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Abstract

The COVID-19 pandemic has highlighted the need to come out with quick interventional solutions that can now be obtained
through the application of different bioinformatics software to actively improve the success rate. Technological advances in
fields such as computer modeling and simulation are enriching the discovery, development, assessment and monitoring for
better prevention, diagnosis, treatment and scientific evidence generation of specific therapeutic strategies. The combined
use of both molecular prediction tools and computer simulation in the development or regulatory evaluation of a medical
intervention, are making the difference to better predict the efficacy and safety of new vaccines. An integrated
bioinformatics pipeline that merges the prediction power of different software that act at different scales for evaluating the
elicited response of human immune system against every pathogen is proposed. As a working example, we applied this
problem solving protocol to predict the cross-reactivity of pre-existing vaccination interventions against SARS-CoV-2.
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Introduction
It was just over one year ago that the COVID-19 pandemic
officially began. Since then, SARS-CoV-2 has claimed more than
2.6 million lives and upended millions more [1]. COVID-19 symp-
toms involve generally the respiratory tract, ranging from mild/-
moderate to severe manifestations. SARS-CoV-2 infection can

Giulia Russo is an assistant professor at the University of Catania. Her research activity is focused on computational modeling in biomedical sciences with
a particular interest in modeling methodologies at the molecular level.
Valentina Di Salvatore is a post-doc researcher at the University of Catania. Her research activity is focused on the usage of specific bioinformatic tools in
the field of computational biology.
Giuseppe Sgroi is a PhD candidate at the University of Catania. His research activity is focused on data science with a particular interest in modeling
methodologies for systems biomedicine.
Giuseppe Alessandro Parasiliti Palumbo is a PhD candidate at the University of Catania. His research activity is focused on the development of biomedical
applications and data privacy.
Pedro A. Reche is an associate professor in immunology at the Complutense University of Madrid. His research focuses on a wide range of topics ranging
from deciphering the factors that determine immunogenicity and epitope-vaccine design to the study of immunomodulation by epithelial cells.
Francesco Pappalardo is an associate professor at the University of Catania. He was a visiting research scientist at the Dana-Farber Cancer Institute in
Boston and at the Molecular Immunogenetics Labs, IMGT in Montpellier. His major research area is computational biomedicine.
Submitted: 14 July 2021; Received (in revised form): 30 August 2021

© The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

also affect other organs such as the gastrointestinal compart-
ment, liver and pancreas, cardiovascular system and in some
cases can promote renal dysfunction and neurological disorders
[2–4].

COVID-19 vaccines, developed with unprecedented speed,
are now rolling out worldwide to stop the outbreak. However, the
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onset of a wide variety of SARS-CoV-2 variants urge to investigate
if COVID-19 vaccines will also provide protection against these
variants [5, 6]. The EMA/FDA has currently authorized four vac-
cines for emergency but researchers are currently testing about
90 vaccines in clinical trials on humans, and 27 have reached the
final stages of testing [7].

Along with these scenarios, scientists all over the world are
also exploring alternative strategies for the protection and treat-
ment of COVID-19. One of the most interesting hypotheses for
a potential COVID-19 vaccine repositioning is the under inves-
tigated cross-reactive immunity acquired from pediatric vacci-
nations or other already existing vaccine formulations [8]. This
strategy is supported by the fact that both antibody and T cell
responses has been detected in unexposed subjects, although
they have been linked to previous exposure to circulating com-
mon cold coronaviruses [9–11].

Technological advances in fields such as computer model-
ing and simulation are enriching the discovery, development,
assessment and monitoring for better prevention, diagnosis,
treatment and scientific evidence generation of specific ther-
apeutic strategies. In this perspective, in silico platforms, are
making the difference to better predict the efficacy and safety
of new pharmacological tools. The COVID-19 pandemic has, and
continues to have, a very serious impact on the challenging
development of interventional solutions for SARS-CoV-2 and
never as now, the application of in silico technology can actively
improve success rates of these trials [12–14].

