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ABSTRACT
Validation of biomarkers is essential to advance the translational process to 

clinical application. Although there exists an increasing number of reports on small 
non-coding RNAs (microRNAs) as minimally-invasive markers from blood, serum or 
plasma, just a limited number is verified in follow-up studies. We used qRT-PCR to 
evaluate a known miRNA signature measured from blood that allowed for separation 
between patients with non-small cell lung cancer (NSCLC), COPD and healthy controls. 

From the data of our previous microarray studies we selected a panel of 235 
miRNAs related to lung cancer and COPD. We observed a high concordance between 
the AUC values of our initial microarray screening and the qRT-PCR data (correlation 
of 0.704, p < 10–16). Overall, 90.3% of markers were successfully validated. 
Among the top markers that were concordant between both studies we found  
hsa-miR-20b-5p, hsa-miR-20a-5p, hsa-miR-17-5p, and hsa-miR-106a-5p. The 
qRT-PCR analysis also confirmed that non-small cell lung cancer patients could be 
accurately differentiated from unaffected controls: a subset of five markers was 
sufficient to separate NSCLC patients from unaffected controls with accuracy of 
94.5% (specificity and sensitivity of 98% and 91%). Beyond differentiation from 
controls, we also succeeded in separating NSCLC patients from patients with COPD. 
MiRNAs that were identified as relevant for the separation between lung cancer 
and COPD by both qRT-PCR and the array-based studies included hsa-miR-26a-5p,  
hsa-miR-328-3p and hsa-miR-1224-3p. Although for differentiation between NSCLC 
patients from COPD patients more markers were required, still high accuracy rates 
were obtained (5 markers: 78.8%; 10 markers: 83.9%; 50 markers: 87.6%).

INTRODUCTION

Lung cancer is the leading cause of cancer related 
death among males in both developed and less developed 
countries. Lung cancer is estimated to be diagnosed in 
224,210 new cases and to sum up to 159,260 deaths in 
the US [1]. The lack of validated screening procedures 
leads to an unfavorably late diagnosis of the malignant 
disease. As seen for a large number of different cancers, 
detection of lung cancer at an advanced stage results in 

poor prognosis. Since only 15.4% of lung cancer patients 
are being diagnosed with the disease still at a localized 
stage, the 5-year overall survival rate is only 16.8% 
according to the National Cancer Institute’s (NCI) SEER 
statistics (http://seer.cancer.gov/statfacts/html/lungb.html). 
There is an urgent need for reliable biomarkers to improve 
accuracy and time of diagnosis of lung cancer.

MicroRNAs (miRNAs) are small, non-coding 
RNAs, 17–27 nucleotides in length. They exert their 
regulatory functions on the expression of multiple 
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genes by initiating translational silencing or degradation 
of their cognate mRNA targets [2, 3]. Accumulating 
evidence indicates that miRNA expression patterns are  
tissue-specific and reflect the (patho-)physiological 
processes like tumorigenesis, metastasis or drug 
responsiveness of their cells and tissues of origin [4].  
Moreover, miRNAs cannot only be detected in (tumor) 
tissue but also in blood, serum, urine and other  
minimal-invasively accessible sources and have the 
advantage compared to known diagnostic approaches such 
as low-dose CT that patients are not exposed to radiation. 
These features make miRNAs promising biomarker 
candidates for diagnosing, predicting and monitoring 
diseases like cancer [4–8]. While serum biomarkers 
might be more suitable for prognosis [9], we and others 
showed that blood derived miRNA profiles are well suited 
for detecting diseases in general or also at early stages  
[7, 10, 11]. 

We have successfully established a robust 
assessment pipeline of disease specific miRNA signatures 
from whole blood samples. Blood borne miRNAs are 
thought to be valuable biomarkers in that they indicate 
changes of the immune system in response to a disease 
development. The miRNA assessment is based on 
optimized protocols including collection, handling, 
storage and shipment of miRNA samples. Using respective 
protocols, we identified accurate disease classifying 
miRNA signatures from whole blood for neurologic, 
cardiologic, inflammatory and oncologic diseases [12].

Here, we selected miRNAs towards a blood-borne 
differentiation between patients with non-small cell 
lung cancer (NSCLC), patients with chronic obstructive 
pulmonary diseases (COPD) and unaffected controls. 
The selection of the miRNAs was based on our previous 
miRNA microarray studies of patients with lung cancer 
and COPD [11, 13]. Using Fluidigm qRT-PCR we tested 
the diagnostic potential of miRNA signatures for lung 
cancer and COPD. 

