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Abstract

Background: Although it is becoming evident that individual's immune system has a decisive influence on SARS-
CoV-2 disease progression, pathogenesis is largely unknown. In this study, we aimed to profile the host transcriptome
of COVID-19 patients from nasopharyngeal samples along with virus genomic features isolated from respective host,
and a comparative analyses of differential host responses in various SARS-CoV-2 infection systems.

Results: Unique and rare missense mutations in 3C-like protease observed in all of our reported isolates. Functional
enrichment analyses exhibited that the host induced responses are mediated by innate immunity, interferon, and
cytokine stimulation. Surprisingly, induction of apoptosis, phagosome, antigen presentation, hypoxia response was
lacking within these patients. Upregulation of immune and cytokine signaling genes such as CCL4, TNFA, IL6, ILTA,
CCL2, CXCL2, IFN, and CCRT were observed in lungs. Lungs lacked the overexpression of ACE2 as suspected, however,
high ACE2 but low DPP4 expression was observed in nasopharyngeal cells. Interestingly, directly or indirectly, viral pro-
teins specially non-structural protein mediated overexpression of integrins such as [TGAV, [TGA6, ITGB7, ITGB3, ITGA2B,
ITGA5, ITGA6, ITGA9, ITGA4, ITGAE, and ITGAS8 in lungs compared to nasopharyngeal samples suggesting the possible
way of enhanced invasion. Furthermore, we found comparatively highly expressed transcription factors such as CBP,
CEBP, NFAT, ATF3, GATA6, HDAC2, TCF12 which have pivotal roles in lung injury.

Conclusions: Even though this study incorporates a limited number of cases, our data will provide valuable insights
in developing potential studies to elucidate the differential host responses on the viral pathogenesis in COVID-19, and
incorporation of further data will enrich the search of an effective therapeutics.
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Background

Since the declaration of COVID-19 pandemic on 11
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at an alarming rate, as of the writing of this manuscript
[1]. Though the initial fatality was as low as 3.5%, cur-
rently this value lies around ~6.66% [1] and it might be
increased because of the withdrawal of earlier preventing
measures taken throughout the world. Coronaviruses are
not new to human civilization, as these viruses caused
several earlier outbreaks during the past two decades.
However, none of the earlier outbreaks spread as widely
as the current ongoing pandemic. As the pandemic pro-
gresses, more researches on the molecular pathobiology
of the COVID-19 are being rapidly carried out to search
for effective therapeutic intervention.

Coronaviruses possess single-stranded RNA (posi-
tive sense) genomes lengthening approximately 30 Kb
[2]. Amongst the coronaviruses, SARS-CoV-2 is a mem-
ber of the betacoronaviruses having a~29.9 Kb genome
which contains 11 functional genes [3]. Though SARS-
CoV-2 shows similar clinical characteristics as Severe
Acute Respiratory Syndrome Coronavirus (SARS-CoV)
and Middle East Respiratory Syndrome-related Corona-
virus (MERS-CoV) viruses, it has only~79% and ~50%
genome sequence similarities with these viruses, respec-
tively; whereas, the genome sequence of SARS-CoV-2
is~90% identical to that of bat derived SARS-like coro-
navirus [4]. Moreover, several key genomic variances
between SARS-CoV-2 and SARS-CoV such as- 380 dif-
ferent amino acid substitutions, ORF8a deletion, ORF8b
elongation, and ORF3b truncation were also reported [2].

The clinical characteristics of the COVID-19 range
from mild fever to severe lung injury [5]. Some of the
commonly observed mild COVID-19 symptoms are
fever, cough, and fatigue; however, complications such
as- myalgia, shortness of breath, headache, diarrhea, and
sore throat were also reported [6]. Furthermore, severely
affected patients had exhibited respiratory complications
like moderate to severe pneumonia, acute respiratory dis-
tress syndrome (ARDS), sepsis, acute lung injury (ALI),
and multiple organ dysfunction (MOD) [7]. Primarily, the
lungs of the COVID-19 patients are affected [8]; however,
failures of other functional systems, namely cardiovascu-
lar system, and nervous system were also reported [9, 10].

Several features of the SARS-CoV-2 infection made
it more complicated for effective clinical management.
From the earlier studies, the incubation period of SARS-
CoV-2 was reported to be around 4-5 days, however,
some recent studies suggested a prolonged incubation
period of 8-27 days [11]. Additionally, several cases of
viral latency within the host [12], and the recurrent pres-
ence of SARS-CoV-2 in clinically recovered patients were
also recorded [13, 14]. However, the detailed molecular
mechanism behind these phenomena is still elusive.
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In COVID-19, an increased level of infection-associ-
ated pro-inflammatory cytokines were recorded [15],
which thereby supports the term “Cytokine storm’, that
was frequently used to describe the SARS-CoV and
MERS-CoV disease pathobiology [16]. This phenomenon
causes the hyperactivation and recruitment of the inflam-
matory cells within the lungs and results in the acute lung
injury of the infected patients [17]. However, this illus-
trates one putative molecular mechanism of COVID-
19, there are many other immune regulators and host
genetic/epigenetic factors which can also play significant
contribution towards the disease manifestation [18, 19].
This multifaceted regulation was also reported previously
for other different coronavirus infections [20]. Host—
pathogen interactions in different coronavirus infections
can function as a double-edged sword, as these could be
beneficial not only to the hosts but also the viruses [20].
Similar host-virus tug-of-war can also occur in COVID-
19 which might be contributing towards the overcompli-
cated disease outcomes [21].

Collectively, more than 1.7 million (almost 9% of the
total infections around the globe) people have been diag-
nosed with COVID-19 in the South-Asian region and
the number is still increasing devastatingly [1]. Recently,
it has been speculated that South-Asian people might
be possessing a genomic region acting as the risk factor
for COVID-19 [22]. Moreover, another study suggested
some genomic variations in several Indian SARS-CoV-2
isolates that might be involved in the COVID-19 patho-
genesis in Indian patients [23]. However, any data sug-
gesting the COVID-19 patients’ transcriptomic responses
from this part of the globe are yet to be reported.

SARS-CoV-2 follows a highly variable course and it is
becoming more evident that individual’s immune system
has a decisive influence on the progression of the disease
[24]. However, the detailed underlying molecular mecha-
nisms of the SARS-CoV-2 mediate disease pathogenesis
are largely unknown. Even previously conducted stud-
ies using patient samples, animal models, and cell lines
to explain the pathobiology of COVID-19 [24-26] lack a
detailed comparison of the host transcriptional responses
between different infection models as well as the differ-
ent sites of the respiratory system that might provide
valuable insights on the COVID-19 pathogenesis and dis-
ease severity. In this present study, we sought to discuss
the host transcriptional responses observed in naspphar-
yangeal cells of COVID-19 patients. This trscriptional
profile report is first such kind from South Asian
region. Additionally, we reported the genome variations
observed in the four SARS-CoV-2 isolates obtained from
these patients. Finally, we illuminated the differences in
host transcriptional responses in different COVID-19
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infection models and further pursued to discover the
putative effects of these altered responses (Fig. 1).