Here we describe a multi-step and multi-scale bioinformatic
problem solving protocol to discover and test potential compo-
nents that could be implemented in potential effective vaccines
against SARS-CoV-2 and potentially to every disease. In partic-
ular, as a working example, we investigated potential sources
of cross-reactive immunity to SARS-CoV-2 to identify cross-
reactive epitopes between SARS-CoV-2 and antigens included
in Bacillus Calmette–Guérin (BCG) vaccine and within other
common antigenic subunits commonly used for vaccine for-
mulations against tuberculosis (TB) [15]. We then compared
these identified cross-reactive epitopes with the ones previously
detected between antigens in tetanus, diphtheria and pertussis
(DTP) vaccines and SARS-CoV-2 [8, 16] to obtain a scale of cross-
reactivity through such different antigens.

Potential immune response able to elicit a degree of protec-
tion against SARS-CoV-2 infection should then be tested at a
cellular and organ level. This is the reason why we selected, as
a final step in the problem-solving protocol we are describing,
an immune system simulator to predict the induced immune
response and its degree of efficacy. The Universal Immune Sys-
tem Simulator for SARS-CoV-2 (UISS-SARS-CoV-2 for short) is
an in silico trial platform based on agent-based methodology,
which is able to simulate the intricate human immune system
dynamics in the response to SARS-CoV-2 insult [17].

The obtained framework, used as a combination of protocols
for predicting the potential cross immunity induced by differ-
ent existing vaccines, is applicable as a comprehensive com-
putational pipeline to envisage the efficacy of new developed
vaccines.

Methods and materials
Workflow of the multi-step and multi-scale
bioinformatic approach

The problem-solving protocol consists of four distinct phases.
In the first processing phase, a search for similarity between

the sequences generated by the genome of SARS-COV-2 and
the antigens of our interest was performed, through a series
of queries on BLASTP database (https://blast.ncbi.nlm.nih.gov/
Blast.cgi). BLASTP is one of the most popular BLAST variations
and it is used for aligning protein query sequences against pro-
tein DB sequences. BLAST queries were performed with default
parameters and only hit sequences consisting of eight or more
residues with an identity ≥70% with SARS-CoV-2 were selected
as potential cross-reactivity sources. BLASTP queries were exe-
cuted through a local Python script which takes SARS-CoV-2
sequences as ‘query’ input and the antigens under examination
as ‘subject’ input. The output of this script is a table containing
all the information about hit sequences found, i.e. the matching
sequences, the sequence interval where they are located and
the identity percentage value. The amino-acid coding sequences
(CDS) encoded by SARS-CoV-2 reference genome have been frag-
mented into overlapping 15 mer peptides with 10 residues over-
laps by using an ad hoc PERL script before being submitted
to BLAST searches in order to enhance the epitopes mapping
resolution.

In the second phase, we tested T cell reactivity of hit
sequences identified through BLASTP queries, by predicting
their binding to class I and II human leukocyte antigen (HLA I and
HLA II) molecules. Peptide binding was predicted to the following
HLA I molecules: HLA-A∗01:01, HLA-A∗02:01, HLA-A∗03:01,
HLA-A∗11:01, HLA-A∗23:01, HLA-A∗24:02, HLA-B∗07:02, HLA-
B∗08:01, HLA-B∗35:01, HLA-B∗40:01, HLA-B∗44:02, HLA-B∗44:03
using IEDB MHC I binding tool (http://tools.iedb.org/mhci/) with
default recommended method through the RESTful interface.
To assert that the binding had happened a percentile rank of
2% cut-off was used. Regarding HLA II, we tested the following
molecules: HLA-DRB1∗01:01, HLA-DRB1∗03:01, HLA-DRB1∗04:01,
HLA-DRB1∗04:05, HLA-DRB1∗07:01, HLA-DRB1∗08:02, HLA-
DRB1∗09:01, HLA-DRB1∗11:01, HLA-DRB1∗12:01, HLA-DRB1∗13:02,
HLA-DRB1∗15:01 HLA-DRB3∗01:01 HLA-DRB3∗02:02 HLA-DRB4∗
01:01, HLA-DRB5∗01:01 using the IEDB MHC II binding tool (http://
tools.iedb.org/mhcii/) with default recommended method
through the RESTful interface. To assert that the binding had
happened a percentile rank of 10% cut-off was used.