The primary goal of the study was the validation of 
the microarray results in a larger and independent cohort 
using qRT-PCR as technology. Since the translation 
of research discoveries to clinical care is also a crucial 
point, we selected a study set-up that facilitates to answer 
important questions towards this translation. Beyond the 
validation, we secondly analyzed whether two commonly 
used miRNA extraction approaches have an influence 
on the qRT-PCR results. As third aspect we considered 
the challenge of selecting the best endogenous control 
in qRT-PCR experiments. All three factors are of high 
relevance to further the translation of miRNAs to clinics. 
The identified miRNA panel contributes towards a refined 
NSCLC miRNA biomarker signature alleviating the need 
for costly, complex invasive procedures.

RESULTS 

The primary goal of this study is the targeted 
analysis of a larger miRNA panel identified in our 
previous microarray studies to define a small panel of 
miRNAs suitable to separate patients with non-small cell 
lung cancer (NSCLC), patients with chronic obstructive 
pulmonary disease (COPD), and unaffected controls. 
Secondary and tertiary goals were to understand the 
influence of different miRNA extraction approaches and 
the usage of various endogenous controls.

Selection of miRNAs

Based on data of our previous studies, we started 
with 235 selected miRNAs (details on the 235 miRNAs 
are provided in Supplementary Table 2). Using the 
lung miRNA panel consisting of the 235 miRNAs 
we analyzed 120 individuals by Fluidigm qRT-PCR:  
74 NSCLC  patients, 26 patients with chronic obstructive 
pulmonary diseases (COPD) without lung cancer and  
20 physiologically unaffected controls. We used five 
different endogenous controls, including RNU6B, RNU24, 
RNU44, RNU48 and RPL21. The qRT-PCR of the  
120 blood samples was done in triplicate and the results 
were merged to median values. All measurement results 
where curated for linear dynamic range of threshold cycle 
(Ct) and qPCR curve quality performance as detailed in the 
Methods section. By applying stringent quality criteria we 
obtained a set of 128 mature miRNAs that are expressed 
in blood and can be reliably detected by qRT-PCR. These 
128 miRNAs were used for all further analyses.

Selection of RNA extraction approach 

In total we analyzed 120 blood samples. One aspect 
of the study was to understand the influence of different 
RNA isolation kits. We used the PAXgene Blood miRNA 
Kit for RNA isolation of 50 blood samples (10 controls and 
40 NSCLC samples) and the miRNeasy Mini Kit for RNA 
isolation of 70 blood samples (10 controls, 34 NSCLC 
cancer samples and 26 COPD samples). For both methods 
we determined the miRNA expression and compared the 
miRNA levels between NSCLC and controls. Focusing 
on the Ct values we computed a correlation of 0.75  
(p-value < 10−15) between both RNA extraction methods. 
Considering the AUC of the comparison NSCLC to 
controls we calculated an even higher correlation of 0.77 
(p-value < 10−15). Considering that we analyzed biological 
replicates the influence of the extraction approach on 
the miRNA profiles seems limited. For the comparison 
between qRT-PCR and microarray results we used only 
samples that were isolated by miRNeasy Mini Kit.
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Selection of endogenous controls 

To identify the most appropriate endogenous 
control, we tested five commonly used small RNAs 
including RNU6B, RNU24, RNU44, RNU48 and RPL21, 
the latter of which is a small protein coding RNA. 
Highest expressed was RNU48 (average Ct of 8, standard 
deviation of 1.4) followed by RNU44 (average Ct of 12, 
standard deviation of 2.1). We first considered the mean 
and standard deviation of each control and calculated 
the coefficient of variation (CV). Based on Ct values the 
endogenous control with lowest coefficient of variation 
was RNU6B (average Ct of 20.9, standard deviation of 2),  
followed by RNU24. Following transformation (2-Ct), 
RNU48 had the lowest CV again followed by RNU24. 
The program NormFinder [14] also selected RNU24 and 
RNU48 as the best endogenous controls.

