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ABSTRACT: Despite the high sensitivity and selectivity, the high
operating temperature required for activation energy of tin oxide
(SnO2) still stands as a drawback for SnO2 based gas sensors. In
this work, the SnO2 thin films were deposited through spray
pyrolysis and were subjected to gas sensing at 27 °C (room
temperature) towards different gases. The films exhibited a
consistently low response of approximately 1 when tested to
various VOCs. The type, concentration, and mobility of charge
carriers were determined from the Hall measurements. The high
carrier concentration accompanied by poor mobility and grain
boundary scattering is supposed to hinder its performance at room
temperature. The obtained film had spherical morphology, which
lead to grain boundary scatterings and decreased the mobility of
carriers.

1. INTRODUCTION
The fast-growing industrialization and technological advance-
ments have led to increased emissions of toxic gases including
volatile organic compounds (VOCs) into the atmosphere. This
causes serious health issues.1 The electronic configuration and
feasible electrical and morphological properties of metal oxides
make them more suitable for gas sensor applications.2 A sensor
that uses the change in resistance as the means to detect the
presence and concentration of target gas is the chemi-resistive
gas sensor.3,4 Tin oxide (SnO2) is a functional material with
high conductivity and optical transparency.5 Hence, it finds a
lot of applications in various fields of science and engineering.
It is an n-type semiconductor with high melting point and a
tetragonal rutile structure.6 SnO2 exhibits excellent thermo-
electric properties and has been explored as a thermoelectric
material.7,8 SnO2 stands as a good candidate for transparent
conducting electrodes.9,10 It is used as a catalyst to control the
emission of CO and CH4 due to surface oxygen deficiency and
surface properties.6,11 SnO2 is a widely used sensing material
for the detection of VOCs.12,13 But they mostly operate at high
temperatures (100−550 °C).12,14−17 The operating temper-
ature is provided to supply the activation energy to SnO2. The
contemporary available sensors require a heating unit to give
the operating temperature to the sensing layer. This increases
the cost of fabrication, increases the size of sensor units, affects
the durability and stability of the sensor, requires purging, and
limits its outreach.18 Thus, room-temperature gas sensors are
anticipated recently for commercialization and real-time
applications. This article discusses the deposition of SnO2
thin films using the chemical spray pyrolysis method. The gas

sensing of the deposited films was carried out at 27 °C. The
incompatibility of synthesized SnO2 thin films being used as a
chemi-resistive gas sensor at 27 °C is further discussed with the
support of electrical and morphological studies.

The SnO2 thin film was synthesized using the chemical spray
pyrolysis method. This is a promising technique to generate
crystalline and uniform thin films even for large-scale
fabrication of devices. In the spray pyrolysis technique, the
precursor solution is sprayed onto the heated substrates, where
the solution undergoes a decomposition reaction and the
required compound is formed on the substrate as a thin film.19

The first step is the precursor solution preparation, where the
precursors are selected such that a clear stable solution is
obtained and the byproducts are volatile. The next is the
generation of aerosols, which was achieved by nebulizer spray,
followed by the transport of these aerosols to the substrate.20

In this step, the nozzle-to-substrate distance, spray angle, spray
time, spray interval, substrate temperature, etc., play a
significant role in the formation of different morphologies,
textures, and crystallinity of the thin film. At the final stage, the
aerosols decompose, nucleate, and coalesce together, leading to
the formation of a thin film.
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2. EXPERIMENTAL SECTION
2.1. Thin-Film Synthesis. The thin films of SnO2 were

deposited on glass substrates through the chemical spray
pyrolysis method using a home-made setup reported else-
where.21 The illustration of the spray pyrolysis setup is given in
Figure 1. The precursor used was tin(II) chloride (SnCl2·

2H2O) (Sigma-Aldrich). Forty milliliters of double-distilled
(DD) water was used as the solvent. Two milliliters of HCl was
added into the solution with constant stirring to prepare a
stable homogeneous solution. The prepared clear transparent
precursor solution was then sprayed onto the properly cleaned
soda lime glass with the nozzle-to-substrate distance of 30 cm,
nozzle diameter of 0.4 mm, spray time of 10 s, and spray
interval of 90 s using compressed air as the carrier gas. The
effect of substrate temperature and molarity of precursor
solution was studied by varying them from 250 to 300 °C and
0.025 to 0.2 M, respectively.
2.2. Characterizations. The thin films were subjected to