Results

Our sequenced SARS-CoV-2 isolates showed a divergent
variation pattern compared to the other worldwide
isolates

We sought to find out the genome variations within the
four SARS-CoV-2 isolates that we sequenced, and pur-
sued the deviation of these genomes compared to the
other isolates from this country. To accomplish these
goals, we first identified and annotated the genome
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variations observed within our sequenced isolates. Then
we produced informative statistics from these observed
variations and compared the prevalence of those with the
other isolates of Bangladesh and the rest of the world.

We mapped the RNA-seq reads of each of the sam-
ples and checked their distribution athwart the entire
reference genome of SARS-CoV-2 (Fig. 2a). High cover-
ages and read evidence were observed for all the isolates
across the whole genome of the SARS-CoV-2 (Fig. 2a).
This suggests that the sequenced genomes of these iso-
lates are of high coverage and no such region is observed
without the mapped reads.
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(See figure on next page.)

Fig. 2 Genomic information of the sequenced SARS-CoV-2 isolates. a Genome coverage normalized density map for the four sequenced
SARS-CoV-2 isolates. b Pie-chart illustrating the different types of variations found within these four isolates. ¢ Genome location-wise representation
of the mutations and their associated frequency. d Isolate-wise variation information. e Gene-wise amount and type of mutations. f Annotated
impacts of the different mutations (only those are shown which have frequencies more than 1). g Frequencies of selected unique mutations

observed in these isolates

We detected sixty different types of variations within
these four analyzed SARS-CoV-2 isolates (Table 1). All
the four different types of sequence variations were spot-
ted in these isolates, however, single nucleotide poly-
morphisms (SNPs) were the most prominent (Fig. 2b).
Among these variations, twelve variations were found in
more than one isolate, whereas rest forty-eight variation
occurred in only one isolate (Table 1, Fig. 2c). Among the
isolates, isolate S3 contained the lowest number of varia-
tions, whereas isolate S4 has the highest number of vari-
ations (Fig. 2d). Many concepts are there correlating the
probable roles of variations with the COVID-19 disease
severity [27, 28]. We did not observe any such variations
within the spike region of our reported isolates; however,
we recorded an unusual amount of 3’-UTR and 5-UTR
variations within these four isolates (Fig. 2¢, d). Sur-
prisingly, out of all these variations, we found only one
downstream gene variation on the 3’-UTRs of all the four
isolates; this variation can potentially impact the regula-
tion of the ORF10 gene (Fig. 2d). Most of the nucleic acid
mutations were located on the 3’-UTR of the isolates,
whereas the ORFlab gene contained most of the amino
acid mutations (Fig. 2e).

No highly severe mutation was identified amongst
these variations, but we found nine moderately impact-
ing, seven low impacting, and forty-seven modifier varia-
tions within these isolates (Fig. 2f, Additional file 1). As of
8th July, thirty-eight out of the sixty variations within our
sequenced isolates were completely absent in all other
SARS-CoV-2 isolates (Table 1). Strikingly, we observed
that variation 10,329: A>G is present within three of
our sequenced isolates, only one other Bangladeshi and
one other USA isolate contain this variation (Fig. 2g).
This variation is located within the 3C-like protease of
SARS-CoV-2. Previously, the potential implication of the
mutations of this protein was reported to alter its over-
all structure and functionality [29-31] in SARS-CoV. The
only one deceased patient did not have this mutation in
our samples. Also, few of our reported variations like
25,505: A>T and 29,392: G>T are not highly prevalent
globally (Fig. 2g).

Exploring the Nextstrain portal [32], we noticed that
our analyzed SARS-CoV-2 sequences are closely placed
to the Saudi-Arabian isolates (Additional file 2: Figure
S1A); although, most of the other isolates of this coun-
try were placed in the major European clusters (data

not shown). Furthermore, these isolates analyzed in this
study are distinctly placed in our constructed Neighbor-
Joining phylogenetic tree (Additional file 2: Figure S1B),
this also supports the differences between these isolates
and other SARS-CoV-2 isolates of this country which
might have been originated from the European nations.
As a large number of people from Bangladesh recently
immigrated to Middle-East (particularly Saudi Arabia)
for work [33]; those immigrant people returning from the
Middle-East during this pandemic might have brought
these isolates into Bangladesh.

Stimulated antiviral immune responses are detected

in the nasopharyngeal samples of COVID-19 patients

Our analyzed patients exhibited the commonly observed
sign and symptoms of COVID-19 such as mild fever, sore
throat, coughing, bodyache, fatigue, and dysosmia (Addi-
tional file 3). Patients were hospitalized but no intensive
clinical interventions such as ICU support or ventilation
support were needed. Male to female ratio of the patients
were 1:1. The median age of the patients were ~ 45 years,
only one patient was around 85 years old. This oldest
patient had some additional clinical features such as pre-
existing asthma and diarrhea. All the patients recovered
within one month of the initial diagnosis except patient
S9, who died after COVID-19 infection.

Though initial researches suggested the potential
implication of viral variations on the COVID-19 disease
severity, one recent study indicated otherwise; Several
host factors such as abnormal immune responses, and
cytokine signaling might be influencing the overall dis-
ease outcomes more prominently compared to the viral
mutations [34]. Moreover, several data surmised that eth-
nicity might be a pivotal risk factor of being susceptible
to COVID-19 [35].