Besides this consideration, we computed the AUC 
values of each of the 128 miRNAs for differentiating the 
lung cancer cases from controls based either on raw Ct 
values, or on each of the five different ∆Ct values that 
were obtained by using the different endogenous controls. 
Then we asked, which of the endogenous controls shows 
the highest concordance to the initial microarray data. To 
this end, we first matched the miRNA sequences of the 
initial study (miRBase v12 annotation and nomenclature) 
to the most recent miRNA identifiers used in the present 
study (miRBase v21). The bar diagram in Figure 1A 
presents the correlation between the raw Ct data and the 
microarray values, and the correlations between each of 
the five normalized ∆Ct values and the microarray values. 
Thereby, we observed an almost equally well matching 
between the AUCs of the normalized ∆Ct values and the 
microarray based AUC values as well as the Ct values 
and the initial microarray results. For RNU44, RNU48 
and RPL21, correlation exceeded 0.7 (p < 10−16). The 
main difference between the endogenous controls lies in 
their different relative abundance ranging from the lower 
via the intermediate to the upper end of the dynamic Ct 
range (RNU24, RNU48, RNU44, respectively) providing 
appropriate normalization for a wide range of different 
signature miRNA expression levels.

From the analyses in this section we conclude that 
RNU24 was the most constant control, however being low 
abundant. The highest correlation to the screening results 
was obtained for RPL21, which was also low expressed. A 
reasonable compromise between stability and concordance 
to microarray results was reached for RNU44 and RNU48. 
In the following we focused our analysis of RNU44, with 
respect to this endogenous control the scatter plot between 
screening and validation is presented in Figure 1B.

Detailed comparison between screening and 
validation

To further compare the results of the Fluidigm  
qRT-PCR validation and our initial microarray findings, 
we specifically considered the miRNAs that were 
significant in the initial microarray data set. In order to 
limit the bias between different miRNA sets we considered 
the unadjusted p-values. According to the previously 
described results we focused on the ∆Ct values with 
respect to RNU44 as endogenous control. Of the 128 
markers, 62 were significant in the screening study. For 56 
of those, we found a dys-regulation in the same manner in 
the validation results (90.3%). The 6 miRNAs that did not 
match the original observations were without exception 
up-regulated in lung-cancer, indicating a potential bias 
of the microarray or qRT-PCR experiments. Applying 
Fisher’s exact test provided evidence for the highly 
significant validation of the microarray experiments by 
qRT-PCR, the p-value was 4 × 10−11. The Top 10 markers 
that have been successfully validated are provided  
in Table 1.

Beyond the validation of NSCLC versus controls, 
we also aimed at a validation of markers that differentiate 
between COPD and NSCLC. Again, we focused on 
RNU44 as endogenous control and considered raw 
p-values in order to limit a potential bias by different 
miRNA set sizes. Of the 128 miRNAs that were expressed 
in the qRT-PCR experiments, 46 were significantly  
dys-regulated. Of these, 33 were accordingly less- or more 
abundant in the validation study as well. Although the 
concordance was not as excellent as for the comparison 
of unaffected controls versus NSCLC patients, still 71.7% 
of the markers were successfully validated. Interestingly, 
we observed similar patterns as in the first comparison. 
The majority of miRNAs that did not match were  
up-regulated in the NSCLC patients of the screening 
cohort. In detail, 13 of the 46 markers were non 
concordant. Of these, 12 have been up-regulated in the 
initial screening study in NSCLC patients as compared to 
COPD patients providing further evidence for a bias in the 
screening step. The significance value for the validation of 
the COPD versus NSCLC case was 0.0004 (Fisher’s exact 
test). As for the first comparison, the top 10 miRNAs are 
displayed in Table 2.

Comparison between NSCLC, COPD and 
healthy controls 

We finally used the 128 miRNA panel to compare 
NSCLC patients, COPD patients and healthy controls. A 
total of 45 miRNAs was significantly deregulated between 
NSCLC and healthy controls prior to adjustment for 
multiple testing, of which 31 remained significant after 
adjustment. 15 of them were higher abundant in controls 
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and 16 were higher abundant in NSCLC patients. For 
the comparison of NSCLC versus COPD patients, we 
observed 46 miRNAs to be significantly altered before 
and 31 miRNAs remaining after adjustment for multiple 
testing. 21 of them were higher abundant in COPD 
patients as compared to the NSCLC patients and 10 were 
higher in cancer patients. These four miRNA sets are 
presented in detail in the Venn diagram in Figure 2, which 
also allows for discovering the overlap between the sets. 
Largest overlap was computed for miRNAs that are less 
abundant in NSCLC patients as compared to controls and 
COPD patients (10 miRNAs). Another two miRNAs were 

up-regulated in NSCLC patients as compared to controls 
and COPD patients: hsa-miR-18a-3p and hsa-miR-328-3p. 
The ∆Ct values of miR-18a-3p are exemplarily presented 
as boxplot for each of the three cohorts in Figure 3A.  
Finally, one miRNA, namely hsa-miR-330-3p, was  
up-regulated in NSCLC patients compared to controls but 
down-regulated in NSCLC patients compared to COPD 
patients. The ∆Ct values of this miRNA for the three 
cohorts are provided as boxplot in Figure 3B.

