A
ri

g
h

t
F

F
A

le
ft

O
F

A
ri

g
h

t
O

F
A

le
ft

P
P

A
ri

g
h

t
P

P
A

le
ft

S
u

b
je

ct
#

x
y

z
x

y
z

x
y

z
x

y
z

x
y

z
x

y
z

1
4

0
2

4
6

2
2

2
2

4
2

2
6

0
2

2
0

4
2

2
6

8
2

1
0

–
–

–
2

8
2

4
6

2
1

0
2

2
8

2
5

4
2

8

2
4

0
2

5
4

2
1

6
–

–
–

–
–

–
–

–
–

3
0

2
5

0
2

8
2

2
6

2
5

0
2

1
0

3
5

8
2

2
8

1
6

2
–

–
–

–
–

–
–

–
3

6
2

2
6

2
1

2
2

2
8

2
3

6
2

4

4
4

6
2

4
8

2
1

8
2

4
2

2
4

8
2

2
0

–
–

–
–

–
–

3
2

2
4

8
2

1
0

2
2

8
2

5
0

2
8

5
3

8
2

4
4

2
2

0
–

–
–

5
0

2
6

8
2

2
–

–
–

2
4

2
4

2
2

1
0

2
2

6
2

4
6

2
1

2

6
4

4
2

5
2

2
2

2
–

–
–

4
0

2
7

0
2

1
0

–
–

–
3

2
2

4
8

2
1

0
2

2
8

2
5

6
2

1
0

7
–

–
–

2
4

4
2

5
0

2
2

4
3

8
2

7
2

2
2

0
2

3
8

2
7

8
2

1
0

2
6

2
5

0
2

1
4

2
2

4
2

5
2

2
1

4

8
4

0
2

6
0

2
1

8
–

–
–

–
–

–
–

–
–

3
0

2
5

2
2

8
2

2
6

2
4

4
2

1
0

9
–

–
–

2
3

8
2

5
6

2
1

8
4

4
2

8
0

2
1

8
–

–
–

2
8

2
6

0
2

6
2

2
6

2
5

2
2

1
0

1
0

4
0

2
4

0
2

1
6

2
3

6
2

4
8

2
1

4
–

–
–

–
–

–
2

8
2

4
0

2
8

2
2

6
2

4
4

2
6

T
h

e
ta

b
le

sh
o

w
s

th
e

p
e

ak
M

N
I

co
o

rd
in

at
e

s
o

f
e

ve
ry

ac
ti

va
ti

o
n

cl
u

st
e

r,
se

le
ct

e
d

as
R

O
I

fo
r

e
ac

h
su

b
je

ct
fo

r
P

P
A

s,
FF

A
s

an
d

O
FA

s.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
1

0
5

2
0

6
.t

0
0

1

fMRI Binocular Visual Rivalry Task Analysis

PLOS ONE | www.plosone.org 3 August 2014 | Volume 9 | Issue 8 | e105206



These signals and the mean fMRI time-course from the whole

brain were converted in percent signal changes relative to their

mean values over time. In order to minimize most of the non-task-

related signal fluctuations, the percent signal changes of the whole

brain fMRI signal time-course was subtracted from the percent

signal changes of each single ROI [22]; the resulting signal was

shifted to account for the BOLD response delay. Finally, we

removed the rest block time points and detrended the signals with

a second degree polynomial, obtaining the ultimate neural

network input signal. In order to assess the reliability of the

network output we used the removed rest block time points of the

BR dataset as a control signal.

Training and Running the network
We implemented a one-layer Feed-Forward Neural Network

with a Log-Sigmoid Transfer Function [17]. We chose an hidden

layer size of 65 neurons and, as performance function, the Mean

Square Error (MSE) relative to the difference between the target

outputs (presented stimuli) and the values predicted by the model

(network outputs).

The network was trained and run separately for each subject. As

a training dataset, we used a matrix in which the columns were the

processed BNR ROIs time courses, divided randomly in train set

(75%) and valuation set (25%). The training set was used for

computing the gradient descent and updating the network weights

and biases in the direction in which the performance function

decreases more rapidly, while the evaluation set was used for the

MSE value computation. At the end of the training, the network

weights and biases were saved at the minimum of the MSE. If the

training process performance did not achieve a selected threshold

(MSE ,0.02), chosen to have a good and homogeneous training

between subjects [23], the algorithm repeated the process using

new initialization seeds (weights and biases).

Next, we ran the trained network using the matrix in which the

columns were the processed ROIs BR time courses as input data.

The ANN produced an output matrix X, in which the rows were

the time points and the two columns were the outputs of

classification for the presented stimuli in a range between zero

and one. The ideal output matrix row (1 0) represented the face,

while (0 1) represented the house. In order to assign time points to

one of the two conditions, we set up a threshold |Xt,1– Xt,2| .0.9,

where t = 1,…,N, with N number of time points. If a time point

did not reach the threshold, it was labeled as not assigned and

discarded; the whole process, including training and run, was

reiterated until the number of unassigned time points was smaller

than 16.7%.