In the third phase, we tested B cell reactivity by using
BediPred software at the IEDB Analysis Resource (http://http://
tools.iedb.org/bcell/). BediPred calculates an antigenicity value
for each residue (ai) and then, a global value of antigenicity
for the entire peptide (l is the total number of residues of the
peptide) is calculated using the following formula:

B =
∑i=l

i=1 ai

l

Peptides showing B values ≥0.4 were considered antigenic.
The fourth phase consists in simulating the induced immune

response at cellular and organ level using UISS-SARS-CoV-2. It
uses bit-string model (0 and 1 s) to represent specific elements
or binding properties in the same way that Farmer, Packard and
Perelson [18] did. In particular, a string of NBIT bits is used
to define the immune system repertoire. Using binary strings
of length NBIT mimics a 2NBIT repertoire. Considering that the
immune system repertoire diversity could be quantified in about
1015 for B cells [19] and 1020 for T cells [20], binary strings of
about NBIT = 60 should be used to represent the diversity of the
immune system repertoire at natural scale. Each different bit-
string defines an element of the repertoire. An m-bit match is
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obtained when exactly m bits complement each other and the
others NBIT—m are equal.

The function match(a, b) = hamming(a, b) is defined to give
us the number of matching bits between two strings a and b and
is computed as the Hamming distance in the space of the bit-
strings. Another function, affinity(m), is defined by a vector of
length bits, called bit match vector, with each component of the
vector giving the affinity of an m-bit match. To specify the vector
affinity, we use the additional parameters m0, A0, ∂A to calculate
the vector in the following way: (i) first, set affinity(m) = 0 for
m < m0; this provides a threshold level below which binding
cannot occur; (ii) set affinity(m0) to the parameter A0; (iii) set the
increase of strength on increasing a match by one bit to be the
inverse of the ratio of number of clones with match m + 1 and m
multiplied by ∂A. In formulas:

Affinity (m − 1)

Affinity(m)
= ∂A •

(
NBIT

m

)
(

NBIT
m − 1

)

As we are now calculating the affinity scores using BediPred
for B cells reactivity and IEDB tools coupled with python scripts
for T cells epitope prediction, we imported such scores directly
in the Affinity vector for the epitopes and peptides match the
residues we would like to test. Figure 1 summarizes the multi-
step and multi-scale bioinformatic approach used.

SARS-CoV-2 genome

SARS-CoV-2 reference sequence deals with the RNA genome
isolated from one of the first cases in Wuhan, China, and is
known as ‘severe acute respiratory syndrome coronavirus 2 isolate
Wuhan-Hu-1, complete genome’. This sequence is broadly used as
a standard reference and, because of its early identification, is
used as the origin genome in phylogenetic trees produced by
Nextstrain, COVID-19 Genomics UK (COG-UK) and the China
National Center for Bioinformation project.

SARS-CoV-2 reference genome was retrieved by National
Center for Biotechnology Information (NCBI), through NCBI
Reference Sequence: NC_045512 within GenBank. Its Spike (S),
Membrane (M) and Envelope (E) proteins were retrieved from
UniProt database annotation records (P0DTC2, P0DTC5 and
P0DTC4, respectively).

Existing vaccinations tested
• BCG is the only vaccine against TB available today, even if

its efficacy still remains controversial [21]. It shows good
results against the severe forms of TB and its use prevents
a large number of deaths every year especially in children,
but it fails to confer protection against adult TB. The choice
of the BCG strain to be used for vaccination remains crucial
for the efficacy of the vaccination itself. By the end of 1940,
several studies provided evidence for the utility of BCG
in protection against tuberculosis, so that the majority of
the world, including east European countries, introduced
routine BCG vaccination according to various schedules (e.g.
at birth, school entry, school leaving).

• The amino-acid sequence encoded by the genome of
BCG vaccine has been downloaded from UniProt database
(https://www.uniprot.org/proteomes/) after its GenBank
accession (NC_008769).