XRD (Bruker D8 Advance, Germany), UV−visible spectros-
copy (JASCO V-670 PC), AFM (NaioAFM 60-14-080), Hall
measurements, FE-SEM (Thermo Fisher FEI QUANTA 250
FEG), and EDX mapping (Oxford Instruments) studies. The
gas sensing studies were carried out using a home-made gas
sensing setup given elsewhere.1 Thin films with 1.5 cm length
and 1.5 cm breadth were taken as the sensing layer. Ohmic
contacts were made on the surface of the sensing layer using
zero resistance copper wire and highly conducting silver paste.
This was then connected to the Keithley electrometer 6517 B,
which was interfaced to a desktop. Initially, the setup was left
undisturbed to attain a steady baseline resistance. Then after,
target gas was injected into the chamber through the inlet and
the corresponding changes in resistance was measured. The
schematic diagram of the sensing setup is shown in Figure 2.
The sensor response was calculated22 as

S
R
R

a

g
=

(1)

where Ra and Rg are the resistance in the absence and presence
of target gas, respectively.23 Response time is the time taken by
the sensor to reach 90% of its final value in the presence of
target gas. Recovery time is the time taken by the sensor to
reach 10% of the initial value on the removal of target gas.24

The target gas concentration in the chamber was calculated
using the formula1,21,25−27
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where Vl is the volume of liquid gas, Cppm is the concentration
of gas, MW is the molecular weight of gas, Vc is the volume of
the chamber, Pc is the pressure inside the chamber, which is 1
atm, ρ is the density of gas, R is the ideal gas constant, and T is
the temperature of the chamber.

3. RESULTS AND DISCUSSION
The XRD patterns of SnO2 thin films at different molarities
with a substrate temperature of 300 °C are given in Figure 4a.
The dependence of substrate temperature for 0.1 M is studied,
and the corresponding XRD patterns are shown in Figure 4b.
The JCPDS card file number 01-077-0447 was used as the
reference file for all the films. From XRD, a rutile structure
with a tetragonal unit cell was confirmed for all films. The
crystallite size for the films was found using the Debye Scherrer
formula.28

D
0.9
cos

=
(3)

The lattice strain of the films was also found from XRD
using the formula29

cos
4

=
(4)

It is also clear that 0.025 M films were little amorphous
when compared to the other films. This is because, at lower

Figure 1. Schematic diagram of the spray pyrolysis setup.

Figure 2. Schematic diagram of the sensing setup.

Figure 3. Schematic diagram for processes involved in spray pyrolysis
under different temperature conditions.
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concentrations, the number of nucleation sites is less due to
lower amount of Sn. When the concentration of Sn increases,
the nucleation sites also increase; hence, more crystalline films
are achieved.30 The intensity of the peak corresponding to
(101) decreases on increasing the molarity from 0.025 to 0.1
M. Then, there is a rapid increase in the peak intensity as the
molarity is further increased to 0.15 and 0.2 M. It was observed
that, as the substrate temperature increases from 250 to 300
°C, the intensity of peak corresponding to (110) increases and
that corresponding to (101) decreases. The crystallinity of the
film also increased with an increase in substrate temperature.
This might be due to insufficient thermal energy to complete
the oxidation process of Sn at low temperatures. As the
temperature is increased, Sn oxidizes completely and more
crystalline films are achieved.31−33 Furthermore, there is
growth in the (200) direction as the substrate temperature
increases. The schematic diagram representing the processes
happening in the deposition of the thin film through spray
pyrolysis under different temperature conditions (low to high)
is given in Figure 3. For the further studies in this work, a 0.1
M sample deposited at 300 °C was used and termed as S1, as it
was more crystalline and had larger crystallite size. Moreover,
this sample had an orientation along (110). The (110) surface
of SnO2 is considered to be the stable face of naturally grown
SnO2.34,35 The average crystallite size, strain, and lattice
constants of the films are given in Table 1.

