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INTRODUCT ION

Since the 1980s, surgical pathologists in general and
infectious disease pathologists in particular have dealt
with an increasing number of surgical specimens from
patients in whom one or multiple infectious agents may
be responsible for disease.1 In this context, pathologists
have played an important role in recognizing infectious
agents. In many cases, when fresh tissue is not available
for culture, pathologists can provide a rapid mor-
phologic diagnosis and facilitate clinical decisions in
patient treatment.2 In addition, pathologists have played
a central role in the identification of emerging and
reemerging infectious agents and describing the 
pathogenetic processes of emerging diseases, such as
hantavirus pulmonary syndrome and other viral 
hemorrhagic fevers, leptospirosis, and rickettsial and
ehrlichial infections as well as the diagnosis of anthrax
during the bioterrorist attack of 2001.3–7

Conventionally, microbial identification in infectious
diseases has been made primarily by using serologic
assays and culture techniques. However, serologic
results can be difficult to interpret in the setting of
immunosuppression or when only a single sample is
available for evaluation. In addition, fresh tissue is not
always available for culture, and culture of fastidious
pathogens can be difficult and may take weeks or

months to yield results. Moreover, culture alone cannot
distinguish colonization from tissue invasion. Some
microorganisms have distinctive morphologic charac-
teristics that allow their identification in formalin-fixed
tissues using routine and special stains. Nevertheless, in
several instances it is difficult or even impossible to
identify an infectious agent specifically by conventional
morphologic methods.

Immunohistochemistry is one of the most powerful
techniques in surgical pathology. There has been an
increasing interest in the use of specific antibodies to
viral, bacterial, fungal and parasitic antigens in the
detection and identification of the causative agents in
many infectious diseases. The use of a specific antibody
to detect a microbial antigen was first performed by
Coons and associates8 to detect pneumococcal antigen in
tissues. The advantages of immunohistochemistry over
conventional staining methods (Table 2.1) and the 
contributions of immunohistochemistry in infectious 
diseases (Table 2.2) are substantial. It is important to
emphasize that both monoclonal and polyclonal anti-
bodies must be tested for possible cross-reactivities 
with other organisms. The widespread occurrence of
common antigens among bacteria and pathogenic fungi
is well established.1,9 Finally it is important to under-
stand that immunohistochemistry has several steps and
all of them can affect the final result; however, in general
the only limitations are the availability of specific anti-
bodies and the preservation of epitopes.1,10 It is well
known that for larger microorganisms such as protozoa,
fungi and some bacteria, pretreatment of formalin-fixed,
paraffin-embedded tissue is not required. In contrast, for
smaller infectious agents, for example, microorganisms
such as viruses and chlamydiae, pretreatment of the
tissue with proteolytic enzymes or heat-induced 
epitope retrieval is necessary in order to enhance
immunoreactivity.

Table 2.3 lists currently available antibodies for 
diagnostic use in surgical pathology.
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Table 2.3 Some commercially available antibodies for immunohistochemical diagnosis of infectious diseases

Microorganism Antibody/clone Dilution Pretreatment Source

Adenovirus Mab/20/11 and 2/6 1:2000 Proteinase K Chemicon 

Aspergillus Mab/WF-AF-1 1:200 HIAR* Dako

B. henselae Mab 1:100 HIAR Biocare Medical

BK virus Mab/BK T.1 1:8000 Trypsin Chemicon

C. albicans Mab/1B12 1:400 HIAR Chemicon

C. pneumoniae Mab/RR402 1:200 HIAR Accurate

Cryptosporidium Mab/Mabc1 1:100 HIAR Novocastra

CMV Mab/DDG9/CCH2 1:50 HIAR Novocastra

Giardia intestinalis Mab/9D5.3.1 1:50 HIAR Novocastra

Hepatitis B core Ag. Rabbit polyclonal 1:2000 HIAR Dako

Hepatitis B surface Ag. Mab/3E7 1:100 HIAR Dako

Herpes simplex 1 and 2 Rabbit polyclonal 1:3200 HIAR Dako

H. pylori Rabbit polyclonal 1:40 Protase I Dako

HHV 8 Mab/LNA-1 1:500 HIAR Novocastra

L. monocytogenes Rabbit polyclonal 1:5000 Proteinase K Difco

Parvovirus B19 Mab/R92F6 1:500 HIAR Novocastra

P. carinii Mab/3F6 1:20 HIAR Novocastra

Respiratory syncytial virus Mab/5H5N 1:200 HIAR Novocastra

T. gondii Rabbit polyclonal 1:320 HIAR Biogenex

West Nile virus Mab/5H10 1:400 Proteinase K Bioreliance

* Heat-induced antigen retrieval.
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Table 2.1 Advantages of IHC for the diagnosis of
infectious diseases

Allows rapid results

Can be performed on formalin-fixed, paraffin-embedded tissue,
reducing the risk of exposure to serious infectious diseases

High sensitivity allowing identification of infectious agents even
before morphologic changes occur

Useful for retrospective diagnosis of individual patients and for in-
depth study of the disease

Specificity: monoclonal antibodies and some polyclonal antibodies
allow for specific identification of infectious agents

Table 2.2 Contributions of IHC to the diagnosis of
infectious diseases

Allows identification of new human pathogens

Allows microbiologic/morphologic correlation establishing the
pathogenic significance of microbiological results

Provides a rapid morphologic diagnosis allowing early treatment of
serious infectious diseases

Contributes to understanding of the pathogenesis of infectious
diseases

Provides a diagnosis when fresh tissue is not available or when
culture methods do not exist
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VIRAL  INFECT IONS

Immunohistochemistry has played an important role
not only in the diagnosis of a large number of viral infec-
tions but also in the study of their pathogenesis and 
epidemiology. Traditionally, the diagnosis of viral 
infections has relied on cytopathic changes observed on
routine histopathology. Several viral pathogens produce
characteristic intracellular inclusions, which allow
pathologists to make a presumptive diagnosis of viral
infection. However, for some viral infections the char-
acteristic cytopathic changes are often subtle and sparse,
requiring a meticulous search.11 Moreover, only 50% of
the known viral diseases are associated with character-
istic intracellular inclusions.12 In addition, formalin,
which is the most commonly used fixative in histo-
pathology, is a poor fixative for demonstrating the mor-
phologic and tinctorial features of viral inclusions.12

When viral inclusions are not detected in hematoxylin-
eosin stained sections, or when the viral inclusions
present cannot be differentiated from those of other viral
diseases, immunohistochemical techniques offer a more
reliable alternative to reach a specific diagnosis.