In this context, we explored the transcriptome data
obtained from the nasopharyngeal samples from
COVID-19 patients to find out how these patients were
responding against the invading SARS-CoV-2. We com-
pared the RNA-seq data of these patients with some
random normal individuals’ nasopharyngeal RNA-seq
data to find out the differentially expressed genes within
our analyzed samples. We observed a roughly constant
standard deviation for the normalized reads suggesting
a lesser amount of variation occurred during the nor-
malization (Fig. 3a). Furthermore, we performed sample
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Table 1 Observed variations within the four SARS-CoV-2 isolates reported in this study
Genomic position:  Variation Type Associated Protein: Frequency Frequency Frequency
Variation genomic amino acid in the four isolates  in the other in the isolates
region change used in this study Bangladeshi from rest of the world
isolates
1: ATTAAAGGTTTA>-  Intergenic variant 5'UTR - 1 - -
1: ATTAAAGGTTTA Intergenic variant 5'UTR - 1 - -
TA>-
2:T>TA Intergenic variant 5'UTR - 1
2:T>TTTCAAAGATCA  Intergenic variant 5'UTR - 1 0
AGTCA
4: A>T Intergenic variant 5'UTR - 1 0 58
7:G>C Intergenic variant 5'UTR - 1 0 16
9: T>TTTTCGC Intergenic variant 5'UTR - 1 0 0
12: A>T Intergenic variant 5'UTR - 1 0 22
13:T>C Intergenic variant 5'UTR - 1 0 36
280: C>T Synonymous variant  orflab 5V 1 0 5
601: C>T Synonymous variant  orflab 112G 1 1 6
8782:C>T Synonymous variant  orflab 2839S 4 1 3012
10,323: A>G Missense variant orflab 3353 K>R 1 5 154
10,329: A>G Missense variant orflab 3355D>G 3 1 1
10,870: G>T Synonymous variant  orflab 35350 1 0 27
12,119:C>T Missense variant orflab 3952P>S 1 0 8
15324:C>T Synonymous variant  orflab 5020 N 3 5 818
19,414: G>A Missense variant orflab 6384 V>| 1 0 0
22,468: G>T Synonymous variant S 302T 4 1 99
23,320: C>T Synonymous variant S 586D 1 0 2
25,505: A>T Missense variant ORF3a 38Q>L 1 0 2
28,087:C>T Missense variant ORF8 65A>V 1 0 23
28,144:T>C Missense variant ORF8 84L>S 4 1 3050
28,878: G>A Missense variant N 2025>N 4 1 253
29,392: G>T Missense variant N 373 K>N 2 2 6
29,742: G>A Downstream gene 3'UTR - 4 1 21
variant
29,856: T>A Intergenic variant 3'UTR - 1 6
29,858: T>A Intergenic variant 3'UTR - 1 5
29,864: GAATGACAA  Intergenic variant 3'UTR - 1 0
AAAAAAAAAAAA
AAAAAAA>G
29,864: GAATGACAA  Intergenic variant 3'UTR - 1 0 0
AAAAAAAAAAAA
AAAAAAAAAST
29,870: CAAAAAAAA  Intergenic variant 3'UTR - 1 1 -
AAAAAAAAAAAA
AAAAAAA>C
29,870: C>G Intergenic variant 3'UTR - 1 0 3
29,872: A>T Intergenic variant 3'UTR - 1 0 12
29,873: A>C Intergenic variant 3'UTR - 1 0 3
29,874: A>G Intergenic variant 3'UTR - 1 0 12
29,875: A>G Intergenic variant 3'UTR - 1 1 5
29,878: A>T Intergenic variant 3'UTR - 1 0 3
29,880: A>G Intergenic variant 3'UTR - 1 2 5
29,882: A>G Intergenic variant 3'UTR - 1 0 13
29,883: A>T Intergenic variant 3'UTR - 1 0 8
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Table 1 (continued)

Genomic position:  Variation Type Associated Protein: Frequency Frequency Frequency

Variation genomic amino acid in the four isolates  in the other in the isolates
region change used in this study Bangladeshi from rest of the world

isolates

29,884: A>C Intergenic variant 3'UTR - 1 0 10

29,885: A>G Intergenic variant 3'UTR - 1 1 11

29,886: A>T Intergenic variant 3'UTR - 1 1 5

29,887: A>G Intergenic variant 3'UTR - 1 0 1M

29,888: A>T Intergenic variant 3'UTR - 1 1 4

29,890: A>G Intergenic variant 3'UTR - 1 1 6

29,891: A>G Intergenic variant 3'UTR - 1 0 15

29,892: A>G Intergenic variant 3'UTR - 1 0 13

29,893: A>G Intergenic variant 3'UTR - 1 0 15

29,895: A>T Intergenic variant 3'UTR - 2 0 6

29,896: A>G Intergenic variant 3'UTR - 1 0 7

29,896: A>C Intergenic variant 3'UTR - 1 0 3

29,897: A>G Intergenic variant 3'UTR - 2 0 4

29,898: A>G Intergenic variant 3'UTR - 2 0 6

29,898: A>T Intergenic variant 3'UTR - 1 0 5

29,900: A>G Intergenic variant 3'UTR - 1 0 10

29,901: AAA>A Intergenic variant 3'UTR - 1 0 -

29,901: A>G Intergenic variant 3'UTR - 2 0 5

29,903: A>GCCGTCGT  Intergenic variant 3'UTR - 1 0 -

29,903: A>GCGTCG Intergenic variant 3'UTR - 1 0 -

TGT

(See figure on next page.)

Fig. 3 Differential gene expression analysis of the studied nasophryngeal samples of COVID-19 patients. a Variance plot. This plots the standard

deviation of the transformed data, across samples, against the mean, using the variance stabilizing transformation. The vertical axis in the plots is the
square root of the variance over all samples. b Sample to sample distance plot. A heatmap of distance matrix providing an overview of similarities
and dissimilarities between samples. Clustering is based on the distances between the rows/columns of the distance matrix. ¢ Principal component
analysis plot. Samples are in the 2D plane spanned by their first two principal components. d Clustered heatmap of the log, converted normalized
count matrix RNA-seq reads, top 50 genes, of nasopharyngeal samples. e Normalized Log, read counts of the genes encoding SARS-CoV-2 receptor
and entry associated proteins. Enrichment analysis and comparison between deregulated genes and the genes of some selected processes in
SARS-CoV-2 infected nasopharyngeal samples and SARS-CoV-2 infected lung biopsy samples using f GOBP module, g KEGG pathway, h Bioplanet
pathway module. Selected significant terms are represented in heatmaps. Significance of enrichment in terms of the adjusted p-value (< 0.05) is
represented in color-coded P-value scale for all heatmaps; Color towards red indicates higher significance and color towards yellow indicates less
significance, while grey means non-significant. Normalized Log, converted read counts are considered as the expression values of the genes and

represented in a color-coded scale; Color towards red indicating higher expression, while color towards green indicating little to no expression.
Here, Up, down and DE denote Upregulated, Downregulated and Differentially expressed, respectively

clustering to assess the quality of our generated normal-
ized RNA-seq data. No anomalies were observed in the
sample to sample distance matrix (Fig. 3b) and principal
component analysis (PCA) (Fig. 3c) while comparing our
samples with the used healthy individuals’ data. Moreo-
ver, the larger differences observed in the PCA plot
(Fig. 3¢c) and clustered heatmap of the count matrix with
the top 50 significant genes (Fig. 3d) suggest a significant
transcriptomic response difference between our infected

patients’ data and the normal individuals’ data. Likewise,
the sample to sample distance plot suggested the similari-
ties of samples of similar nature; the infected and healthy
samples were clustered into two distinct groups (Fig. 3b).

Sungnak et al. described the significance of several
viral entry associated host proteins in SARS-CoV-2
pathogenesis, namely ACE2, TMPRSS2, BSG, CTSL,
DPP4 [36]. We also investigated the expression of the
associated transcripts of these proteins within our
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Fig. 4 Comparison of the gene expression patterns in different SARS-CoV-2 infection models. a Venn-diagram showing the observed deregulated
genes (with their respective control) in the different cell types. Enrichment analysis and comparison between deregulated genes in different
SARS-CoV-2 infection models using b GOBP module, ¢ Bioplanet pathway module, d KEGG pathway module. Selected significant terms are

represented in heatmaps. Color scale/schemes are similar to Fig. 3

patients’ samples. We spotted that both the healthy and
infected samples have expressed these genes except the
DPP4 gene (Fig. 3e).