• By the end of 1990, whole-cell pertussis vaccines combined
with diphtheria and tetanus toxoids (diphtheria-tetanus
toxoids-pertussis (DTP)) were used to vaccinate children
against pertussis, diphtheria, and tetanus with a 5-dose
series administered at 2 months, 4 months, 6 months,
12–18 months and 4–6 years of age. At the beginning of
1990s, two acellular pertussis vaccines (containing purified
components of B pertussis) combined with diphtheria
and tetanus toxoids (diphtheria-tetanus toxoids-acellular
pertussis (DTaP)) were licensed for use as the fourth and
fifth doses of the vaccination series among children who
had received three doses of whole-cell DTP [22].

• The sequences of the antigens of D (diphtheria), T (tetanus)
and P (pertussis) vaccines have been downloaded from the
Proteomics Identification Database (PRIDE, https://www.e
bi.ac.uk/pride/) upon the proteomics projects PXD009289
and PXD013804.

Antigens tested
• Ag85B, a fibronectin-binding protein with mycolyltrans-

ferase activity, is the main secretory protein in actively
replicating M. tuberculosis (MTB). Because of its high
immunogenicity, as it can easily detect specific humoral
and cell-mediated immune responses both in latently and
actively infected TB patients, Ag85B has been investigated
as a potential candidate for subunit TB vaccines [23]. Ag85B
sequence has been downloaded from UniProt (Q847N4
(Q847N4_MYCTX)).

• The heparin-binding hemagglutinin adhesin (HBHA) is
an important surface-displayed protein that serves as an
adhesin for non-phagocytic cells and is involved in extra-
pulmonary dissemination of the tubercle bacillus [24].
HBHA is present at the outermost layer of the bacterial cell,
mediates the attachment of the bacilli to non-phagocytic
cells, induces mycobacterial aggregation and is involved in
extrapulmonary dissemination of MTB. For these reasons,
is also considered as an important marker of latency,
inducing a strong interferon gamma response in latently
infected subjects. HBHA sequence has been downloaded
from UniProt (P9WIP9 (HBHA_MYCTU)).

• The early secretory antigenic target (ESAT-6), which is
secreted along with its chaperone culture filtrate protein
(CFP-10), is one of the most important virulent factors
for MTB [25]. ESAT-6 and CFP-10 have been implicated in
several virulence mechanisms of mycobacteria, even if
the exact mechanism of virulence of ESAT-6 is not totally
clear yet. They are capable of modulating both innate and
adaptive immune responses and inactivation of ESAT-
6 results in dramatical reduction of the MTB virulence.
ESAT-6 and CFP-10 sequences have been downloaded from
UniProt, respectively, B5TV89 (B5TV89_MYCTU) and B5TV88
(B5TV88_MYCTU).

• MTB32A and MTB39A are two antigens expressed in
M. tuberculosis (MTB) and in BCG and comprised in the
formulation of candidate MTB vaccine Mtb72F/AS02A,
which has been developed to boost specific, pre-existing
immunity induced by BCG and MTB. [26] MTB32A and
MTB39A have been selected by T cell antigen screening
because of their ability to restimulate, in vitro, peripheral
blood mononuclear cells (PBMCs) from healthy PPD (Purified
Protein Derivative) -positive individuals, to induce Th1
responses in mice and to induce protection in animal
models of TB. MTB32A and MTB39A sequences have been

https://www.uniprot.org/proteomes/
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Figure 1. Workflow of the multi-scale bioinformatic approach.

downloaded from UniProt database (O07175_MYCTU and
A0A7U4J0T5_MYCTU respectively).

Results and discussion
Several studies suggest that vaccines commonly used during
infancy may be associated with effects on child morbidity and
mortality that are unrelated to protection against the diseases
they were designed for, including BCG and DTP vaccine [27]. For
example, it has been found that BCG promotes a Th1 response
in new-borns (Th1-type cytokines, such as interferon gamma,
tend to produce the proinflammatory reaction responsible for
killing intracellular parasites and for perpetuating autoimmune
responses) and is associated with less atopy, better response to
other vaccines and lower mortality, particularly for children with
a positive tuberculin response [28].