Hepatitis B virus

Hepatitis B virus infection constitutes an important
cause of chronic hepatitis in a significant proportion of
patients. In many instances, the morphologic changes
induced by hepatitis B virus on hepatocytes are not
typical enough to render a presumptive diagnosis of
hepatitis B viral infection. In other instances, there may
be so little hepatitis B surface antigen (HBsAg) that it
cannot be demonstrated by techniques such as orcein
staining. In these cases, immunohistochemical tech-
niques to detect HBsAg are more sensitive than histo-
chemical methods and are helpful in reaching the
diagnosis.13 Immunostaining for HBsAg has been used
in the diagnosis of hepatitis B and in the study of carrier
states.14,15 Eighty percent or more of cases with positive
serologic results for HBsAg demonstrate cytoplasmic
HBsAg using immunohistochemistry (Fig. 2.1).16 By
immunoperoxidase localization, hepatitis B core antigen
(HBcAg) can be demonstrated within the nuclei or the
cytoplasm of hepatocytes, or both (Fig. 2.2). Predomi-
nantly cytoplasmic expression of HBcAg is associated
with a higher grade of hepatitis activity.17

Hepatitis C virus

The clinical diagnosis of hepatitis C virus (HCV) infec-
tion is based on serological demonstration of antibodies
against HCV and detection of HCV RNA in serum.
However, anti-HCV antibodies may be not detectable in
sera of immunocompromised patients.18 Several poly-
clonal and monoclonal antibodies directed against HCV

Fig. 2.1 Liver biopsy specimen from a patient with chronic
hepatitis B. Scattered hepatocytes show cytoplasmic reactivity
with monoclonal antibody to HBsAg. (Immunoperoxidase
staining with diaminobenzidine [DAB] and hematoxylin
counterstain, ¥400)

Fig. 2.2 Chronic active hepatitis B. Numerous hepatocytes
display intranuclear reactivity with polyclonal antibody to
hepatitis B core antigen (HBcAg). (Immunoperoxidase
staining with DAB and hematoxylin counterstain, ¥400)

nonstructural proteins have been produced for use in
immunohistochemistry. Nevertheless, most of the 
antibodies are not clinically useful because of low 
sensitivities compared with HCV RNA detection by RT-
PCR.18–21 Moreover, cross-reactivity with non-HCV epi-
topes has been found with the monoclonal antibody
TORDJI-22.21,22 Diffuse or coarse granular cytoplasmic
staining is usually seen in a variable number of hepato-
cytes in patients with chronic HCV hepatitis,19,23,24 and
within rare biliary epithelial cells, lymphocytes, and
sinusoidal endothelial cells.

More recently, a monoclonal antibody against HCV
E2 envelope glycoprotein has been demonstrated to be
a highly sensitive antibody for the diagnosis and clini-
cal follow-up of chronic HCV hepatitis with an overall
accuracy of 95% when used with the EnVision tech-
nique.25 This antibody is useful for the early detection of
graft reinfection in patients with liver transplant for
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HCV-related cirrhosis, and to differentiate reinfection
from graft rejection.25

Herpesviruses

Histologically, the diagnosis of herpes simplex virus
(HSV) infection involves the detection of multinucleated
giant cells containing characteristic molded, ground
glass-appearing nuclei and Cowdry’s type A intra-
nuclear inclusions. When there are abundant viral inclu-
sions within infected cells, the diagnosis is usually
straightforward. However, the diagnosis of HSV infec-
tion can be difficult when the characteristic intranuclear
inclusions or multinucleated cells, or both, are absent 
or when the amount of tissue in a biopsy specimen is
small.26 In these cases, the use of immunohistochemistry
to detect HSV antigens is advantageous.27,28

Immunohistochemistry using either polyclonal or
monoclonal antibodies against HSV antigens has 
proven to be a sensitive and specific technique to 
diagnose HSV infections (Fig. 2.3).29,30 Although poly-
clonal antibodies against the major HSV glycoprotein
antigens are sensitive, they do not allow distinction
between HSV-1 and HSV-2 because these two viruses 
are antigenically similar.31 In addition, the histologic 
features of HSV infection are not specific and can also
occur in patients with varicella-zoster (VZV) infection.
Monoclonal antibodies against the VZV envelope 
glycoprotein gp1 are sufficiently sensitive and specific to
allow a clear-cut distinction between HSV and VZV
infections.27,32,33

Immunohistochemistry has also been useful in
demonstrating the association of human herpesvirus 8
(HHV-8) with Kaposi’s sarcoma, primary effusion lym-
phoma, and multicentric Castleman’s disease.34–38 The
diagnosis of Kaposi’s sarcoma may be problematic due
to its broad morphologic spectrum and similar appear-

ance to other benign and malignant neoplastic vascular
lesions. Immunostaining of Kaposi’s sarcoma latent
associated nuclear antigen-1 (LANA-1) is useful to
confirm the diagnosis of Kaposi’s sarcoma, particularly
in difficult early lesions or when the neoplasm presents
in an unusual location, and allows distinction of
Kaposi’s sarcoma from several morphologically similar
vasoproliferative lesions (see Chapter 12).39,40 Immuno-
staining is restricted to the nuclei of spindle cells and
endothelial cells of the slit-like vascular spaces.
Immunohistochemistry has also demonstrated expres-
sion of HHV-8 LANA-1 in mesothelial cells of HIV-
associated recurrent pleural effusions41 and in the 
cells of the plexiform lesions of primary pulmonary
hypertension.42