Genes that are deregulated due to SARS-CoV-2 ini-
tial infection site at nasopharyngeal region are not
elucidated much so far. Here, we identified 1,614 dif-
ferentially expressed genes within our reported four
SARS-CoV-2 infected nasopharyngeal samples; among
these differentially expressed genes, 558 genes were
upregulated, and 1056 genes were downregulated
(Additional file 4). Then we sought to discover the bio-
logical functions/pathways these deregulated genes
might be involved in. To achieve this, we performed
functional enrichment analyses with the observed
deregulated genes using different ontology and pathway
modules.

Several GOBP terms related to antiviral immune
responses such as viral process, defense response to
virus, innate immune response, inflammatory response,
negative regulation of viral transcription, and negative
regulation of viral genome replication were observed
enriched for the upregulated genes (Fig. 3f, Additional
file 5: Figure S2). Surprisingly, several other important
antiviral defense related functions such as- apoptosis,
and antigen processing and presentation were found
enriched for downregulated genes (Fig. 3f).

Similarly, this pattern was also observed for the func-
tional enrichment using KEGG and Bioplanet pathways
modules. Upregulated genes are observed involved
in signaling pathways such as innate immune system,
antiviral mechanism by interferon-stimulated genes,
interleukin-2 signaling, interferon-gamma signaling,
interferon alpha—beta signaling, antiviral mechanism
by interferon stimulated genes, IL-17 signaling path-
way, Toll-like receptor signaling pathway, RIG-I like
receptor signaling pathway, and MAPK signaling path-
way (Fig. 3g, h, Additional file 5: Figure S2). Strikingly,
several important antiviral signaling pathways such as
antigen processing and presentation, apoptosis, HIF-1
signaling pathway, Natural killer cell mediated cytotox-
icity, phagosome, PI3K-Akt signaling pathway, Inter-
leukin-6 regulation of target genes, and Interleukin-10
inflammatory signaling pathway were enriched for the
downregulated genes (Fig. 3g, h). This unusual observa-
tion made us curious to search for a similar pattern of

deregulated host responses in several other COVID-19
disease models.

Host responses observed in nasopharyngeal samples are
significantly different compared to the other SARS-CoV-2
infections models

We sought to compare the host responses of our analyzed
samples with several other different SARS-CoV-2 infection
models (two different experiments containing lung biopsy
samples from COVID-19 patients and two different SARS-
CoV-2 infected cell lines). We performed functional enrich-
ment analyses using differentially expressed genes from
four other SARS-CoV-2 infection systems, and compared
the enriched terms of our samples with these four other
samples. Moreover, how the host responds differently in
different tissue types were also evaluated. To achieve these
goals, we identified the differentially expressed genes across
these different samples and systematically compared the
enrichment results of those deregulated genes.

Using the similar parameterization of the differential
gene expression analyses, we identified 6714 genes in lung
cells (GSE147507), 232 genes in lung cells (GSE150316),
143 genes in NHBE cells (GSE147507), and 5637 genes in
Calu-3 cells (GSE148729) as differentially expressed com-
pared to their respective healthy controls (Additional file 6).
Significant proportions of the deregulated genes detected
in our nasopharyngeal samples are also found deregulated
in lung (GSE147507) and Calu-3 cells (GSE148729) sam-
ples (Fig. 4a), while a small number of our samples’ deregu-
lated genes were also observed deregulated in rest of the
two samples used (Fig. 4a).

Enrichment analysis using these deregulated genes sug-
gested the host response differences among the differ-
ent infection systems used (Fig. 4b—d). Upon the analysis,
only a few GOBP terms were found enriched for both our
samples, lung (GSE147507), and Calu-3 cells (GSE148729)
samples, such as viral process, immune response, innate
immune response, defense response to virus, and inter-
feron signaling (Fig. 4b). However, genes in many impor-
tant antiviral immune response related functions were
not significantly enriched in nasopharyngeal samples but
were enriched for the lung (GSE147507), and Calu-3 cells
(GSE148729) samples; these processes are autophagy,
apoptotic signaling pathway, interleukin-6 mediated sign-
aling pathway, interleukin-12 mediated signaling pathway,
cytokine-mediated signaling pathway, and inflammatory
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Fig. 5 Gene expression analysis using different SARS-CoV-2 infection models. a Variance plot, b Sample to sample distance plot, ¢ Principal
component analysis plot, d Clustered heatmap of the count matrix of the normalized RNA-seq reads of different SARS-CoV-2 infection samples
using to 50 genes. e Gene expression heatmap showing global gene expression profiles in the individual infected samples of the various infection
system. Heatmap is clustered based on Pearson’s distance with genes that vary across the sample, leaving out genes that do not vary significantly

response (Fig. 4b). Moreover, processes such as response
to hypoxia, response to vitamin-D, and lung development
were also not enriched for the deregulated genes in nasal
samples (Fig. 4b).

We noticed several commonly enriched important
immune signaling pathways for most of the samples used
for the comparison (Fig. 4c, d), such as adaptive immune
system, innate immune system, interferon signaling,
apoptosis, Toll-like receptor signaling pathway regula-
tion, antigen processing and presentation, integrin sign-
aling pathway, RIG-I like receptor signaling pathway,
and phagosomes (Fig. 4c, d, Additional file 7: Figure S3);
however, pathways such as JAK-STAT signaling pathway,
Natural killer cell mediated cytotoxicity, NF-«kB signaling
pathway, asthma, PI3K-Akt pathway, cellular response
to hypoxia, inflammasomes, and inflammatory response
pathway (Fig. 4c, d, Additional file 7: Figure S3) were not
enriched for the deregulated genes of our nasopharyn-
geal samples. These results suggest that host responses
observed in nasopharyngeal samples have a different
host response compared to the other infection systems.
However, the diffenences observed in the infected cell
lines’ transcriptomes might be the resultant effects of the
inherent variability of these cells compared to the nasal
epithelial cells or the lung cells. Therefore, to unveil the
mystery behind this observation, we further analyzed
these data to compare the COVID-19 patients’ nasal
and lung gene expression patterns for different specific
functionalities.

Significant gene expression differences were spotted
between the nasopharyngeal samples and lung biopsy
samples

We compared the normalized read counts of each
infected nasal and lung samples without integrating
the respective controls to shed insights on the differ-
ences in gene expression patterns between the individual
samples and tissues. A constant standard deviation was
observed for the normalized read counts of the infected
samples (Fig. 5a) indicating the acceptability of the nor-
malized reads for analysis. From the sample to sam-
ple distance clustering, principal component analysis,
and clustered heatmap of the count matrix with top 50
genes, we observed that gene expression profiles of our
nasopharyngeal samples are more relevant to that of lung
samples; whereas, high level of variance was observed

between the gene expression counts of the cell lines and
primary nasopharyngeal samples (Fig. 5b—d). PCA analy-
sis (Fig. 5¢) also suggests that cell line data are quite dif-
ferent than primary samples data. Furthermore, we had
a similar observation from the clustered normalized read
counts of the samples based on Pearson’s correlation dis-
tance with all genes that vary across samples (Fig. 5e).
We then narrowed down our searches to the sample level
gene expression profiles of several COVID-19 related
important biological functions within these samples
(Fig. 6), to understand the gene expression similarities
and dissimilarities among these infections systems, spe-
cially comparing nasal and lung tissues.