Here, we propose a vaccine discovery in silico trial pipeline
that using different sets of programs (e.g. databases, software
and tools) aims to predict the elicited immune response against a
particular pathogen. As a working example, we report the appli-
cation of the computational framework to predict the poten-
tial cross-reactive immunity induced by existing vaccinations
against SARS-CoV-2. For this purpose, we searched for peptide
matches to SARS-CoV-2 in the proteomes of BCG and DTP vac-
cine and of some of the most frequently used antigenic subunits
in vaccines, and subsequently tested their T and B cell reactivity
in order to identify potential cross-reactive epitopes.

BLASTP similarity search phase results

Since a structural resemblance often corresponds to a func-
tional resemblance, this first phase focuses on the assessment
of the level of similarity between the sequences resulting from
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Figure 2. Inverse correlation heatmap for BCG (panel A, MHC-I and panel B, MHC-II) and DTP (panel C, MHC-I and panel D, MHC-II).

the fragmentation of the SARS-CoV-2 CDS and the BCG, DTP
and all other antigens covered by this study. We obtained a
total of 759 peptides that mapped to BCG sequence and 748
to DTP with a similarity level equal or greater than 70%. The
results obtained for the other antigens were considerably less
significant: 2 sequences for Ag85B, 2 for CFP-10, 1 for ESAT-6,
3 for HBHA, 1 for MTB32A and 3 for MTB39A. The complete
data can be found in Supplementary Material available online
at http://bib.oxfordjournals.org/.

All the subject hits with eight or more residues and ≥70%
identity to SARS-CoV-2 have been selected as potential cross-
reactivity sources and then tested for the prediction of T cell and
B cell reactivity in next phases of the protocol.

T cell epitopes prediction results

For assessing that a binding between peptides and HLA I/II
alleles has occurred we consider all values below 2% percentile

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab403#supplementary-data


6 Russo et al.

Table 1. BCG B cell or antibody reactivity (presence of B cell epitopes) of peptides

ALLELE;QUERY_SEQUENCE (SARS-CoV-2);QUERY_SCORE_MHC1;PERCENTILE_RANK;SUBJECT_SEQUENCE
(BCG);SUBJECT_SCORE_MHC1;PERCENTILE_RANK
HLA-B∗35:01;SPDAVTAY;0.8;0.08;SPDVLTTY;814;0.07
HLA-B∗08:01;NITRFQTL;0.59;0.1;NISRFRTL;508;0.15
HLA-B∗07:02;PGLPGTIL;0.0971;1.2;APGHPGSI;378;0.36

Allele;QUERY_SEQUENCE (SARS-CoV-2);PERCENTILE_RANK;QUERY_SCORE_MHC2;SUBJECT_SEQUENCE
(BCG);PERCENTILE_RANK;SUBJECT_SCORE_MHC2
HLA-DRB1∗01:01;KHVYQLRARSV;0.59;0.42;NP;NP;NP
HLA-DRB1∗01:01;DLFMRIFTIGT;2.50;0.71;NP;NP;NP
HLA-DRB1∗01:01;HTVLQAVGACV;3.50;0.41;NP;NP;NP
HLA-DRB1∗01:01;FACVVADAVIK;7.70;4.09;APLLSAGATAA;0.71;0.01
HLA-DRB1∗07:01;GKSHFAIGLAL;4.80;2.08;GKTHLAVGLAI;4.70;5.99
HLA-DRB1∗01:01;NP;NP;NP;DPFMMIFTSGT;0.72;18.00

QUERY_SEQUENCE (SARS-CoV-2);B SCORE_QUERY;SUBJECT_SEQUENCE (BCG);B SCORE_SUBJECT
DLGDELGTDP;1.1655;DAGETLPTMP;1.1065
GPSDSTGSNQ;2.2545;GPSDATGIPQ;1.7147999999999999
DTANPKTPKY;1.9848;DTADPKGAKY;1.8296

rank for MHC I and below 10% for MHC II molecules. We selected
as potential sources of cross-reactivity only those query peptides
that bind to the same alleles to which the corresponding subject
peptides bind. Furthermore, the selection ends successfully if
and only if the percentage rank is lower than the allowed thresh-
olds. With the sequences that mapped to BCG, we obtained 127
query hits and 127 subject hits satisfying the acceptance criteria
for MHC I, 37 query hits and 27 for MHC II. For DTP, we obtained
225 subject hits and 188 query hits for MHC I, 54 subject hits and
53 query hits for MHC II.