We further carried out an analysis of variance 
(ANOVA) for a three-class comparison between NSCLC 
patients, COPD patients and healthy controls. In total, 

Figure 1: (A) Bar Diagrams showing the correlation of qRT-PCR profiles (AUC values) with microarray profiles from the initial discovery 
study. Different endogenous controls show only minor variability in performance. The first bar (all) represents the correlation obtained by 
including all ∆Ct values, the second bar (none) is calculated based on the raw Ct values. (B) Scatter plot of AUC values in the microarray 
discovery study versus the qRT-PCR validation study with respect to RNU44 as endogenous control.

Table 1: Validated markers NSCLC versus controls
t-test screening AUC screening t-test validation AUC validation

hsa-miR-20b-5p 1,05E-07 0,07  0,0042071 0,13
hsa-miR-17-5p 2,17E-06 0,09 0,00072063 0,13
hsa-miR-106a-5p 2,65E-06 0,11 0,00086824 0,13
hsa-miR-942-5p 4,04E-06 0,84 0,00011215 0,86
hsa-miR-20a-5p 2,01E-05 0,12  0,0034248 0,06
hsa-miR-29c-5p 3,67E-05 0,76  1,80E-06 0,92
hsa-miR-18a-3p 4,82E-05 0,78  0,001511 0,80
hsa-miR-378a-5p 5,37E-05 0,77  5,10E-05 0,85
hsa-miR-1180-3p 8,43E-05 0,77  0,046846 0,69
hsa-miR-126-3p 9,31E-05 0,17   0,00343 0,07
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70 of the 128 miRNAs included in the study showed a 
significant p-value prior to the adjustment, of which 
63 remained significant following multiple-testing  
adjustment. The top 10 most significant miRNAs were 
hsa-miR-199a-3p (p = 2 × 10−9), hsa-miR-26b-5p  
(p = 6 × 10−9), hsa-let-7a-5p (p = 2 × 10−7), hsa-miR-126-
3p (p = 3 × 10−7), hsa-let-7f-5p (p = 6 × 10−7), hsa-let-
7g-5p (p = 7 × 10−7), hsa-miR-720 (p = 2 × 10−6), hsa-
let-7d-5p (p = 4 × 10−6), hsa-let-7e-5p (p = 4 × 10−6) and  
hsa-miR-27a-3p (p = 5 × 10−6). These 10 markers contained  

5 members of the let-7 family. Without exception, all of 
these miRNAs showed the highest ∆Ct values in NSCLC 
patient samples, i.e., lowest expression in NSCLC.

Classification between NSCLC, COPD and 
healthy controls using miRNA subsets

To utilize the combined information content of the 
miRNAs obtained by qRT-PCR toward a multivariate 
diagnostic signature, we calculated support vector 

Figure 2: Venn diagrams for the four groups of up- and down-regulated miRNAs in the comparisons NSCLC versus 
controls and NSCLC versus COPD.

Table 2: Validated markers NSCLC versus COPD
t-test screening AUC screening t-test validation AUC validation

hsa-miR-26a-5p  2,17E-06 0,15  5,53E-05 0,15
hsa-miR-328-3p  8,03E-06 0,81 0,00094171 0,74
hsa-miR-1224-3p  3,87E-05 0,80  0,0035805 0,72
hsa-miR-383-5p  4,29E-05 0,18  0,0011001 0,16
hsa-miR-93-3p 0,00010244 0,77 0,0010172 0,75
hsa-miR-1229-3p 0,00078496 0,74  1,75E-05 0,84
hsa-miR-18a-3p  0,0014703 0,76  7,33E-05 0,78
hsa-miR-363-3p  0,0015578 0,22 0,0033026 0,22
hsa-miR-126-3p  0,0017084 0,26 0,00097053 0,14
hsa-miR-199a-3p  0,0039695 0,26   1,27E-05 0,09
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machines with radial basis function kernels. The 
classification procedure was carried out with subsets of 
miRNAs in 10 repeated 10-fold cross validations. We 
performed the calculations also with random class labels to 
detect potential overtraining. A subset of just five miRNAs 

was sufficient to reach accuracy of 94.5% (95% CI:  
92.5%–96.5%), specificity of 98% (95% CI: 95.7%–100%)  
and sensitivity of 91% (95% CI: 87.5%–94.5%)  
in separating NSCLC from control samples. The AUC 
was 0.978. In increasing the number of features we 