The gas sensing capabilities of the SnO2 thin films (S1) were
studied at 27 °C toward 100 ppm of ethanol, acetone,
isopropyl alcohol, acetaldehyde, formaldehyde, and butanol.
Unfortunately, for all gases, the sensor response was almost the
same (∼1), as given in Figure 5. The response and recovery of

each of these gases are given in Figure 7. The sensing
responses were repeated for five cycles to study the
repeatability of the results, and they are given in Figure 6a.
The average response values recorded were 1.09, 1.00, 1.42,
1.04, 1.19, and 1.03 for acetaldehyde, acetone, butanol,
ethanol, formaldehyde, and isopropyl alcohol, respectively.
The sensor response for different concentrations (50 to 300
ppm) of formaldehyde and butanol was also studied.

It was noted that the sensor response had a very little
increment when the concentration of target gases was
increased. The response with an increase in target gas is
demonstrated in Figure 6b. But still, the response of the sensor
was around ∼1. Despite the result that response and recovery
times for all gases were fast, the same response value

Figure 4. (a) XRD pattern of SnO2 thin films with different molarities deposited at 300 °C and (b) XRD pattern of SnO2 samples with 0.1 M at
different deposition temperatures.

Table 1. Inferences from XRD

sample 0.1 M, 300 °C (S1) 0.1 M, 275 °C 0.1 M, 250 °C 0.025 M, 300 °C 0.075 M, 300 °C 0.15 M, 300 °C 0.2 M, 300 °C

crystallite size (nm) 88.96 32 45.46 27.83 34.3 65.4 19.73
lattice strain (%) 0.25 0.61 0.29 0.49 0.35 0.21 0.62
a (Å) 4.73 4.70 4.74 4.73 4.72 4.75 4.75
C (Å) 2.85 3.15 3.12 3.16 3.19 3.19 3.19

Figure 5. Responsiveness of the S1 sample toward various gases
tested at 100 ppm at 27 °C.
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demonstrates that the constructed sensor is having cross-
selectivity issues. Thus, it cannot be used as a good sensor.
Nevertheless, there are several reports for SnO2 being used as a
good gas sensor. However, they all were operated at high
temperatures >100 °C.14−17 The baseline resistance of the
films was around 1 kΩ. This low resistance value indicates that
the studied films were mesoporous and non-stoichiometric.
This is because of the large amount of oxygen vacancies. The
stoichiometric SnO2 films are supposed to have resistance in
the order of 108 Ω.36

The UV absorption spectra of the S1 sample give the clear
picture of the intermediate sub-bands present in the forbidden
gap. The fundamental bandgap was found to be 3.2 eV. There
are two sub-bands present within the forbidden gap with band
edges at 1.41 and 2.37 eV. This indicates that there is a weaker
absorption of low-energy photons, which is primarily due to

excessive defect density in SnO2.37 The absorption spectra and
Tauc plot are given in Figure 8a,b. The individual Tauc plots
for each band edge are given in the Supporting Information,
Figure SI 1. Some theoretical studies are also reported for the
presence of low-energy bands in S1.38

The electrical characteristics of the film were confirmed from
the Hall effect measurements. The Hall coefficient of the film
was RH = −0.2428. The negative sign of RH substantiates that
the deposited S1 thin films are n-type.39 The resistivity of the
sample was ρ = 7.13 × 10−2 Ω cm. The sample had a high
carrier concentration of n = 2.571 × 1019 cm−3 but had a poor
mobility of μ = 3.405 cm2/V s. From the Hall data, the Fermi
energy (Ef) and mean-free path (l) of the sample were found to
be 0.115 eV and 2.049 Å, respectively, using the following
equations40

E h
m

n
8

3
f

2 2/3

= *
i
k
jjj y

{
zzz (5)

m* is the effective mass of electron = 0.275 me
40,41

l h
e

n
2

3 1/3

= i
k
jjj y

{
zzz (6)