The T cell response prediction for the other antigens under
examination did not produce any significant results. The com-
plete data can be found in Supplementary Material available
online at http://bib.oxfordjournals.org/. Figure 2 shows the cor-
relation between percentile rank and score, both for BCG and
DTP, in MHC-I and MHC-II on four different clustered heatmaps.
Each row on the heatmap represents one of the alleles we
tested for cross-reactivity prediction, and the columns represent,
respectively, the scores and the corresponding percentile ranks
obtained as results from the prediction analysis. The color range
on the top left side of each panel represents the legend for how
each color maps specific numeric value. These heatmaps, built
on non-normalized data, show the inverse correlation existing
between percentile ranks and corresponding scores: the lower
the rank, the higher the score. This kind of observation is not so
intuitive in the heatmaps related to MHC-II as the fragmentary
and less homogeneous results we obtained. There are ‘jumps’
(white spaces) that make it almost impossible to interpret the
existing relationship between the variables under examination,
even if Tables 1 and 2 highlight these correlations for some
of them.

B cell reactivity prediction

B cells are the core of the adaptive humoral immune system
and are primarily involved in the production of antigen-specific
immunoglobulins against invasive pathogens. Using BediPred
software, we predicted the presence of B cell epitopes by cal-
culating the antigenicity value for each residue in the peptides
under examination. Then, we obtained the global antigenic-
ity value (B) for the entire peptide, representing its ability to
be specifically recognized by the antibodies generated due to
immune response [29].

Only peptides showing B ≥0.4 have been considered to be
antigenic. We obtained a total of 288 antigenic peptides from BCG
query sequences and 356 from BCG subject sequences. For DTP,
we obtained 354 antigenic peptides from its query sequences
and 314 from DTP subject sequences. The other antigens under
study did not produce any relevant results. The complete results
dataset can be accessible through the Supplementary Material
section available online at http://bib.oxfordjournals.org/.

Tables 1 and 2 depict the best peptides found for both BCG
and DTP that we used as input for the prediction of antibody
reactivity at cellular level.

Prediction of the induced immune system response at
cellular and organ level

As final step, we run the UISS-SARS-CoV-2 simulations at cellular
and organ level importing all the predictions made at molec-
ular scale in the way we described above. We generated 1000
digital twins cohort using a sequential approach. This allows
the sampling from the joint features population distribution to
create a cohort of virtual patients with Gaussian distributions
of immune system profiles, resembling the recruitment process
for the target clinical trial [30]. Then we challenged each digital
twin with a 1.5 × 102 plaque forming units (PFU). This is a good
estimate (we used the in vivo study of [31] to have an estimate
from ferrets models and, moreover, we used the same PFU
dosage previous modeling experiences [17]) that eventually leads
to the COVID-19 disease development. To guarantee a sufficient
statistical diversity in terms of immunological repertoire, we
randomly generated 1000 digital twins cohort. We then extracted
300 digital twins subdividing them in three different in silico
cohorts, i.e. light, mild/moderate and severe disease outcome
scenario. We measured the cytopathic effects (CPE) on the lung
compartment to establish the severity of the disease. Light and
mild/moderate scenarios are available as Supplementary Mate-
rial available online at http://bib.oxfordjournals.org/. Figure 3
shows the simulation results (mean values over a 100 digital
twins) for the severe scenario. Panel A depicts the dynamics
of the cytopathic effects induced by SARS-CoV-2 on the lung
epithelial cells (LPE). In the untreated case, an important dam-
age is predicted (about 53% of LPE eventually die). For BCG
and DTP treated virtual patients one can see how the CPE is
limited (both cases) and the recovery is faster for DTP than

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab403#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab403#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab403#supplementary-data
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Table 2. DTP B cell or antibody reactivity (presence of B cell epitopes) of peptides

ALLELE;QUERY_SEQUENCE (DTP);QUERY_MHC1_score;percentile_rank;SUBJECT_SEQUENCE (DTP);SUBJECT_MHC1_score;percentile_rank;;;
HLA-A∗01:01;ITQMNLKY;294;0.38;ITDLSLKY;0.96;0.01;;;
HLA-B∗40:01;LEDEFTPF;0.0822;1.1;LEFDFTSF;0.19;0.66;;;
HLA-A∗01:01;AVFDKNLY;0.0436;1.7;AVFDPELY;0.0939;0.98;;;