Cytomegalovirus (CMV) is an important opportunis-
tic pathogen in immunocompromised patients. Histo-
logic diagnosis of CMV in fixed tissues usually rests on
the identification of characteristic cytopathic effects,
including intranuclear or cytoplasmic inclusions, or
both. However, histologic examination lacks sensitivity,
and in some cases atypical cytopathic features can be
confused with reactive or degenerative changes.43 In
these cases, immunohistochemistry using monoclonal
antibodies against early and late CMV antigens allows
the detection of CMV antigens in the nucleus and cyto-
plasm of infected cells (Fig. 2.4). In addition, immuno-
histochemistry may allow detection of CMV antigens
early in the course of the disease when cytopathic
changes have not yet developed.44–49 For example, CMV
early nuclear antigen is expressed 9 to 96 hours after 
cellular infection and indicates early active viral repli-
cation. Immunohistochemistry has been useful in the
detection of CMV infection in patients with steroid
refractory ulcerative colitis, and in detecting occult 
CMV infection of the central nervous system in 
liver transplant patients who develop neurological 
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Fig. 2.3 Herpes simplex hepatitis. The nuclei and 
cytoplasm of many hepatocytes and Kupffer cells are 
strongly immunostained for herpes simplex antigen.
(Immunoperoxidase staining with DAB and hematoxylin
counterstain, ¥400)

Fig. 2.4 Cytomegalovirus (CMV) villitis in a case of
congenital CMV infection. Stromal cells and Hofbauer 
cells show intranuclear and cytoplasmic CMV antigen.
(Immunoperoxidase staining with diaminobenzidine [DAB]
and hematoxylin counterstain, ¥400)
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complications.50,51 It has also been used to demonstrate
a high frequency of CMV antigens in tissues from first
trimester abortions.52 The sensitivity of immunohisto-
chemistry is better than light microscopic identification
of viral inclusions and compares favorably with 
culture and in situ hybridization.44,46,47,49,53 Additionally,
immunohistochemical assays can be completed faster
than the shell vial technique, with immunofluorescence,
or culture allowing for rapid results that are important
for early anti-CMV therapy.49

Adenoviruses

Adenovirus is increasingly recognized as a cause of
morbidity and mortality among immunocompromised
patients owing to transplant and congenital immuno-
deficiency.54,55 Rarely, adenovirus infection has been
described in HIV-infected patients.56–58 Characteristic
adenovirus inclusions are amphophilic, intranuclear,
homogeneous, and glassy. However, in some cases, the
infection may contain only rare cells showing the 
characteristic cytopathic effect.57 In addition, other viral
inclusions, including CMV, human papillomavirus,
HSV, and VZV, can be mistaken for adenovirus inclu-
sions and vice versa. Moreover, in immunosuppressed
patients the incidence of coinfection with other viruses
is high. In these circumstances immunohistochemical
assay may be necessary for a definitive diagnosis. 
A monoclonal antibody that is reactive with all 41
serotypes of adenovirus has been used in an immuno-
histochemical technique to demonstrate intranuclear
adenoviral antigen in immunocompromised patients
(Fig. 2.5).57–61 Histologic diagnosis of adenovirus colitis
is difficult, and it is usually underdiagnosed. Immuno-
histochemical staining has been of value in differentiat-
ing adenovirus colitis from CMV colitis.57,62

Other herpesviruses infections that have been diag-
nosed using immunohistochemical methods include
Epstein-Barr viral infection63 and human herpesvirusus
6 infection.64

Parvovirus B19

Parvovirus B19 has been associated with asymptomatic
infections, erythema infectiosum, acute arthropathy,
aplastic crisis, hydrops fetalis, and chronic anemia and
red cell aplasia. The diagnosis of parvovirus infection
can be achieved by identifying typical findings in bone
marrow specimens, including decreased or absent red
cell precursors, giant pronormoblasts, and eosinophilic
or amphophilic intranuclear inclusions in erythroid
cells.65,66 Because intravenous immunoglobulin therapy
is effective, a rapid and accurate diagnostic method is
important. Immunohistochemistry with a monoclonal
antibody against VP1 and VP2 capsid proteins has been
used as a rapid and sensitive method to establish the
diagnosis of parvovirus B19 infection in formalin-fixed,
paraffin-embedded tissues.67–70 Immunohistochemistry
is of particular help in detecting parvovirus B19 antigen
in cases with sparse inclusions, to study cases not 
initially identified by examination of routinely stained
tissue sections, or in cases of hydrops fetalis where there
is advanced cytolysis (Fig. 2.6).67,71,72 Several studies
have found a good correlation between morphologic,
immunohistochemical, in situ hybridization and poly-
merase chain reaction (PCR).66,67,70,72

Viral hemorrhagic fevers

Since the 1980s, numerous emerging and reemerging
agents of viral hemorrhagic fevers have attracted the
attention of pathologists.3–5 These investigators have
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Fig. 2.5 Adenovirus pneumonia. Infected cells within a
necrotizing exudate show intranuclear reactivity with
antibody to adenovirus antigen. (Immunoperoxidase staining
with aminoethylcarbazole [AEC] and hematoxylin
counterstain, ¥400)

Fig. 2.6 Hydrops fetalis caused by parvovirus B19 infection.
Normoblasts within the villous capillaries show intranuclear
viral antigen. (Immunoperoxidase staining with DAB and
hematoxylin counterstain, ¥600)
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played an important role in the identification of these
agents and supporting epidemiologic, clinical, and
pathogenetic studies of the emerging viral hemorrhagic
fevers.4,5,7 Viral hemorrhagic fevers are often fatal, and 
in the absence of bleeding or organ manifestations 
these diseases are clinically difficult to diagnose and 
frequently require handling and testing of poten-
tially dangerous biological specimens. In addition,
histopathologic features are not pathognomonic, and
they can resemble other viral, rickettsial and bacterial
(e.g., leptospirosis) infections. Immunohistochemistry is
essential and has been successfully and safely applied to
the diagnosis and study of the pathogenesis of these 
diseases.