To evaluate the accuracy of the network to discriminate

between perception status, we computed (1) the percentage of

successes, obtained comparing the network output with the

behavioral response vector, and (2) the p-value, obtained by using

a binomial distribution, considering two conditions with a

probability of 50% to be equal or different from behavioral

responses.

Assessment of reliability of the network output
As the network weights and biases change during initialization

and optimization, the resulting output is affected by a certain

variability, reflecting the stochastic nature of ANN training [23].

Hence, to evaluate the consistency of the results, for each subject

we repeated the whole process described in the previous section

1000 times. In order to have a negative control set of data we

applied the 1000 repetition again substituting the BR with the rest

block time-course. For each repetition we collected the number of

time points assigned to houses or faces. Based on the hypothesis

that the rest block signal is unrelated to BR phenomenon, in order

to highlight differences between the distribution of predicted

stimuli (houses and faces), we analyzed the different outputs.

Frequency histograms of houses and faces were produced and

normality tests [24] were performed on the distribution of

percentage value of the two stimuli over the total time points

allocated along with mean, variance, kurtosis, and asymmetry

computation. We expect that for participants who experienced the

phenomenon, the event distribution in the BR-task signal ANN

output is balanced between the two stimuli (i.e. ratio between the

percentage of number of houses and faces .1/4) and leptokurtic

or at the most normally distributed over the 1000 reiterations. We

also collected evaluative information performing a comparison

between the task and the rest block signal ANN output (control).

This signal is expected to be characterized by a more asymmetric

and/or platykurtic events distribution and/or an unbalanced

distribution between stimuli, with a larger variance, because of the

unpredictable random effects involved in the ANN time points

attribution of a non-task-related signal.

Results

We discarded two of the subjects from our analysis: the first

because we did not find the expected activations (FFAs, OFAs,

PPAs) during the GLM analysis of BNR paradigm, and the second

because the subject declared that he did not experience the

perception alternation phenomenon.

During the BR paradigm, the participants reported alternations

between face-dominant and house-dominant percepts. The mean

phase duration was 3.37 s (range: 1.78 to 4.47 s; standard

deviation = 0.93 s).

Consistent with the literature [15], [16], the single-subject

analysis of BNR data revealed that the participants showed activity

for the contrast faces.houses in the posterior fusiform gyrus (i.e.,

FFA) and in the inferior occipital gyrus (i.e., OFA) (Fig. 3A), while

for the contrast houses.faces in the parahippocampal gyrus

(Fig. 3B). We identified a maximum of 5 ROIs for 2 participants, 4

ROIs for 5 participants, and 3 ROIs for 3 participants (Table 1).

The mean number of signal time points not assigned to each of

the two conditions was 10.763.7%.

For 9 of the 10 participants, combined information of 3 ROIs

was sufficient to allow the neural network to predict which

Figure 3. Example of resulting BOLD activity from GLM single-
subject analysis of BNR-localizer task. Picture A shows t-contrast
activations of face-house (FWE,0.05) in BNR time-course of PPA on top
and FFA ROI on the bottom. Picture B shows t-contrast activations of
house-face (FWE,0.05) in BNR-localizer time-course of FFA on top and
PPA ROI on the bottom.
doi:10.1371/journal.pone.0105206.g003

fMRI Binocular Visual Rivalry Task Analysis

PLOS ONE | www.plosone.org 4 August 2014 | Volume 9 | Issue 8 | e105206



stimulus the subject was experiencing with up to 75% accuracy

(p,0.05). When the signals from 4 ROIs were combined the

classification accuracy improved slightly for all but 1 participant,

and the ANN predicted the perceived stimulus in all the

participants (up to 78% accuracy; p,0.05). The only 2 partici-

pants in which 5 ROIs were detected showed a further slight

increase of the accuracy of the neural network (up to 80%; p,

0.05) combining the information coming from all of them

(Table 2; Fig. 4).

We tested the reliability of ANN output for all 10 participants,

as described in the previous section. Analyzing the BR task signal,

we found that in all cases the events distributions were leptokurtic

(kurtosis coefficient .0) or normal (Shapiro-Wilk, p.0.05) and the

mean number of predicted stimuli was balanced, with a

percentage of houses and faces in the range between 25% and

75% for all the participants, except one. Moreover for the rest

block signal output the events distribution was unbalanced and/or

platykurtic (Kurtosis coefficient ,0), with a larger variance and

asymmetry than for task signal in all cases (Fig. 5A).

We also performed the reliability assessment for the discarded

participant who declared that he did not experience the rivalry

phenomenon. In this case the events distribution was unbalanced,

platykurtic for both task and rest signal ANN output; moreover,

asymmetry was larger for task than for rest ANN output (Fig. 5B).

Discussion and Conclusions

The present study provides a method based on MVPA to

investigate the neural basis of visual consciousness during the BR

phenomenon when behavioral indicators, of what the participant

is experiencing, are lacking or inconsistent.