Genes related to integrins and integrin signaling

pathway are highly expressed in lung samples compared
to the nasopharyngeal samples

Though some previous reports [37, 38] suggested an
important aspect of integrins in SARS-CoV-2 patho-
genesis, precise information on which particular inte-
grins are deregulated and how virus interactions might
modulate them remained unclear. Therefore, we sought
to find out the expression profiles of integrin related
genes in different COVID-19 infection models at sam-
ple level. RGD motif of the spike protein of SARS-CoV-2
can bind the integrins and this motif is placed near to
the ACE2-receptor binding motif [37]. Moreover, evi-
dence of integrin domain binding was also reported for
SARS-CoV [39]. Therefore, we sought to discover the
expression profiles of the integrin related genes in differ-
ent SARS-CoV-2 infection models. To accomplish this,
we filtered out the integrin and integrin signaling related
genes (Additional file 8) within the terms of the GOBP,
KEGG pathway, and Bioplanet pathway modules that we
used for enrichment analysis. Intriguingly, we observed
that the genes related to integrins and integrin signaling
such as ITGAV, ITGA6, ITGB7, ITGB3, ITGA2B, ITGAS,
ITGAG6, ITGAY, ITGA4, ITGAE, and ITGAS8 were highly
expressed in analyzed lung samples, and the lowest num-
ber of these genes were expressed in the nasopharyngeal
samples (Fig. 6a, b, Additional file 9: Figure S4A). Based
on these observations, we can assume that overexpres-
sion of integrins and integrin signaling related genes in
the lungs might provide the virus a competitive edge in
invading the lung cells more efficiently compared to the
cells of the nasopharynx and respiratory tracts.
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Fig. 6 Heatmaps representing the sample level absolute expression of Integrin related genes. a across the different SARS-CoV-2 infection models,
b in only nasopharyngeal samples and lung samples; Cytokine signaling related genes c across the different SARS-CoV-2 infection models, d

in only nasopharyngeal samples and lung samples; and Inflammation related genes e across the different SARS-CoV-2 infection models, f in

only nasopharyngeal samples and lung samples; g Expression profiles of genes encoding SARS-CoV-2 receptor and entry associated proteins.
Normalized (DESeq?2) Log, converted read counts are considered as the expression values of the genes and represented in a color-coded scale;
Color towards red indicating higher expression, while color towards green indicating little to no expression

Cytokine and inflammatory signaling genes are
overexpressed in lung samples

Aberrant cytokine stimulation and inflammatory
responses are thought to be the major contributor to
pathogenic lung damages in severely affected COVID-
19 patients [40, 41]. We wanted to find out whether the
genes related to cytokine signaling and inflammation
have differential expression profiles in lung cells com-
pared to the other infection systems. We extracted and
compared the gene expression values of the genes related
to these two terms (Additional file 8). We are not sur-
prised to observe that the genes of these two major con-
tributing events of COVID-19 lung pathobiology are
significantly overexpressed in lung samples compared to
the rest of the SARS-CoV-2 infected cell types (Fig. 6¢c—f,
Additional file 9: Figure S4B-C). Particularly, the ana-
lyzed nasopharyngeal samples have very low expres-
sion values for the cytokine and inflammatory signaling
genes such as CCL4, TNFA, IL6, IL1IA, CCL2, CXCL2,
IFN, and CCRI (Fig. 6¢—f). Therefore, these observations
are fueling the preexisting supposition of the roles of
enhanced cytokine, and inflammatory signaling for wors-
ening the disease condition in patients with SARS-CoV-2
infected lungs.

A differential gene expression profile was detected

for the SARS-CoV-2 entry receptors/associated proteins

in different infection models

Expression of receptor protein ACE2 and entry associ-
ated proteins such as TMPRSS2, BSG, CTSL, DPP4 on
the cell surface of the host is essential for the invasion
of SARS-CoV-2 [36]. Moreover, ACE2 overexpression is
thought to increase the infection potentiality of SARS-
CoV-2 [42]. Furthermore, Kuba et al. demonstrated the
potential role of ACE2 in SARS-CoV induced lung injury
[43]. So, we ventured to check the gene expression levels
of ACE2 and the other entry associated proteins in the
different SARS-CoV-2 infected cells. Surprisingly, we
observed that the ACE2 gene was not expressed in high
levels in lung samples as speculated (Fig. 6g). However,
gene expression levels of the other entry associated pro-
teins were higher in lung samples (Fig. 6g). Nonetheless,
in few of the lung samples, the TMPRSS2 gene was not
expressed in higher amounts (Fig. 6g). Interestingly, we

have not detected any expression of DPP4 gene within
the reported nasopharyngeal samples (Fig. 6g).

Inflammatory immune responses were several folds higher
in lungs than the nasopharynx of COVID-19 patients

From our previous observations, it was evident that
COVID-19 patient’s lung responds to the viral infec-
tion differently compared to the epithelial cells of naso-
pharynx. We then sought to figure out the specific genes
and biological functions/signaling pathways which have
this differential pattern. We achieved this by design-
ing a multifactorial differential gene expression analysis
using a generalized linear model (GLM) [44]; in which
we compared the fold changes of every differentially
expressed gene in our nasopharyngeal samples and lung
(GSE150316) samples, to discover how many folds lung
is alternatively expressing the genes than nasopharynx in
COVID-19.

Firstly, we analyzed the suitability of the data for this
design and observed no irregularities between the data
used (Fig. 7a—d). Moreover, upon this multifactorial dif-
ferential gene expression analysis, we observed an accept-
able common biological coefficient of variation; this
variation decreases significantly as the expression values
increases (Fig. 7e). From the MA plot, we observed a very
high amount of the significantly (p-value<0.05) several
fold upregulated and downregulated genes in lungs com-
pared to nasopharyngeal samples (Fig. 7f). We detected
807 upregulated and 298 downregulated genes in lungs
compared to the nasopharyngeal samples (Additional
file 10). Interestingly, we noticed the highly upregulated
integrin and integrin signaling genes in lungs compared
to the nasal samples (Fig. 7g) which are consistent with
our previous observations. Modulatory roles of integrins
are well established in acute lung damages [45]. Simi-
larly, aberrant expression of genes involved in integrin
signaling can also provoke acute lung injuries, namely-
ADAMIS [46], SDCI [47], CD14 [48], CD47 [49], CD9
[50], HMGBI [51], ITA6 [52], and ITAV [53]. Therefore,
SARS-CoV-2 infection induced deregulation of these
genes might be contributing towards the worsening of
the normal pathobiology and functionality of lungs in
COVID-109.