Several studies have established the utility of
immunohistochemistry as a sensitive, safe, and rapid
diagnostic method for the diagnosis of viral hemor-
rhagic fevers such as yellow fever (Fig. 2.7),73–75 dengue
hemorrhagic fever,75,76 Crimean-Congo hemorrhagic
fever,77 Argentine hemorrhagic fever,78 Venezuelan hem-
orrhagic fever,79 and Marburg disease.80 Additionally, a
sensitive, specific, and safe immunostaining method has
been developed to diagnose Ebola hemorrhagic fever in
formalin-fixed skin biopsies (Fig. 2.8).81 Immunohisto-
chemistry demonstrated that Lassa virus targets prima-
rily endothelial cells, mononuclear inflammatory cells,
and hepatocytes (Fig. 2.9).81–83

Papovaviruses

Immunohistochemistry for the detection of human
papillomavirus in formalin-fixed tissue has been
replaced by more sensitive diagnostic molecular tech-
niques such in situ hybridization.84–87 In addition to 
low sensitivity compared with molecular techniques,
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Fig. 2.7 Yellow fever. Abundant yellow fever viral antigen 
is seen within hepatocytes and Kupffer cells.
(Immunoperoxidase staining with AEC and hematoxylin
counterstain, ¥400) (Courtesy of Dr. JF Aronson, University of
Texas Medical Branch.)

Fig. 2.8 Ebola virus. Extensive Ebola viral antigens are seen
primarily within fibroblasts in dermis of a skin specimen from
a fatal case of Ebola hemorrhagic fever. (Immunoalkaline
phosphatase with naphthol fast red substrate and hematoxylin
counterstain, original magnification ¥20)

Fig. 2.9 Lassa fever. Liver from a patient with Lassa fever.
Scattered hepatocytes and reticuloendothelial cells show
reactivity with monoclonal antibody to Lassa virus.
(Naphthol fast red substrate and hematoxylin counterstain,
original magnification ¥100)

immunohistochemistry detects only productive and not
latent infections and cannot be used to determine the
type of virus present (Fig. 2.10).

BK virus infections are frequent during infancy; 
in immunocompetent individuals the virus remains
latent in the kidneys, central nervous system and B-
lymphocytes. In immunocompromised patients, the
infection reactivates and spreads to other organs. In the
kidney, the infection is associated with mononuclear
interstitial inflammatory infiltrates and tubular atrophy,
findings that can be difficult to distinguish from acute
transplant rejection. Besides, the cytopathic changes
observed in BK virus infection are not pathognomonic
and can be observed in other viral infections. In this
setting, immunohistochemistry has been useful to
demonstrate BK virus infection.88–91

The human polyomavirus JC is a double-stranded
DNA virus that causes progressive multifocal leuko-
encephalopathy (PML). This fatal demyelinating disease
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is characterized by cytopathic changes in oligodendro-
cytes and bizarre giant astrocytes. Immunohistochemi-
cal technique using a polyclonal rabbit antiserum
against the protein VP1 is a specific, sensitive, and rapid
method for confirming the diagnosis of PML.92–95 JC
virus antigen is usually seen within oligodendrocytes
and occasional astrocytes, and antigen-bearing cells are
more commonly seen in early lesions.

Other viruses

Immunohistochemistry has also been used to confirm
the diagnosis of respiratory viral diseases such as
influenza A virus and respiratory syncytial virus infec-
tions when cultures were not available.96–99

The diagnosis of rabies relies heavily on histopatho-
logic examination of tissues to demonstrate the charac-
teristic cytoplasmic inclusions (Negri bodies). In an
important percentage of cases, Negri bodies may be
inconspicuous and so few that confirming the diagnosis
of rabies may be extremely difficult.100 Furthermore, in
nonendemic areas the diagnosis of rabies is usually not
suspected clinically or the patient can present with an
ascending type of paralysis. In these settings, immuno-
histochemical staining is a very sensitive, safe, and spe-
cific diagnostic tool for rabies (Fig. 2.11).100–104 Other viral
agents that can be diagnosed using immunohistochem-
ical methods include enterovirus,105–108 Eastern equine
encephalitis,109–111 and rotavirus.112–114

BACTER IAL  INFECT IONS

Among bacterial infections, the greatest number of
immunohistochemical studies have been performed in
the investigation of Helicobacter pylori. A few studies

have evaluated the use of immunohistochemistry in
other bacterial, mycobacterial, rickettsial, and spiro-
chetal infections.

Antigen retrieval is generally not required for the
immunohistochemical demonstration of bacteria in
fixed tissue. However, interpretation of the results can
be complicated by the fact that many of these antibod-
ies will cross-react with other bacteria. Moreover, anti-
bodies may react with only portions of the bacteria, and
they may label remnants of bacteria or spirochetes when
viable organisms are no longer present.

Helicobacter pylori infection

Gastric infection by H. pylori results in chronic active
gastritis and is strongly associated with lymphoid
hyperplasia, gastric lymphomas, and gastric adeno-
carcinoma. Heavy infections with numerous organisms 
are easily detected on routine hematoxylin and eosin-
stained tissues; however, the detection rate is only 66%
with many false-positive and false-negative results.115–117

Conventional histochemical methods such as silver
stains are more sensitive than hematoxylin and eosin in
detecting H. pylori. Nonetheless, for the detection of
scant numbers of organisms, immunohistochemistry
has proved to be highly specific and sensitive, less
expensive when all factors are considered, and superior
to conventional histochemical methods (Fig. 2.12).116,117

Treatment for chronic active gastritis and H. pylori infec-
tion can change the shape of the microorganism, making
difficult its identification and differentiation from 
extracellular debris or mucin globules. In these cases,
immunohistochemistry improves the rate of successful
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Fig. 2.10 Immunoperoxidase staining for human
papillomavirus (HPV) in a patient with mild squamous
dysplasia. HPV viral antigen localizes within the nuclei of
koilocytotic cells. (DAB with hematoxylin counterstain, ¥600)

Fig. 2.11 Rabies. Immunostaining of rabies viral antigens in
neurons of CNS using a rabbit polyclonal antibody. Red
precipitate corresponds to Negri inclusions on H&E.
(Immunoalkaline phosphatase with naphthol fast red
substrate and hematoxylin counterstain, original
magnification ¥40)
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identification of the bacteria even when histologic exam-
ination and cultures are falsely negative.118–121