It is obvious that SnO2 is degenerate as Ef ≫ kT at 27 °C.40

The FE-SEM images of the S1 sample were obtained to study
the morphology, and they are given in Figure 9a,b. The sample
S1 had pyramidal grains distributed uniformly over the film.
From the EDX analysis, it was made clear that no other
impurities were present in the sample. The grain boundaries of
the pyramids were distinct and clear in the FE-SEM image.
The FE-SEM images obtained at different magnifications (5
μm, 1 μm, 500 nm, and 400 nm) are given in the Supporting
Information, Figure SI 2. The EDX spectrum of the S1 sample
is given in Figure 10c. The color mapping of the S1 sample was
obtained from the EDX analysis, from which the even
distribution of Sn and O atoms over the film was confirmed.
The color mapping of the S1 sample is given in the Supporting
Information, Figure SI 3. The films had a rough texture. Using
AFM, the root-mean-square roughness calculated for the S1
sample was 24.799 nm, which confirms the rough texture. The
2D and 3D AFM images of the S1 sample are given in Figure
10a,b.

The large carrier concentration in the sample S1 indicates
the immense presence of electrons on the surface. This will
hinder the change in width of the depletion region, and hence,
there will be no reduction of resistance with the onset of gas.
The high carrier concentration will also cause electron transfer-
induced perturbations, which limit the response of the
sensor.42 Moreover, the μ and l are also lower. It is reported
that higher defect density can increase scatterings and suppress
the mobility. Also, small l can increase the phonon scatterings.7

As SnO2 thin films are polycrystalline, the grain boundaries act
as trapping centers of electrons within the grains. This leads to
inter- and intra-grain scattering and, consequently, low
mobility.43 Thus, high carrier concentration leads to trapping
of charge carriers within the lattice sites, which hinders the
carrier transport and deteriorates the electrical properties.44 In
addition, pyramidal and spherical morphologies have more
grain boundary scatterings when compared to other
morphologies like rods and belts. This also affected the sensor
response at 27 °C. These defects are evident in the UV
spectrum. At 27 °C, with the onset of target gas, the transitions
occur between the valence band and defect levels. But these

Figure 6. (a) Repeatability of the sensor response of S1 toward
various target gases at 100 ppm and (b) sensor response of S1 to
various concentrations of formaldehyde and butanol.

Figure 7. Sensor response of the S1 sample toward various gases at a
concentration of 100 ppm: (a) acetaldehyde, (b) acetone, (c) butanol,
(d) ethanol, (e) formaldehyde, and (f) formaldehyde.
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electrons soon bounce back to their initial states. Thus, the
electron reaching the conduction band is comparatively low.
Hence, the change in resistance is significantly low, leading to a
poor sensor response. In addition to this, the high potential
barrier of the pristine SnO2 bounds the number of electrons
that can pass through the electron depletion region. This
creates very few ionosorbed oxygen species on the surface.42

Thus, with the onset of target gases, the surface interaction will
be lower due to fewer number of oxygen ions, and so lower is
the electron release and hence the low response. At higher
operating temperatures, some of the defect levels will be
cleared.45 Electrons receive more energy and overcomes the
scattering, and thus participates in the conduction mechanism.
At high temperatures, grain boundaries reduce and enhance
the mobility.43 The potential barrier also gets reduced at high
temperatures. This causes a change in depletion layer width
and, correspondingly, the resistance. Thus, a good response
can be achieved.

4. CONCLUSIONS
In summary, SnO2 thin films were successfully deposited using
the spray pyrolysis method. The film was uniform, compact,

and rough. The sensor response of the film at 27 °C was poor
(∼1), irrespective of the gas. The low response is because of
the high carrier concentration and the presence of defect levels,
which give rise to scattering. The scattering at grain boundaries
reduces the mobility and mean-free path of the charge carriers

Figure 8. (a) Absorption spectra, (b) Tauc plot, and (c) schematic representation of the band structure of the SnO2 thin film deposited at 300 °C.

Figure 9. FE-SEM images of the SnO2 thin film deposited at 300 °C
under different magnifications: (a) 1 μm and (b) 500 nm.

Figure 10. (a) 2D AFM image, (b) 3D AFM image, and (c) EDS
spectra of the SnO2 thin film deposited at 300 °C.
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in the semiconductor. Thus, the electrical properties and
transport of carriers with the onset target gases are reduced.
This leads to a poor sensor response and cross-selectivity.
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