We then performed functional enrichment analysis to
hunt down the signaling pathways which are differentially
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Fig. 7 Multifactorial differential gene expression analysis using differentially expressed COVID-19 lung and nasal data. a Variance plot, b Sample to
sample distance plot, ¢ Principal component analysis plot, d Clustered heatmap of the count matrix of the normalized RNA-seq reads (top 50 genes)
of the SARS-CoV-2 infected nasopharyngeal and lung samples. e Common dispersion plot or the biological coefficient of variation plot. Here we are
estimating the dispersion. The square root of the common dispersion gives the coefficient of variation of biological variation. Here the coefficient

of biological variation is around 0.8. f MA plot. Plot log-fold change against log-counts per million, with DE genes are highlighted. The blue lines
indicate twofold changes. Red and blue points indicate genes with P-value less than 0.05. g Expression profiles of genes encoding Integrins. Log,
(fold change) values are considered as the expression values of the genes and represented in a color-coded scale; Color towards red indicating
higher expression, while color towards green indicating little to no expression

expressed in lungs compared to the nasopharyngeal
cells. These enrichment analyses revealed that biologi-
cal functions such as viral process, and antigen process-
ing and presentation were highly upregulated, function
such as regulation of gene silencing by miRNA was found
downregulated in lungs compared to the nasopharyngeal
cells (Fig. 8a). Furthermore, pathways that provide anti-
viral immunity such as apoptosis, phagosome, antigen
processing and presentation, adaptive immune system,
innate immune system, interferon signaling, different
interleukin signaling, and cytokine signaling in immune
system were highly upregulated in lungs compared to the
nasopharyngeal samples (Fig. 8b—d). Despite having the
antiviral protective roles, hyperactivity from these path-
ways can significantly worsen the COVID-19 patient’s
overall lung functionality which can be further compli-
cated with progressive and permanent lung damage.

Previously, it was reported that transcription factors
can contribute to many inflammatory lung diseases [54,
55] which have similar lung characteristics observed
in COVID-19. In this context, we identified the highly
expressed transcription factors in lungs by comparing
their respective expression values in nasopharyngeal
samples (Fig. 8e). Among these, transcription factors
such as CBP [54], CEBP [56], NFAT [54], ATF3 [57],
GATAG6 [58], HDAC2 [59], and TCF12 [60] have signifi-
cant roles in lung’s overall functionality, acute lung injury
and antiviral response mechanism in lungs.

SARS-CoV-2 integrates its proteins in regulating the host
antiviral immune responses

As we have observed the differential host responses in
COVID-19 nasopharyngeal samples, then we sought
to interconnect the virus-host interplay in those host
responses. We first analyzed how many of the virus inter-
acting host proteins’ genes reported by Gordon et al. [21]
are differentially expressed in our reported nasopharyn-
geal samples. Only 51 genes of those proteins are found
deregulated in our nasopharyngeal samples (Fig. 9a). We
then constructed a network interlinking the virus-host
protein—protein interaction data from Gordon et al. [21]
along with the deregulated genes from the nasopharyn-
geal samples (Fig. 9b). Strikingly, we observed that most

of the immune-signaling-related downregulated genes
are directly or indirectly connected to the viral proteins
(Fig. 9b); this suggests the probable roles of the virus in
the differential host responses in the COVID-19 affected
patients.

Furthermore, to understand if there are any viral fac-
tor dependent enhancement of integrin expression, we
sought to establish the links between the viral proteins
with integrin signaling associated genes by constructing
a functional network with the viral-host protein—pro-
tein interaction data with the highly upregulated genes
observed in lungs (from the comparison analysis between
the lung and nasopharyngeal samples) (Fig. 9c). From
this constructed network, we observed that viral pro-
teins such as ORF10, N, ORF9b, NSP7, NSP15, NSP5, M,
NSP13, NSP2, NSP9, ORF8, ORF9c, NSP12, and NSP1
can directly or indirectly interact with the differentially
expressed genes in lungs (Fig. 9¢), suggesting the putative
mechanism behind the deregulated integrin signaling to
promote the viral invasion in lungs (Fig. 10).

Discussion

For a better understanding of the host-virus interac-
tion in the SARS-CoV-2 pathogenesis, transcriptional
responses of hosts play an enormous role. In this context,
we aimed to discover the host transcriptome response
upon SARS-CoV-2 infection by performing and analyz-
ing total RNA-seq from the nasopharyngeal samples of
four COVID-19 positive individuals. Moreover, we com-
pared the transcriptome from different SARS-CoV-2
infection models, particularly, we compared the differ-
ential gene expression of the lung biopsy samples with
the nasopharyngeal samples of ours to illustrate the pos-
sible molecular mechanisms behind the lung damages in
severe COVID-19 patients.

Previously, host transcriptional responses reported by
Blanco-melo et al. [24] and Butler et al. [25] suggested a
potential increase in the host antiviral immune responses
such as interferon signaling, interferon stimulated gene
signaling, chemokine signaling, and cytokine signaling;
however, Blanco-melo et al. [61] also reported the pres-
ence of low IFN-I and IFN-III in COVID-19 patient’s
lung cells. We observed similar host immune responses,
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Fig. 8 Enrichment analysis and comparison between deregulated genes and the genes of some selected processes in SARS-CoV-2 infected
nasopharyngeal samples versus SARS-CoV-2 infected lung biopsy samples, using a GOBP module, b KEGG pathway, ¢ Bioplanet pathway module,
d Reactome pathway module. Selected significant terms are represented in heatmaps. Color schemes are similar to Fig. 3. For individual processes,
blue means presence (significantly differentially expressed gene) while grey means absence (not significantly differentially expressed genes for this
module for this experimental condition). Here, Up and down denote Upregulated and Downregulated, respectively

interferon, and cytokine signaling in our reported
COVID-19 patients too. Moreover, we also observed a
stimulated innate immune response in our patients which
was also reported for other COVID-19 patients [62].

Astoundingly, important signaling pathways those
elicit antiviral immune responses such as apoptosis
[20], phagosome formation [63], antigen processing and
presentation [64], Natural killer cell mediated cytotoxic-
ity [65], and Toll-like receptor signaling [66] were found
downregulated in these COVID-19 patients. Also, path-
ways such as HIF-1 response [67], PI3K-Akt signaling
[68], and IL-17 signaling [69] were also found deregu-
lated, which could assist the COVID-19 patients suffering
from hypoxia, lung injury, and inflammation of the res-
piratory tract.

All of our patients showed dysosmia which is also a
commonly observed features in most other COVID-19
patients around the world. This might have occurred due
to the hypothesized reasons reported by Breguglio et al.
[70]. Interestingly, our patients’ nasopharyngeal data also
provides supportive clues such as overexpressing local
cytokine signaling, inflammatory responses and accu-
mulation of innate immune cells in the nasopharyngeal
regions; all of which might contribute towards the desta-
bilization of olfaction within these patients.

While we were comparing the nasopharyngeal cell’s
transcriptional responses with other SARS-CoV-2 infec-
tion models, we observed that lung cells elicited the
immense cytokine and inflammatory responses against
the invading viral pathogen. These overstimulated
responses sometimes can do irreversible damages to the
lungs [71]. This might shed insights into the COVID-19
disease severity when the viral infection progresses into
the lungs.