Whipple’s disease

Whipple’s disease affects primarily the small bowel and
mesenteric lymph nodes and less commonly other
organs such as heart and central nervous system.
Numerous foamy macrophages characterize the disease,
and the diagnosis usually relies on the demonstration 
of PAS-positive intracytoplasmic bacteria. Nevertheless,
the presence of PAS-positive macrophages is not patho-
gnomonic; they can be observed in other diseases 
such as Mycobacterium avium complex infections, 
histoplasmosis, infections due to Rhodococcus equi,
and macroglobulinemia. Immunohistochemical staining
with a rabbit polyclonal antibody provides a sensitive
and specific method for the rapid diagnosis of intestinal
and extraintestinal Whipple’s disease and for follow-up
of treatment response.122–124

Rocky Mountain spotted fever

Confirmation of Rocky Mountain spotted fever (RMSF)
usually requires the use of serologic methods to detect
antibodies to spotted fever group (SFG) rickettsiae; yet
a significant percentage of patients with RMSF lack
diagnostic titers during the first week of disease.
Immunohistochemistry has been successfully used to

detect SFG rickettsiae in formalin-fixed tissue sections
(Fig. 2.13).125,126 Several studies have illustrated the value
of immunohistochemistry in the diagnosis of suspected
cases of RMSF using skin biopsies, and in confirming
fatal cases of seronegative RMSF.127,128

Bartonella infections

Bartonella are slow growing, fastidious Gram-negative,
Warthin-Starry-stained bacteria associated with bacil-
lary angiomatosis, peliosis hepatis, cat-scratch disease,
and blood culture-negative endocarditis. Immunostain-
ing has been successfully used to identify Bartonella
henselae and B. quintana in heart valves from patients
with blood culture-negative endocarditis (Fig. 2.14).129,130

This polyclonal rabbit antibody that does not allow 
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Fig. 2.12 Numerous curved Helicobacter pylori in the
superficial mucus are clearly demonstrated by
immunoperoxidase staining in this patient with chronic
active gastritis. (DAB with hematoxylin counterstain, ¥600)

Fig. 2.13 Immunohistologic demonstration of Rickettsia
rickettsii within endothelial cells surrounded by a small glial
nodule in the brainstem of this patient with fatal Rocky
Mountain spotted fever. (Immunoperoxidase staining with
AEC and hematoxylin counterstain, ¥600)

Fig. 2.14 Bartonella. Immunohistologic demonstration of
Bartonella henselae within heart valve of patient with 
culture-negative endocarditis. Mouse monoclonal anti-B.
henselae antibody. (Naphthol fast red substrate and
hematoxylin counterstain, original magnification ¥40)

F06652-ch002.qxd  12/20/05  5:13 PM  Page 50



I M M U NOH I S TO L O G Y  O F  I N F E C T I O U S  D I S E A S E S 2

differentiation between B. henselae and B. quintana has
also been used in the detection of these microorganisms
in cat-scratch disease, bacillary angiomatosis, and pelio-
sis hepatis.131,132 A commercially available monoclonal
antibody specific for B. henselae is also available and has
been used to demonstrate the organism in a case of
spontaneous splenic rupture caused by this bacterium.133

Other bacterial infections

Other bacterial diseases that can be identified by
immunohistochemistry in formalin-fixed tissue includ-
ing leptospirosis, which is a zoonosis that usually pres-
ents as an acute febrile syndrome but occasionally can
have unusual manifestations such as pulmonary hem-
orrhage with respiratory failure or abdominal pain.134–136

Rabbit polyclonal antibodies have been used in
immunohistochemistry to detect leptospiral antigens in
the gallbladder and lungs from patients with unusual
presentations (Fig. 2.15).134–137

Lyme disease has protean clinical manifestations, and
Borrelia burgdoferi is difficult to culture from tissues and
fluids. In addition, cultures are rarely positive before 2–4
weeks of incubation. Borrelia burgdoferi can be identified
in tissues by immunostaining with polyclonal or mono-
clonal antibodies. Although immunohistochemistry is
more specific than silver impregnation stains, the sensi-
tivity of immunostaining is poor, and the microorgan-
isms are difficult to detect due to the low numbers
present in tissue sections.138,139 Immunohistochemistry
is useful in identifying Haemophilus influenzae,140–142

Chlamydia species,143–145 Legionella pneumophila and L.
dumoffii,146–148 Listeria monocytogenes,149–151 Salmonella,152,153

mycobacteria,154–159 rickettsial infections other than
Rocky Mountain spotted fever such as boutonneuse

fever, typhus fever,160 rickettsialpox,161,162 African tick
bite fever,125 scrub typhus,163 and spirochetes in patients
with syphilis.164–166

FUNGAL INFECT IONS

The great majority of fungi are readily identified by
hematoxylin and eosin staining alone or in combination
with histochemical stains (periodic acid–Schiff [PAS],
and Gomori’s methenamine silver [GMS]). However,
these stains cannot distinguish morphologically similar
fungi with potential differences in susceptibility to
antimycotic drugs. In addition, fungal elements 
may appear atypical in tissue sections because of 
several factors including steric orientation, age of the
fungal lesion, effects of antifungal chemotherapy, 
type of infected tissue, and host immune response.167

Currently, the final identification of fungi relies 
on culture techniques; however, culture may take
several days or longer to yield a definitive result, 
and often surgical pathologists have no access to fresh
tissue.

In past years, immunohistochemistry has been 
used to identify various fungal elements in paraffin-
embedded, formalin-fixed tissue.168–170 Immunohisto-
chemical methods have the advantage of providing rapid
and specific identification of several fungi and allowing
pathologists to be able to identify unusual filamentous
hyphal and yeast infections and accurately distinguish
them from confounding artifacts.169,172 In addition,
immunohistochemistry allows pathologists to correlate
microbiological and histological findings of fungal infec-
tions and to distinguish them from harmless coloniza-
tion. Immunohistochemistry can also be helpful when
more than one fungus is present; in these cases dual
immunostaining techniques can highlight the different
fungal species present in the tissue.173 An important lim-
itation of immunohistochemistry in the identification of
fungi is the well-known, widespread occurrence of
common antigens among pathogenic fungi that fre-
quently results in cross-reactivity with polyclonal 
antibodies and even with some monoclonal 
antibodies.169,171–174 Therefore, assessment of cross-
reactivity using a panel of fungi is a very important step
in the evaluation of immunohistochemical methods.169,170