Our main results showed that the trained ANN was able to

generalize across two different fMRI paradigms (i.e. BNR and BR)

and to identify with high accuracy the cognitive state of the

participant (i.e. which stimulus was consciously perceived) during

the BR condition. These results were obtained combining

information from 3 ROIs in all the participants, except one,

although the best performances were obtained by combining

information from 4 or 5 ROIs. The possibility to apply this

procedure using a limited number of ROIs makes it applicable to a

wide variety of patients with cerebral insult.

Based on the literature, we decided to use faces and houses as

stimuli because they induce very different patterns of neural

activity supporting an optimal training of ANN and because faces,

due to their ecological relevance, are easily discriminated than

other stimuli [25].

Figure 4. Bar plot of ANN percentage of successes for each
subject. The plot shows in ordinate the percentage of time points
correctly allocate to conditions (house or face) and in abscissa the
number associated to the participants.
doi:10.1371/journal.pone.0105206.g004
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The ability to identify a common pattern of neural activity

during two different paradigms is extremely important in a context

where behavioral indicators lack or are difficult to detect. As in the

study by Haynes et al. [13], we trained the neural network with

data obtained in a controlled condition (i.e., BNR condition) that

allowed us to know what the participant was perceiving, and tested

it on data obtained in a condition where there was no external

control (except for the behavioral response, used only to assess the

prediction accuracy of the algorithm) of what the individual was

perceiving (i.e., the BR condition). This clearly supports the use of

our ANN in conditions where the conscious perception of an

individual is not accessible to an external observer. Unlike Haynes

[13], who trained the neural network on data obtained from a

monocular non-rivalry condition, we trained it on data obtained

from a binocular non-rivalry condition. The ability of the ANN to

predict the conscious perception during BR using a training on

BNR fMRI signal indicates that the BOLD signal changes in the

ROIs were strictly modulated by the conscious percept and not by

the eye of origin of the stimuli.

The behavioral data showed that the mean perception

dominance duration was variable between subjects and consistent

with the previous studies using similar stimuli [14], although an

EEG study reported a shorter perception dominance duration

using rotating gratings as stimuli [26]. Interestingly, we noticed

that the worst performance of our brain states classifier was

obtained from subjects 5 and 6, who experienced shorter mean

perception durations (respectively 2.57 s and 1.78 s); we speculate

that it may be harder to decode a signal when perception changes

are too quick.

The single-subject GLM analysis of the BNR task did not

activate the same number of areas in all participants. Thus, it was

not feasible to identify 4 or 5 ROIs for each subject, because OFA

and FFA are functional areas and they do not correspond to an

easily recognizable and circumscribed anatomical location [15].

For this reason we trained and tested the ANN using information

extracted from 3, 4 and 5 ROIs, based on the available identified

regions for each participant.

In order to create a non-user dependent standard procedure,

two thresholds were fixed, one related to the network training

performance (MSE ,0.02) and the other to the time points

assignment (|Xt,1–Xt,2| .0.9), based on the best results obtained

for our group of healthy volunteers.

In the last decade there has been a great ongoing debate about

the neural processes underlying BR, with some studies describing

this phenomenon as a high-level and representation-based process

[14], [27], [28], [29] and others describing it as a low–level and

eye-based process [13], [30], [31]. In our study, we decided to use

a paradigm based on the hypothesis of high-level and represen-

tation based processes during BR.

The future development of this study lies in the application of

the described method to investigate BR phenomenon in patients

with different levels of sedation, disorder of consciousness or

patients with profound physical disabilities, where it is difficult

even for experienced clinicians to diagnose cognitive ability [32].

The neuroscience community used fMRI paradigms extensively to

detect willful behavior in these patients [33], [34].

The absence of any feedback from these patients creates the

tricky problem of the ANN output truthfulness assessment.

We addressed this criticism by outlining some criteria that were

derived from the described training method and reliability

assessment. The conditions that should be fulfilled to consider

the ANN output reliable and infer that the subject experienced the

perception of BR, even in absence of any feedback, are as follows:

i. activation clusters present in BNR task single-subject analysis

necessary to identify at least 3 ROIs;

ii. high network training performance: MSE ,0.02;

iii. after 1000 runs the BR-task signal ANN outputs must be

balanced between stimuli and presenting a leptokurtic, or at

most normal, events distribution;

iv. the BR-task signal ANN output events distribution must have

a smaller variance and symmetry than the rest events

distribution.

Despite the significance of the results obtained, we underline

that the classification performances of the ANN could have been

more accurate in consideration of some limits of our study. The

main issues that cannot be easily resolved lies in the behavioral

responses registration method and more specifically we identified

three critical aspects: first we did not ask to the participants to

inform us when the two percepts were overlapping, second subject

reaction times and errors in button-pressing may alter our

recorded data and bias our final estimation on ANN output and

third during BNR task registration the motor behavioral responses

were absent.

Another limit of this study may be linked to pulse sequences

parameters used for BNR and BR scans: it would likely be possible

to achieve a better performance of the network using the same EPI

sequence parameters for both tasks, though differences between

the two sequences are slight.

In conclusion, the present study provides a method based on

multivariate pattern analysis to investigate the neural basis of

visual consciousness during the BR phenomenon when behavioral

indicators lack or are inconsistent.
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