Though an increased amount of ACE2 will facilitate the
invasion of SARS-CoV-2, nonetheless, we observed a sig-
nificant downregulation of ACE2 in lung cells; Hou et al.
reported similar phenomenon in an earlier study [72].
This phenomenon could backup the concept of ACE2
downregulation by SARS-CoV-2 itself after using it [73],
thus reducing the organ protective roles of ACE2 [74]
and resulting in progressive lung damages.

Integrins were reported important for the entry of
SARS-CoV into the host cells [39], so it was speculated
similar phenomenon might also be present in SARS-
CoV-2. This idea is further intensified after the study by

Sigrist et al. [37], who suggested the presence of an integ-
rin-binding RGD motif in the spike of SARS-CoV-2. Sur-
prisingly, upon the gene expression comparison between
the different SARS-CoV-2 infected cells, we observed
several folds upregulated expressions of genes encoding
integrins in lung cells. This observation could support
the idea of increased viral infections in lungs might be
happening due to the overexpression of these probable
attachment proteins. Also, the network analysis suggests
a probable mechanism of upregulation of these proteins
by the virus itself by the putative interactions through its
proteins. As our study is based on the data acquired from
a limited number of samples, therefore, more targeted
studies with a larger sample size should be undertaken
for conclusive evidence supporting this phenomenon.

Conclusion

In this study, we present the very first report of the host
transcriptional response data from COVID-19 patients
of the South-Asian region along with the SARS-CoV-2
isolates obtained from these patients. This data might
provide newer insights into the host responses against
the virus in the different parts of the respiratory tract.
However, a limited number of patient data is used here,
but subsequent incorporation of more patient data from
other parts of the world will significantly increase the
understanding of this complex host-virus response in
COVID-19, which will help in designing therapeutic
interventions as well as in current clinical management
of the patients.

Methods

Sample collection and virus detection by Real-time reverse
transcription-quantitative PCR (RT-qPCR)

The nasopharyngeal swab samples were collected from
patients suspicious of COVID-19 and placed in sample
collection vial containing normal saline. Collected sam-
ples were preserved at — 20 °C until further use for RNA
extraction and RT-qPCR assay. The RT-qPCR was per-
formed for ORFlab and N genes of SARS-CoV-2 using
Novel Coronavirus (2019-nCoV) Nucleic Acid Diag-
nostic Kit (PCR-Fluorescence Probing) of Sansure Bio-
tech Inc. according to the manufacturer’s instructions.
RNA was extracted from a 20 puL swab sample through
lysis with sample release reagent provided by the kit and
then directly used for RT-qPCR. Thermal cycling was
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Fig. 9 Interactions between SARS-CoV-2 proteins and differentially expressed genes of host. a Venn diagram showing the commonly deregulated
genes between deregulated genes in our nasopharyngeal samples and Gordon et al. reported viral protein-interacting high confidence host
proteins. Network representing the interactions between genes in b. Deregulated genes in nasopharyngeal samples along with SARS-CoV-2
proteins and Gordon et al. described viral interacting host proteins, and ¢ Differentially expressed Integrin related genes in lungs compared to the
nasal samples along with SARS-CoV-2 proteins and Gordon et al. described viral interacting host proteins. Hexagon, ellipse, rounded rectangle
represents viral proteins, process-related genes, and proteins that interact with viral proteins, respectively. Expression values of the genes and
represented in a color-coded scale. Color towards red indicating higher expression, while color towards green indicating little to no expression

performed at 50 °C for 30 min for reverse transcription,
followed by 95 °C for 1 min and then 45 cycles of 95 °C
for 15 s, 60 °C for 30 s on an Analytik-Jena qTOWER
instrument (Analytik Jena, Germany).

RNA sequencing

Total RNA was extracted from nasopharyngeal swab
samples (labeled as S2, S3, S4, S9) collected from SARS-
COV-2 infected COVID-19 patients using TRIzol (Inv-
itrogen) reagent following the manufacturer’s protocol.
RNA-seq libraries were prepared from total RNA using
TruSeq Stranded Total RNA Library Prep kit (Illumina)
according to the manufacturer’s instructions where the
first-strand cDNA was synthesized using SuperScript
I Reverse Transcriptase (Thermo Fisher) and random
primers. Paired-end (150 bpreads) sequencing of the
RNA library was performed on the Illumina NextSeq 500
platform.

Data processing and identification of the viral agent
Firstly, the sequencing reads were adapter and qual-
ity trimmed using the Trimmomatic program [75]. The
remaining reads were mapped against the SARS-CoV-2
reference sequence (NC_045512.2) using Bowtie 2 [76].
Then the mapped reads were assembled de novo using
Megahit (v.1.1.3) [77].

Mapping of the RNA-seq reads onto SARS-CoV-2 reference
genome

We mapped the normalized (by count per million
mapped reads-CPM) RNA-seq reads onto the SARS-
CoV-2 genome track of the UCSC genome browser [78]
using the “bamCoverage” feature of deepTools2 suite
[79].

Identification of SARS-CoV-2 genome variations

and variation annotation

We identified the variations within our sequenced SARS-
CoV-2 genome using the “Variation Identification” (https
://bigd.big.ac.cn/ncov/online/tool/variation)  tool  of
“2019 Novel Coronavirus Resource (2019nCoVR)” por-
tal of China National Center for Bioinformation [80]. We
then annotated the variations of the isolated SARS-CoV-2
isolates using the “Variation Annotation” (https://bigd.

big.ac.cn/ncov/online/tool/annotation) tool from the
same portal [80]. We also gathered the global frequency
of every identified variation using this same information
portal [80]. Different representations showing the infor-
mation regarding the variations were produced using the
Microsoft Excel program [81]. The impacts of the varia-
tions were further characterized utilizing the Ensembl
Variant Effect Predictor (VEP) tool [82].

Analysis of RNA-seq expression data

We analyzed both our RNA-seq and some publicly avail-
able RNA-seq data for COVID-19 host transcriptional
profile analysis. Publicly available Illumina sequenced
RNA-seq raw FastQ reads were extracted from the
GEO database (accessions of the data used can be found
in Additional file 11) [83]. We have checked the raw
sequence quality using FastQC program (v0.11.9) [84]
and found that the "Per base sequence quality”, and "Per
sequence quality scores" were high over the threshold
for all sequences (Additional file 12). The mapping of
reads was done with TopHat (tophat v2.1.1 with Bowtie
v2.4.1) [85]. Short reads were uniquely aligned allowing
at best two mismatches to the human reference genome
from (GRCh38) as downloaded from the UCSC data-
base [86]. Sequence matched exactly more than one place
with equally quality were discarded to avoid bias [87].
The reads that were not mapped to the genome were uti-
lized to map against the transcriptome (junctions map-
ping). Ensembl gene model [88] (version 99, as extracted
from UCSC) was used for this process. After mapping,
we used the SubRead package featureCount (v2.21) [89]
to calculate absolute read abundance (read count, rc) for
each transcript/gene associated to the Ensembl genes.