Figure 3: Box-Plots for ∆Ct values of miR-18a-3p and miR-330-3p. Results for controls are shown in green, for NCSLC in red 
and for COPD in blue. 
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also computed slightly higher performance rates. For  
10 markers the AUC increased to 0.988 at the same 
averaged accuracy and for 50 markers AUC increased 
to 0.993 at an accuracy of 98% (specificity 99.5% and 
sensitivity 96.5%). The classification accuracy, specificity 
and sensitivity for the 5- 10- and 50 marker set along 
with the results of the non-parametric permutation tests 
are presented in Figure 4. Below the respective plots the 
corresponding signatures are provided.

We also performed classification in COPD patients 
and NSCLC patients. In this case, the classification 
performance was substantially lower compared to the 
case of NSCLC patients versus unaffected controls. With 
5 markers, accuracy, specificity and sensitivity were 
78.8%, 75.1% and 82.5%. The AUC in this case was 
0.868. While we however just observed a slight increase 
of performance depending on the number of markers for 
the first comparison presented above, we here report a 
rapidly increasing accuracy for larger miRNA sets. The 
accuracy, specificity, sensitivity and AUC for increasing 
miRNA marker sets is presented in Figure 5. Using  
10 markers, the respective performance criteria increase to 
83.9% accuracy, 81.1% specificity, 86.7% sensitivity and 

AUC of 0.904. For 50 markers, even higher performance 
was reached: 87.6% accuracy, 88.3% specificity, 86.9% 
sensitivity and AUC of 0.907. Similar to the calculations 
for separating NSCLC from controls, the different marker 
sets with performance metrics for classification in NSCLC 
versus COPD are presented in Figure 6.

DISCUSSION

The diagnostic potential of circulating miRNAs is 
increasingly recognized. In 2008 Chen et al. were first to 
investigate circulating miRNAs in serum derived from 
lung cancer patients [15]. Subsequently several studies 
reported circulating miRNAs in serum or plasma of 
patients with lung cancer [16–18]. In the present study, 
we identified hsa-let-7a as one of the miRNAs that 
essentially contributes to a lung cancer miRNA signature.  
Differential expression of hsa-let-7a in venous blood from 
lung cancer patients as compared to tissue and cell lines 
was already previously reported [19].

In general, complex patterns of miRNAs provide 
more robust information on a disease status than single 
miRNAs. Previously we provided first evidence for 

Figure 4: Results of the classification of NSCLC patients vs. healthy individuals. Box plots in red show classifications in lung 
cancer and controls by signatures that use either 5, 10 or 50 miRNAs. The classification results by permutation, i.e., random class labels are 
shown in blue. Below the boxes the respective marker panels are provided.
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a blood-based signature that discriminated between 
tumor patients and healthy controls with an accuracy 
of 95.4% using microarray data [11, 20]. Subsequently, 
we showed that blood based miRNAs allow also to 
discriminate between lung cancer patients, COPD 
patients, and healthy controls. The comparisons showed 
that the separation between lung cancer patients and 
COPD patients is by far more challenging than the 
separation between lung cancer patients and controls. 
While 140 miRNAs were significant for the comparison 
COPD and controls, 61 miRNAs were significant for 
the comparison lung cancer and controls, and only 14 
miRNAs for the comparison between lung cancer and 
COPD. Nevertheless, we were able to show that blood 

miRNA signatures are suitable to distinguish lung cancer 
from COPD with 90.4% accuracy [11, 20].