ALLELE;QUERY_SEQUENCE (DTP);QUERY_MHC2_score;percentile_rank;SUBJECT_SEQUENCE (DTP);SUBJECT_MHC2_score;percentile_rank
HLA-DRB1∗09:01;AQFAPSASAFF;0.01;0.01;AVFTPSALAFF;0.01;0.27
HLA-
DRB3∗01:01;TGLFKDCSKVI;32.93;0.77;TKLFKNTSKVI;4548.53;7.30
HLA-DRB1∗01:01;KLKTLVATAEA;0.01;5.70;KLKTLEASAQA;0.26;5.90

QUERY_SEQUENCE;B_SCORE;SUBJECT_SEQUENCE;B_SCORE
SAKPPPGD;2.9286250000000003;TAAPPPGD;2.8165
GPPGTGKS;2.648625;GPPGSGKT;2.6715
LQGPPGTGKS;2.2448;LVGPPGSGK;1.9208888888888889

Figure 3. Immune response elicited by BCG and DTP vaccine interventions compared to the untreated case. Panel A shows the cytopathic effects on lung epithelial cells

to evaluate the severity of the SARS-CoV-2 infection. Panel B depicts the humoral response measured through the immunoglobulins class G (geometric mean titers,

GMT). Panel C reports IL-6 as a predictor of the severity of inflammation and the potentiality to develop a cytokines storm that can eventually lead to severe damage

and fatal prognosis. Panel D highlights cellular response through the dynamics of specific CD8+ T cells.

BCG treated individuals. Panel B shows the predicted humoral
immune response in terms of immunoglobulins class G anti
SARS-CoV-2. Comparing to the untreated case, both BCG and DTP
show a non-negligible increase in terms of geometric mean titers
(GMT). Panel C shows that IL-6 levels are considerably reduced
for both BCG and DTP treated digital twins, along with the levels
of CD8+ T cells. Hence the predictions clearly demonstrate that
a considerable protective effect from cytokines storm induced
inflammation (and the consequent cellular damage) is elicited
by both BCG and DTP vaccinations.

Conclusions
The opportunity to echo and resonate the importance of the
combination of bioinformatics software solutions in healthcare,
especially in this pandemic situation, sheds the light on the
fact that they can support the ‘3 Rs’ principles (replace, reduce,

refine) in drug development and better predict the efficacy of
new medicines such as vaccines.

Here, we presented a problem solving protocol that makes
use of different software acting at different scales (molecular
to organ) that can be potentially applied to predict the elicited
human immune response to pathogens. As a specific applica-
tion, we used this computational pipeline to evaluate the cross-
reactivity potentiality of pre-existing vaccine formulations that
can lead to an immune response specifically targeted against
SARS-CoV-2. One of the limitations of this approach is that it can-
not provide, at this stage, advices and/or suggestions on the best
vaccine formulation ready to be used at the production stage.
There are, however, different solutions that can be embedded to
the proposed pipeline to achieve this target.

Moreover, in the context of the ‘variants of concern’, the
proposed in silico pipeline can be applied to predict the poten-
tial cross-reactive immunity induced by existing vaccinations
against SARS-CoV-2 new emerging variants (e.g. B.1.1.7, B.1.351
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and other lineages). Together with the possibility to use this
problem solving protocol to estimate the degree of the induced
immune response by completely new developed vaccines, it can
indeed speed up the development of vaccines tailored to the
emerging antigenic variants.

Key Points
• A multi-step and multi-scale protocol based on a com-

bination of different programs could be effectively
used for accelerating and optimizing vaccine discov-
ery, especially in emergency scenarios.

• The protocol was applied, as a working example, to
predict potential cross-reactivity immunity to SARS-
CoV-2 and, potentially, its variants.

• Accurate prediction of cross-reactivity immunity anti-
gens provides important clues to consider alternative
protective vaccination strategies against COVID-19.

Supplementary Data

Supplementary data are available online at Briefings in Bioin-
formatics.
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