Candida species are often stained weakly with hema-
toxylin and eosin, and sometimes the yeast form may be
difficult to differentiate from Histoplasma capsulatum,
Cryptococcus neoformans, and even Pneumocystis carinii.
Polyclonal and monoclonal antibodies against Candida
genus antigens are sensitive and strongly reactive 
and do not show cross-reactivity with other fungi
tested.169,170,175,176 In particular, two monoclonal antibod-
ies against Candida albicans mannoproteins show high
sensitivity and specificity. Monoclonal antibody 3H8
recognizes primarily filamentous forms of C. albicans,

51

Fig. 2.15 Leptospira. Immunostaining of intact leptospires and
granular forms of leptospiral antigens in kidney of patient
who died of pulmonary hemorrhage. (Immunoalkaline
phosphatase with rabbit polyclonal antisera with naphthol
fast red substrate and hematoxylin counterstain, original
magnification ¥63)
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whereas monoclonal antibody 1B12 highlights yeast
forms.176,177

Identification of Cryptococcus neoformans usually is not
a problem when the fungus produces a mucicarmine-
positive capsule. However, infections by capsule-
negative strains are more difficult to diagnose, and the
disease can be confused with histoplasmosis, blastomy-
cosis, or torulopsis. Also, in longstanding infections the
yeast often appear atypical and fragmented. Polyclonal
antibodies raised against C. neoformans yeast cells are
sensitive and specific.169,170 More recently, monoclonal
antibodies have been produced that allow identification
and differentiation of varieties of C. neoformans in for-
malin-fixed tissue. The antibodies are highly sensitive
(97%) and specific (100%) to differentiate C. neoformans
var. neoformans from C. neoformans var. gattii.178,179

Sporothrix schenckii may be confused in tissue 
sections with Blastomyces dermatitidis and fungal agents
of pheohyphomycosis. In addition, yeast cells of S.
schenckii may be sparsely present in tissues. Specific anti-
bodies against yeast cells of S. schenckii are sensitive 
but demonstrate cross-reactivity with Candida species;
however, after specific adsorption of the antibody with
Candida yeast cells, the cross-reactivity of the antibodies
is eliminated.169,170

Invasive aspergillosis is a frequent cause of fungal
infection with high morbidity and mortality rates in
immunocompromised patients. The diagnosis is often
difficult and relies heavily on histologic identification of
invasive septate hyphae and culture confirmation. Nev-
ertheless, several filamentous fungi such as Fusarium
species, Pseudallescheria boydii, and Scedosporium species
share similar morphology with Aspergillus species in
hematoxylin and eosin-stained tissues. In addition, the
yield of cultures in histologically proven cases is low,
ranging from 30% to 50%.180,181 Several polyclonal and
monoclonal antibodies against Aspergillus antigens have
been tested in formalin-fixed tissues with variable 
sensitivities, and most of them cross-react with other
fungi.174,182,183 More recently, monoclonal antibodies (WF-
AF-1, 164G and 611F) against Aspergillus galactomannan
have shown high sensitivity and specificity in identify-
ing A. fumigatus, A. flavus, and A. niger in formalin-fixed
tissues without cross-reactivity with other filamentous
fungi.181,184

Cysts and trophozoites of Pneumocystis carinii can be
detected in bronchoalveolar lavage specimens using
monoclonal antibodies that yield results that are slightly
more sensitive than GMS, Giemsa or Papanicolaou
staining for detecting cysts (Fig. 2.16).170,185,186 Antibod-
ies are most helpful in the diagnosis of P. carinii pneu-
monia (PCP) when atypical pathologic features are
present such as granulomatous PCP or the presence 
of hyaline membranes or in cases of extrapulmonary
pneumocystosis.

Penicillium marneffei usually causes a disseminated
infection in immunocompromised patients that clini-

cally resembles histoplasmosis or leishmaniasis.171,187

Morphologically, the organisms must be differentiated
from H. capsulatum, C. neoformans, and C. albicans. The
monoclonal antibody EBA-1 against the galactomannan
of Aspergillus species cross-reacts with and detects P.
marneffei in tissue sections.182,188 Immunohistochemistry
has also been used to detect Blastomyces, Coccidioides,
and Histoplasma.169,170,189 However, the antibodies have
significant cross-reactivity with several other fungi.

PROTOZOAL INFECT IONS

Protozoa usually can be identified in tissue sections
stained with hematoxylin and eosin or Giemsa stain;
however, because of the small size of the organisms and
the subtle distinguishing features, an unequivocal diag-
nosis cannot always be made. The role of immunohisto-
chemistry in the detection of protozoal infections has
been limited to cases in which the morphology of the
parasite is distorted by tissue necrosis or autolysis. In
addition, in immunocompromised patients, toxoplas-
mosis can have an unusual disseminated presentation
with numerous tachyzoites without bradyzoites (Fig.
2.17).190,191 Immunohistochemistry has also been useful
in cases with unusual presentation of the disease.192

The diagnosis of leishmaniasis in routine practice
usually is not difficult; however, in certain circumstances
the pathologic diagnosis may be more problematic 
as is the case in chronic granulomatous leishmaniasis
with small numbers of parasites, when the microorgan-
ism presents in unusual locations, or when necrosis dis-
torts the morphologic appearance of the disease.193 In
these cases, immunohistochemical staining has been a
valuable diagnostic tool.193–196 The highly sensitive and
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Fig. 2.16 Human immunodeficiency virus (HIV)-infected
immunodeficient patient with Pneumocystis carinii
pneumonia. Cohesive aggregates of cyst forms and
trophozoites within alveolar spaces are demonstrated with a
monoclonal antibody against P. carinii in an
immunoperoxidase technique. (DAB with hematoxylin
counterstain, ¥400)
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specific monoclonal antibody p19-11 recognizes different
species of Leishmania and allows differentiation from
morphologically similar microorganisms (Toxoplasma,
Trypanosoma cruzi, and P. marneffei).193

Immunohistochemistry has also been used to identify
Cryptosporidium,197 Entamoeba histolytica,198 Trypanosoma
cruzi,199–201 babesia,202 and Giardia lamblia203 in formalin-
fixed, paraffin-embedded tissue samples.