MiRNAs can be reliably measured from different 
sources including solid tissues and body fluids  
(whole blood, serum, plasma, urine and others) the latter 
of which offer the possibility for a non-invasive or non-
invasive or minimally invasive analysis.  The analysis 
of body fluids, however, limits the option of a functional 
analysis of miRNAs. Circulating miRNAs in serum or 
plasma cannot be readily traced back to their cell of origin, 
which can but does not have to be the tumor cell. In this 
study we measured miRNA patterns from whole blood 
collected in PAXGene tubes. As shown in our previous 
studies the miRNA pattern collected in PAXGene tubes 

Figure 5: Increasing performance of classification NSCLC versus COPD for increasing subset sizes. Black solid line: 
accuracy; orange line: specificity; blue line: sensitivity; black dashed line: AUC. 
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largely derives from blood cells including B-, T-, and NK-
cells.  The measured miRNA pattern of PAXGene tubes 
likely represents the host response against the tumor and 
does not mirror the altered gene regulation in the tumor 
cell itself.

Despite the still increasing numbers of studies 
not only on circulating miRNAs but also on signatures 
of circulating miRNAs, there is still an extremely small 
number of miRNAs that are introduced into a clinical 
study. This is mainly attributed to the fact that few studies 
are focusing on confirming and optimizing previously 
reported signatures – a necessary prerequisite towards 
clinical application. In the present study, we evaluated 
the performance of blood based miRNA signatures by 
Fluidigm qRT-PCR. 

Translation into clinical practice, robust results and 
successful transfer of findings between different platforms 
all require appropriate internal and/or spike-in controls. 
This is especially true for qRT-PCR approaches on body 
fluid samples. 

Spike-in controls, which may be added prior to RNA 
extraction can support the control process further but may 

also add noise. In this and other studies, we normalized 
qRT-PCR expression by proven and widely used 
constitutively and ubiquitously expressed endogenous 
genes, often referred to as housekeeping genes. We 
identified and confirmed best performing endogenous 
normalizers for the detected microRNA expression levels 
from a group of cellular small RNAs with different 
expression levels and from different biological process 
contexts. Endogenous controls provide the advantage 
that they normalize for the complete process including 
extraction, reverse transcription and quantitative PCR 
plus normalization for potentially varying RNA inputs. 
Utilization of robust endogenous controls is one of the 
advantages of the PAXgene Whole Blood approach for 
translation to clinics.

In our abovementioned study we obtained an 
accuracy of 95.4% for the separation between patients 
with lung cancer and controls [11]. Excluding those 
markers that did not match quality criteria or were 
not expressed in qRT-PCR, we observed a very high 
concordance between both studies. 90.3% of the markers 
were concordant in both studies. Fisher’s exact test 

Figure 6: Results of the classification of NSCLC patients vs. COPD patients. Box plots in red show classifications in lung cancer 
and COPD by signatures that use either 5, 10 or 50 miRNAs. The classification results by permutation, i.e., random class labels are shown 
in blue. Below the boxes the respective marker panels are provided.
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indicated that the replication was highly significant 
with a p-value of 4 × 10−11. Among the top validated 
markers we found hsa-miR-20b-5p, hsa-miR-17-5p and  
hsa-miR-106a-5p. The classification performance using 
5 markers was already 94.5%. In our study, T1 tumor 
patients could be equally well detected as T2 tumor 
patients, indicating that our approach is also reasonable 
for early detection of tumors. 

As for the discrimination between NSCLC and 
COPD, the present Fluidigm qRT-PCR analysis yielded 
an AUC of 0.908, an accuracy of 87.6%, a specificity of 
88.3% and a sensitivity of 86.9%. Our former microarray 
based study identified among others hsa-miR-675, 
hsa-miR-93*, hsa-miR-513b, and hsa-miR-1224-3p as 
significant for the separation between lung cancer and 
COPD. The present analysis by Fluidigm qRT-PCR 
identified hsa-miR-93-3p and hsa-miR-1224-3p within 
a signature that separates COPD from NSCLC patients. 
In sum, we found a slightly lower, nonetheless still good 
concordance between microarray screening and qRT-
PCR validation for the comparison of NSCLC versus 
COPD. 33 of 46 markers were concordant. Among the 
most concordant markers we found hsa-miR-26a-5p,  
hsa-miR-328-3p, hsa-miR-1224-3p, hsa-miR-383-5p and 
hsa-miR-93-3p.

Among all miRNAs, the members of the let-7 
family play a very important role in the screening and 
validation study. Among the top 10 markers in an analysis 
of variance (ANOVA) we observed 5 members of this 
well-known miRNA family. Hsa-let-7d was previously 
found to be highly expressed in blood cells with the 
highest expression in neutrophils [21]. In a former study, 
we identified hsa-let-7d as down-regulated in eosinophilic, 
neutrophilic granulocytes and in monocytes of lung cancer 
patients [22].