Differential gene expression analysis

To obtain the differential gene expression profile of our
studied nasal samples, we utilized the the RNA-seq data
recorded from nasal epithelial cells of 4 different non-
asthmatic adult individuals as normal controls (Addi-
tional file 11); these cells were taken 7 days before the
original infection analysis (GEO accession: GSE97668).
For the differential gene expression analysis of COVID-
19 affected lungs, we've taken the RNA-seq data from
the lung biopsy of a deceased COVID-19 patient and
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Fig. 10 Schematic representation of putative mechanisms of acute lung damages in COVID-19. Red arrow suggesting the increasing expression
values, while the green arrow indicating the decreasing expression from the nasopharyngeal region to the lung

the associated controls from the original study (GEO
accession: GSE147507); and another set of data from five
deceased COVID-19 patient’s (initially all of them were
hospitalized) lung autopsy and associated controls from
the original study (GEO accession: GSE150316) (Addi-
tional file 11). Moreover, for the differential transcrip-
tome documented for the cell lines, we used the RNA-seq
data from infected cell lines and associated controls from
GEO datasets GSE148729 and GSE147507 (Additional
file 11).

For differential expression (DE) analysis, we used
DESeq2 (v1.26.0) [90] with R (v3.6.2; 2019-07-05) that
uses a model based on the negative binomial distribution.
To avoid false positive, we considered only those tran-
scripts where at least 10 reads are annotated in at least
one of the samples used in this study and also applied a
minimum Log2 fold change of 0.5 for to be differentially
apart from adjusted p-value cut-off of <0.05 by FDR. To
assess the fidelity of the RNA-seq data used in this study
and normalization method applied here, we checked the

normalized Log2 expression data quality using R/Bio-
conductor package “arrayQualityMetrics (v3.44.0)” [91].
From these analyses, no outlier was detected in our data
by “Distance between arrays”, “Boxplots’, and “MA plots”
methods and replicate samples are clustered together
(data not shown). We considered the genes upregulated
which have a positive Log2 fold change value higher than
0.5, and those with a Log2 fold change value lower than
— 0.5 were considered downregulated.

We also performed a multifactorial differential gene
expression analysis using the edgeR tool [44] follow-
ing the generalized linear model (GLM) experimental
design- log2 (lung samples/normal lung control sam-
ples)/ log2 (our studied Nasal samples/normal nasal con-
trol samples); we used the autopsy samples of COVID-19
patients and associated controls from (GEO accession:
GSE150316) as lung sample & controls, and we used our
analyzed nasal COVID-19 transcriptomes as nasal sam-
ples alongwith the RNA-seq data from (GEO accession:
GSE97668) as normal controls.



Islam et al. J Trans| Med (2021) 19:32 Page 22 of 25

Construction of phylogenetic tree Composite Likelihood method and are in the units of the number of base

We constructed a Neighbour-Joining phylogenetic tree substitutions per site. This analysis involved 145 nucleotide sequences.
with all available 145 SARS-CoV-2 genomes of Bang- Codon positions included were 1st+ 2nd + 3rd +Noncoding. All positions
ladeshi isolates (retrieved on 6th May from GISAID with less than 95% site coverage were eliminated, i.e., fewer than 5%

. Y . . alignment gaps, missing data, and ambiguous bases were allowed at any
[92]). Firstly, the genome sequences were aligned using position (partial deletion option). There was a total of 29827 positions in
MAFFT [93] tool using the auto-configuration. Then we the final dataset. Values represent bootstrap numbers (%).
used MEGA X [94] for constructing the phylogenetic Additional file 3. Patient specific clinical features observed in the ana-
tree utilizing 500 bootstrapping with substitution model/ | yzed four COVID-19 patients.
method: maximum composite likelihood, uniform rates Additional file 4. Differentially expressed genes found in the four nasal

of variation among sites, the partial deletion of gaps/ samples of COVID-19 patients

missing data and site coverage cutoff 95%. Add.itionaIﬁIeIS: Figgre S2.A. Hierarchicgl\y clustered heatmgp repre-
senting the patient-wise complete expression profiles. Normalized Log,
fold changes compared to average normal expression values across the
Functional enrichment analysis ?amp\es aTe reprlesented in a color coded he§tmap,faTd fgr one of the
. . . . our samples only protein coding genes (with Log, fold change >0.5) are
We utilized Gitools (V1‘8'4) for enrichment analysw and represen?ed. Pea?sgn correlationgdgi}stance was utﬁizzed for thisghierarchi—
heatmap generation [95]. We have utilized the Gene cal clustering of the genes. B. Deregulated genes of selected terms from
Ontology Biological Processes (GOBP) [96], Bioplanet Fig. 3 in different SARS-CoV-2 infection systems. Genes of selected sig-

nificant terms are represented here. For individual processes, blue means
pathways [97], KEGG pathway [98], and Reactome path— presence (differentially expressed gene of the module term) while grey

way [99] modules for the overrepresentation analysis. means absence (not differentially expressed in the experimental condition
Resulting p-values were adjusted for multiple testing in that module term). Processes in the green, blue, red color background
using the Benjamin and Hochberg’s method of False Dis- represent KEGG, Bioplanet, GOBP enriched terms, respectively.

Additional file 6. Differentially expressed genes in different SARS-CoV-2
covery Rate (FDR) [100]. infected cell types.

X . . Additional file 7: Figure S3. Deregulated genes of selected terms from
Retrieval of the host proteins that interact Fig. 3 in different SARS-CoV-2 infection systems. For individual processes,
with SARS-CoV-2 b|):e| means presen;e (diffezentiadl\fyf expresied gene o;the ?odu\e term)

. . . while grey means absence (not differentially expressed in the experi-
We have obtalnefi the hjSt of h},lman proteins that fOFm mental condition in that module term). Processes in the green, blue,
hlgh confidence interactions with SARS-CoV-2 protems red color background represent KEGG, Bioplanet, GOBP enriched terms,
from conducted previously study [21] and processed respectively.
their provided protein names into the associated HGNC Additional file 8. Genes and associated terms used for filtering the

official gene symbols expression values used in Fig. 6.

Additional file 9: Figure S4. Expanded view of the heatmaps A, B, C of

Fig. 6.
Construction of biological networks " ) , ) .
. . . . . R Additional file 10. Differentially expressed genes in SARS-CoV-2 infected
Construction, visualization, and analYSIS of blologlcal lungs compared to the our nasal samples used in this study.

networks with differentially expressed genes, their asso-
ciated transcrlp.tlon factors, and interacting viral proteins Additional file 12. Per base sequence quality reports of the generated
were executed in the Cytoscape software (v3.8.0) [101]. RNA-seq reads of the four COVID-19 infected nasal samples used in this
We used the STRING [102] database to extract the high- study.
est confidences (0.9) edges only for the protein—protein
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