EMERGING INFECT IOUS  D ISEASES

In 1992, the Institute of Medicine defined emerging
infectious diseases (EID) as caused by new, previously
unidentified microorganisms or those whose incidence
in humans has increased within the past two decades or
threatens to increase in the near future.204 The list of
pathogens newly recognized since 1973 is long and con-
tinues to increase, and recognizing emerging infections
is a challenge with many new infectious agents remain-
ing undetected for years before emerging as identified
public health problems.205 EID are global phenomena
that require a global response. The Centers for Disease
Control (CDC) has defined the strategy to prevent and
detect EID.205 The anatomic pathology laboratory plays
a critical role in the initial and rapid detection of
EID.206,207 Immunohistochemistry, besides assisting in
the identification of new infectious agents, has con-
tributed to the understanding of the pathogenesis and
epidemiology of EID.

Hantavirus pulmonary syndrome

In 1993, several previously healthy individuals died of
rapidly progressive pulmonary edema, respiratory
insufficiency and shock in southwestern United
States.208,209 Immunohistochemistry was central in the

identification of viral antigens of a previously unknown
hantavirus.210,211 Immunohistochemical analysis was also
important in identifying the occurrence of unrecognized
cases of hantavirus pulmonary syndrome prior to 1993
and in showing the distribution of viral antigen in
endothelial cells of the microcirculation, particularly in
the lung (Fig. 2.18).210,212

West Nile virus encephalitis

West Nile virus (WNV) was originally identified in
Africa in 1937, and the first cases of WNV encephalitis
in the US were described in 1999. The clinical picture is
variable and non-specific ranging from subclinical to
flaccid paralysis and encephalitis characterized mor-
phologically by perivascular mononuclear cell inflam-
matory infiltrates, neuronal necrosis, edema, and
microglial nodules, particularly prominent in the brain-
stem, cerebellum, and spinal cord.213–217 The diagnosis of
WNV is usually established by identification of virus-
specific IgM in CSF and/or serum, and demonstration
of viral RNA in serum, CSF, or other tissue.218 Immuno-
staining with either monoclonal or polyclonal antibod-
ies has been successfully employed to diagnose WNV
infection in immunocompromised patients who lacked
an adequate antibody response (Fig. 2.19).214

Enterovirus 71 encephalomyelitis

Enterovirus 71 (EV71) has been associated with hand,
foot, and mouth disease, herpangina, aseptic meningi-
tis, and poliomyelitis-like flaccid paralysis. More
recently, EV71 has been associated with unusual cases 
of fulminant encephalitis, pulmonary edema and 
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Fig. 2.17 HIV-infected patient with toxoplasmic encephalitis.
Immunoperoxidase highlights pseudocysts and scattered
tachyzoites. (DAB with hematoxylin counterstain, ¥400).

Fig. 2.18 Hantavirus antigen-positive endothelial cells of
pulmonary microvasculature in lung of an HPS patient as
determined by immunohistochemistry using a mouse
monoclonal antibody. (Immunoalkaline phosphatase with
naphthol fast red substrate and hematoxylin counterstain,
original magnification ¥100)
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hemorrhage, and heart failure.219,220 Severe and extensive
encephalomyelitis of the cerebral cortex, brainstem, and
spinal cord has been described. Immunohistochemical
staining with monoclonal antibody against EV71 has
played a pivotal role in the linking of EV71 infection 
to fulminant encephalitis (Fig. 2.20). Viral antigen is
observed within neurons, neuronal processes, and
mononuclear inflammatory cells.221–223

Nipah virus infection

Nipah virus is a recently described paramyxovirus that
causes an acute febrile encephalitic syndrome with high
mortality rates.224–226 Pathology played a key role in iden-
tifying the causative agent. Histopathologic findings
include vasculitis with thrombosis, microinfarctions,

syncytial giant cells, and viral inclusions.224,226 Syncytial
giant endothelial cells, albeit characteristic of this
disease, are seen only in 25% of cases,224 and viral inclu-
sions of similar morphology can be seen in other
paramyxoviral infections. Immunostaining provides a
useful tool for unequivocal diagnosis of the disease,
demonstrating viral antigen within neurons and
endothelial cells of most organs (Fig. 2.21).5,224

Ehrlichioses

Bacteria belonging to the genera Ehrlichia and Anaplasma
are the agents of human monocytotropic ehrlichiosis,
and human granulocytotropic anaplasmosis, respec-
tively. The acute febrile illnesses usually present 
with cytopenias, myalgias, and mild to moderate 
hepatitis.227–230

Diagnosis of ehrlichiosis depends upon finding the
characteristic monocytic and/or granulocytic cytoplas-
mic inclusions (morulae), PCR analysis of blood, and
detection of specific antibodies in blood. However,
morulae are rare and often missed on initial evaluation,
hematoxylin and eosin-stained sections often fail to
show organisms even when immunohistochemistry
reveals abundant ehrlichial antigen, and antibody titers
may take several weeks to rise to diagnostic levels.227

Additionally, immunocompromised patients may not
develop anti-ehrlichial antibodies prior to death.227,229 In
these cases, immunostaining for Ehrlichia or Anaplasma
has been demonstrated to be a sensitive and specific
diagnostic method.227,229–231

Immunohistochemistry has been a very valuable
approach for the identification and study of several
other EID such as Ebola hemorrhagic fever,81–83 hendra
virus encephalitis,5,232,233 leptospirosis,135–137 and more
recently to identify a new coronavirus associated with
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Fig. 2.19 West Nile virus. Immunostaining of flaviviral
antigens in neurons and neuronal processes in CNS tissue
from an immunosuppressed patient who died of WNV
encephalitis. (Flavivirus-hyperimmune mouse ascitic fluid,
naphthol fast red substrate and hematoxylin counterstain,
original magnification ¥40)

Fig. 2.20 Enterovirus 71. Positive staining of EV71 viral
antigens in neurons and neuronal processes of a fatal case of
enterovirus encephalitis. (Immunoalkaline phosphatase with
naphthol fast red substrate and hematoxylin counterstain,
original magnification ¥40)