A central question is on the origin of certain 
miRNAs that are dys-regulated in blood. We thus 
performed a statistical miRNA enrichment analysis and 
asked whether significantly dys-regulated miRNAs 
according to the ANOVA are enriched in specific 
functional categories. To this end, we applied our miRNA 
Enrichment and Annotation Tool miEAA (http://www.
ccb.uni-saarland.de/mieaa_tool/). According to this 
analysis, multiple markers are from the lung (miRWalk 
category lung, adjusted p-value 0.018, miRNAs hsa-let-
7a-5p; hsa-miR-126-3p; hsa-let-7f-5p; hsa-let-7g-5p; 
hsa-let-7d-5p; hsa-let-7e-5p; hsa-miR-26a-5p; hsa-miR-
21-5p; hsa-miR-20a-5p; hsa-miR-146b-5p). Likewise 
the lung neoplasms category was enriched (miRWalk 
category lung neoplasms, adjusted p-value 0.03, miRNAs  
hsa-let-7a-5p; hsa-miR-126-3p; hsa-let-7f-5p; hsa-let-
7g-5p; hsa-let-7e-5p; hsa-miR-21-5p; hsa-miR-20a-5p;  
hsa-miR-30c-5p; hsa-miR-29c-3p; hsa-miR-19a-3p).

MATERIALS AND METHODS

Study set-up

We collected 120 individual whole blood samples 
in PAXgene Blood RNA tubes. PAXgene Blood RNA 
Tubes contain a reagent that lyses blood cells and 
immediately stabilizes intracellular RNA to preserve the 
gene expression profile.

The patient cohort includes 74 NSCLC patients, 
26 patients with chronic obstructive pulmonary diseases 
(COPD) without lung cancer and 20 physiologically 
unaffected controls. While the unaffected individuals 
had a mean age of 50 years (+/−24 years) the lung cancer 
patients were on average 66 years (+/− 9 years) and the 
COPD patients 68 years (+/− 11 years). Information on the 
individuals is provided in Supplementary Table 1.

miRNA extraction

Total RNA using miRNA from PAXgene RNA 
blood collection tubes was extracted either with the 
miRNeasy Mini Kit (Qiagen) or the PAXgene Blood 
miRNA Kit (Qiagen). In Supplementary Table 1 the 
applied isolation Method is listed. For both extraction 
methods the PAXgene Blood RNA Tubes were first 
centrifuged to pellet the samples, which were then washed 
with RNase free water. For the miRNeasy Mini Kit, the 
pellet was resuspended in 700 µl Qiazol and subsequently 
further processed according to manufacturer’s instructions. 
For the PAXgene Blood miRNA Kit, the pellet was 
resuspended in 350 µl Buffer BM1 and subsequently 
further processed according to manufacturer’s instructions. 
Quantity and quality of the isolated RNA was assessed 
using NanoDrop-1000 (Thermo Fischer Scientific) and 
2100 Bioanalyzer (Agilent).

Selection of miRNAs for validation

In previous studies we reported blood-borne 
miRNA signatures for various diseases with a focus on 
cancer, including lung cancer [11–13]. In all of these 
studies, the blood was collected in PAXgene blood RNA 
collection tubes (Becton Dickinson, New Jersey, USA) 
and total RNA was isolated using the PAXgene Blood 
miRNA Kit (Qiagen) or the miRNeasy Mini Kit (Qiagen). 
Based on our abovementioned studies we defined a panel 
of 235 miRNAs. Among the key criteria of miRNAs in 
this panel was their differential abundance in unaffected 
control samples versus both non-small cell lung cancer 
(NSCLC) samples and chronic obstructive pulmonary 
disease (COPD) samples as well as for their discrimination 
between the two pathologies. Additional criteria were 
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absolute expression level, fold changes between group 
comparisons, and significance values. The complete list 
of these miRNAs including miRBase v21 nomenclature, 
miRBase Accession Number (MIMAT) and mature 
sequence is provided in Supplementary Table 2.

Fluidigm qRT-PCR dynamic array layout and 
measurements

We added to our 235 miRNA panel five commonly 
used endogenous controls (RNU6B, RNU24, RNU44, 
RNU48, RPL21) for normalization and an internal process 
control from C. elegans. Quantification of miRNA levels 
in the blinded PAXgene RNA samples was performed on 
the Fluidigm Biomark HD system using the 96.96 IFC 
controller and dynamic arrays (Fluidigm; USA). Each 
dynamic array carried the same number of representative 
samples from each of the blinded sample groups to avoid 
any potential batch effects. Each dynamic array also 
carried non-template controls (NTC) as well as a PAXgene 
Standard control sample (Comprehensive Biomarker 
Center GmbH, Heidelberg) to assess inter-plate variation 
and to allow for calibration if necessary in addition to 
normalization to endogenous controls. Furthermore, each 
plate carried all five endogenous control assays to allow for 
precise normalization. Each miRNA and each endogenous 
control was measured in triplicates. Reverse Transcription 
and qRT-PCR reaction were carried out according 
to the manufacturer´s instructions (Fluidigm, USA).  
In brief, RNA was reverse transcribed using pools of 
TaqMan RT primers and respective reagents (Thermo 
Fisher Scientific). Resulting cDNA was pre-amplified 
in Specific Target Amplification (STA). STA were 
prepared according to Fluidigm protocols. In brief, STA 
allows for a multiplexed preamplification of up to 100 
targets by using a 0.2X pool of gene expression assays 
(TaqMan® PreAmp Master Mix and TaqMan Gene 
ExpressionAssays, both from Applied Biosystems) 
as the source of primers. STA Amplification products 
were diluted, loaded onto the 96.96 Dynamic Array 
Chips for Gene Expression (Fluidigm, USA),  
each of which allows for the simultaneous microfluidic 
measurement of 96 sample wells with 96 assays, 
and subjected to qRT-PCR on the Biomark HD  
(Fluidigm, USA).

Biostatistical evaluation

For each miRNA and each sample the three 
individual measurements have been extracted. Values, 
which were out of the linear range of detection of 25 
Ct cycles or failed the internal Quality Score threshold 
of 0.65, were omitted from the analysis. The Quality 
Threshold in the BioMark™ Analysis software is a 

qualitative tool designed to measure the “quality” of each 
amplification curve. Basically, each amplification curve is 
compared to an ideal exponential curve and as the quality 
score approaches 1 the closer it is to ideal. The further 
the curve is from ideal, its quality score approaches 0. 
From all other replicates, the median has been calculated 
as final measurement. When none of the three replicates 
passed the above criteria, the miRNA for this patient was 
set to NA. All miRNAs with more than 10 NA values 
were omitted, for all other miRNAs, the global average 
measurement for this miRNA has been calculated and 
NAs have been replaced with the respective estimate. The 
respective results for each miRNA and patient represent 
the final Ct values that have been stored in a matrix. 

To identify the most appropriate endogenous control 
out of the five measured, we first considered the mean 
and standard deviation of each control and calculated the 
coefficient of variation. Additionally, we applied the program 
NormFinder to select the best endogenous control [14].

For basic biostatistical evaluation in the case of 
pair-wise group comparisons, t-tests have been performed. 
Since not all data were normally distributed, additional 
Wilcoxon Mann-Whitney p-values were calculated. All 
p-values were adjusted with respect to the false discovery 
rate by using Benjamini-Hochberg adjustment. Besides 
significance values the Area Under The Receiver Operating 
Characteristics Curve (AUC) value was computed. For 
the comparison of the three groups, analysis of variance 
has been performed. As further unsupervised statistical 
approaches, hierarchical clustering has been carried out 
as well as principal component analysis. For supervised 
analysis, radial basis function support vector machines 
were used. These have been evaluated by 10 independent 
repetitions of 10-fold cross validation. As subset selection 
technique a filter based on the significance of miRNAs has 
been applied in a stepwise-forward manner. 

CONCLUSIONS

MiRNA profiles from body fluids have frequently 
been proposed as novel powerful biomarker candidates. 
The successful translation of initial screening results into 
clinical practice requires reproduction on an independent 
platform and on an independent cohort. We here report 
miRNA signatures differentiating with high accuracy 
between lung cancer and unaffected controls and between 
COPD and lung cancer. These results are consistent with 
the results of our former microarray studies, and provide 
further evidence that blood based miRNA signatures 
are suitable for lung cancer diagnosis including the 
differentiation between NSCLC patients and COPD 
patients. 
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