Fig. 2.21 Nipah virus. Immunostaining of Nipah virus
antigens in neurons and neuronal processes in CNS of a fatal
case of Nipah virus encephalitis. (Naphthol fast red substrate
and hematoxylin counterstain, original magnification ¥63)
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severe acute respiratory syndrome (SARS).234,235 SARS
was first recognized during a global outbreak of severe
pneumonia that first occurred in late 2002 in Guangdong
Province, China, and then erupted in February 2003
with cases in more than two dozen countries in Asia,
Europe, North America, and South America. Early in the
investigation the clinical, pathologic, and laboratory
studies focused on previously known agents of respira-
tory illness. Subsequently, a virus was isolated from the
oropharynx of a SARS patient and identified by ultra-
structural characteristics as belonging to the family
Coronaviridae.234,235 Various reports have described
diffuse alveolar damage as the main histopathologic
findings in SARS patients, and SARS-associated corona-
virus (SARS-CoV) has been demonstrated in human and
experimental animal tissues by immunohistochemical
(Fig. 2.22) or in situ hybridization (ISH) assays.236–245

PATHOLOGISTS ,
IMMUNOHISTOCHEMISTRY,
AND B IOTERRORISM

Currently, there is increasing concern about the use of
infectious agents as potential biological weapons. Bio-
logical warfare agents vary from rare, exotic viruses to
common bacterial agents, and the intentional use of 
biologic agents to cause disease can simulate naturally
occurring outbreaks or may have unusual characteris-
tics.246 The CDC has issued the recommendations for 
a complete public health response to a biological
attack.247–249 Two important components of this response
plan include the rapid diagnosis and characterization of
biological agents. Pathologists using newer diagnostic
techniques such as immunohistochemistry, in situ
hybridization, and PCR will have a direct impact on the

rapid detection and control of emerging infectious dis-
eases from natural or intentional causes. Immunohisto-
chemistry provides a simple, safe, sensitive, and specific
method for the rapid detection, either at the time of
investigation or retrospectively, of biological threats,
facilitating the rapid implementation of effective public
health responses.

Anthrax

Immunohistochemical staining of Bacillus anthracis with
monoclonal antibodies against cell wall and capsule
antigens has been successfully used in the identification
of bioterrorism-related anthrax cases, being an impor-
tant step in the early diagnosis and treatment of these
cases.5,250–254 Gram’s staining and culture isolation of B.
anthracis are the usual methods to diagnose anthrax;
nevertheless, previous antibiotic treatment affects
culture yield and Gram’s staining identification of 
the bacteria.252 Immunohistochemistry has demon-
strated high sensitivity and specificity for the 
detection of B. anthracis in skin biopsies, pleural 
biopsies, transbronchial biopsies, and pleural fluids
(Fig. 2.23).251–253

In addition, immunostaining has been very useful for
determining the route of entry of the bacteria and iden-
tification of the mode of spread of the disease.252,255

Tularemia

Immunohistochemical staining is also valuable in the
rapid identification of Francisella tularensis in formalin-
fixed tissue sections. Tularemia can have a variable clin-
ical and pathologic presentation that can simulate other
infectious diseases such as anthrax, plague, cat-scratch
disease, or lymphogranuloma venereum. Moreover, the
microorganisms are difficult to demonstrate in tissue
sections even with Gram’s stain or silver staining
methods. A mouse monoclonal antibody against the
lipopolysaccharide of F. tularensis has been used to
demonstrate intact bacteria and granular bacterial
antigen in the lungs, spleen, lymph nodes, and liver
with high sensitivity and specificity (Fig. 2.24).256,257

Plague

A mouse monoclonal antibody directed against the frac-
tion 1 antigen of Yersinia pestis has been used to detect
intracellular and extracellular bacteria in dermal blood
vessels, lungs, lymph nodes, spleen, and liver (Fig.
2.25).258–262 This technique is potentially useful for the
rapid diagnosis of plague in formalin-fixed skin biop-
sies. In addition, immunohistochemistry may allow dis-
tinction of primary and secondary pneumonic plague by
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Fig. 2.22 SARS. Coronavirus antigen-positive pneumocytes
and macrophages in lung of a SARS case. (Immunoalkaline
phosphatase with naphthol fast red substrate and
hematoxylin counterstain, original magnification ¥63)
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Fig. 2.23 Anthrax. (A) Photomicrograph of pleural effusion
cell block showing bacillary fragments and granular antigen-
staining using the B. anthracis capsule antibody.
(Immunoalkaline phosphatase with naphthol fast red
substrate and hematoxylin counterstain, original
magnification ¥63) (B) Skin biopsy from a patient with
cutaneous anthrax showing abundant granular antigen-
staining and bacillary fragments using B. anthracis cell wall
antibody. (Immunoalkaline phosphatase with naphthol fast
red substrate and hematoxylin counterstain, original
magnification ¥40) (C) Photomicrograph of mediastinal
lymph node showing abundant granular antigen-staining and
bacillary fragments using B. anthracis cell wall antibody.
(Immunoalkaline phosphatase with naphthol fast red
substrate and hematoxylin counterstain, original
magnification ¥63)

Fig. 2.24 Tularemia. Immunohistochemistry of lymph node
showing a stellate abscess with F. tularensis antigen bearing
macrophages in the central necrotic area using a mouse
monoclonal antibody against the lipopolysaccharide of F.
tularensis. (Immunoalkaline phosphatase with naphthol fast
red substrate and hematoxylin counterstain, original
magnification ¥10)

Fig. 2.25 Plague. Immunohistochemical stain of a lung
demonstrating abundant bacterial and granular antigen
staining in the alveolar spaces using a mouse monoclonal
antibody against F1 of Y. pestis. (Immunoalkaline
phosphatase with naphthol fast red substrate and
hematoxylin counterstain, original magnification ¥20)
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identifying Y. pestis in different lung locations (i.e., 
alveolar versus interstitial).258

Immunohistochemical methods using polyclonal or
monoclonal antibodies have been applied to the identifi-
cation of several other potential biological terrorism
agents, including antibodies to the causative agents 
of brucellosis,5 Q fever,5,125,263,264 viral encephalitides
(Eastern equine encephalitis) (Fig. 2.26),5,109–111 rickettsioses
(typhus and Rocky Mountain spotted fever),125–128,160 and
viral hemorrhagic fevers (Ebola, Marburg).5,77–83
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