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Abstract: Type 2 diabetes mellitus (T2DM) is a worldwide major health burden and heart failure (HF)
is the most common cardiovascular (CV) complication in affected patients. Therefore, identifying the
best pharmacological approach for glycemic control, which is also useful to prevent and ameliorate
the prognosis of HF, represents a crucial issue. Currently, the choice is between the new drugs
sodium/glucose co-transporter 2 inhibitors that have consistently shown in large CV outcome trials
(CVOTs) to reduce the risk of HF-related outcomes in T2DM, and metformin, an old medicament
that might end up relegated to the background while exerting interesting protective effects on
multiple organs among which include heart failure. When compared with other antihyperglycemic
medications, metformin has been demonstrated to be safe and to lower morbidity and mortality
for HF, even if these results are difficult to interpret as they emerged mainly from observational
studies. Meta-analyses of randomized controlled clinical trials have not produced positive results
on the risk or clinical course of HF and sadly, large CV outcome trials are lacking. The point of
force of metformin with respect to new diabetic drugs is the amount of data from experimental
investigations that, for more than twenty years, still continues to provide mechanistic explanations
of the several favorable actions in heart failure such as, the improvement of the myocardial energy
metabolic status by modulation of glucose and lipid metabolism, the attenuation of oxidative stress
and inflammation, and the inhibition of myocardial cell apoptosis, leading to reduced cardiac
remodeling and preserved left ventricular function. In the hope that specific large-scale trials will
be carried out to definitively establish the metformin benefit in terms of HF failure outcomes, we
reviewed the literature in this field, summarizing the available evidence from experimental and
clinical studies reporting on effects in heart metabolism, function, and structure, and the prominent
pathophysiological mechanisms involved.

Keywords: type 2 diabetes; metformin; heart failure

1. Brief History of Metformin and Its Interaction with Cardiovascular Outcomes

The medicinal properties of metformin (dimethyl biguanide), an antihyperglycemic
drug introduced in Europe in 1957 and registered about thirty years later in the US, were
already known in the Middle Ages when the French lilac Galega officinalis containing the
active compound galegine (isoamylene guanidine), was used to treat people with intense
urination [1,2]. Today, metformin is the most commonly prescribed medicament for the
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treatment of diabetes, taken by millions of patients worldwide daily, including those with
HF [3]. Based on its glucose-lowering effectiveness, safety, favorable effect on body weight,
and low cost, metformin is supported by many scientific associations as first-line therapy in
patients with T2DM. Above all, indication for use was strengthened based on its assumed
favorable and long-lasting benefits on CV morbidity and mortality, best demonstrated by
the 10-year follow-up of the landmark UKPDS trial [4,5]. Over time, a huge number of
publications have highlighted the CV benefits of metformin, and in 2006, a joint statement
of the American Diabetes Association (ADA) and the European Association for the Study of
Diabetes recommended this drug as the initial pharmacologic intervention in T2DM [6–8].
Still, nowadays, ADA maintains this position with the recommendation of continuing the
drug until tolerated and not contraindicated [9].

Shortly after metformin approval in the US, HF was listed as an absolute contraindica-
tion for use since the “phantom” of lactic acidosis, a legacy of previous negative experience
with phenformin and buformin, two biguanides abandoned since the 1970s [10]. In the
following years, this dictate was largely ignored, also by virtue of the very low risk of lactic
acidosis in clinical practice with an estimate of <10 cases per 100,000 patient-years [11,12].
At the same time, data were accumulated until conclusive evidence revealed that the
benefits of metformin use in diabetic patients with HF outweighed the potential risk [13,14].
With this information, in 2006 the Food and Drug Administration (FDA) removed the
absolute HF contraindication, although acute or unstable congestive HF remained in the
label’s warning section.

The scenario has completely changed since the publication in recent years of a series of
CVOTs providing a robust evidence-based CV beneficial effect of glucagon-like peptide-1
receptor agonists (GLP1-RAs) and sodium-glucose co-transporter-2 inhibitors (SGLT2-Is)
in diabetic patients at increased risk [15,16]. Currently, even in the presence of high CV risk,
ADA continues to support metformin as the first-line drug in T2DM, with consideration
of concurrent therapy with SGLT2-Is in patients with HF or kidney disease and either
SGLT2-Is or GLP1-RAs in patients with predominantly atherosclerotic CV disease (CVD) [9].
Instead, the European Society of Cardiology recommends SGLT2-Is or GLP1-RAs as first-
line therapy replacing metformin in patients with target-organ damage or several CV risk
factors, and in those with clinically manifest CV comorbid conditions [17]. This guideline
discrepancy has raised an intense debate in the medical community.

The arguments for keeping metformin as a cornerstone drug for diabetes even in the
presence of a high CV risk are more than one. In the first instance, long-term experience of
use, reasonably acceptable side effects, and, more importantly, CV benefits have historically
been proven for over twenty years. Ultimately, in all positive CVOTs conducted so far, the
newer glucose-lowering agents operated in the background of therapy with metformin
that might have influenced the CV outcomes.

The interaction between metformin with SGLT2-Is and GLP1-RAs is a not yet solved
issue. A meta-analysis of six CVOTs with four SGLT2-Is by Neuen et al. indicated clear and
consistent reductions in CV outcomes, irrespective of the baseline metformin therapy [18].
Similar results emerge from a systematic review and meta-analysis of trials with GLP-1
RAs [19]. Instead, in a supplemental analysis of the EMPA-REG OUTCOME trial, the
relative risk reduction of CV death in metformin nonusers was 54% vs. 29% in metformin
users, although with a P interaction of 0.07 [20]. Similarly, the relative risk reduction in
the composite of CV death or HF hospitalization in the CANVAS Program was 36% in
metformin nonusers vs. 12% in metformin users, with a nominally significant P interaction
of 0.03 [21]. Because of these results, the suspicion arose that background metformin
therapy may obscure the CV benefits of SGLT2-Is, an interpretation that should be done
with extreme caution as it is right to do for results from post hoc subgroup analyses [22].

In this review, we aim to support the possible beneficial role of metformin in the
management of diabetic patients with established HF and, mainly, its preventive relevance
in patients at risk for developing HF, such as those with uncomplicated diabetes, predi-
abetes, or metabolic syndrome. For this purpose, we synthetized the available evidence
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from experimental and clinical studies reporting on metformin effects in heart metabolism,
function, and structure, and the prominent pathophysiological mechanisms involved.

2. Heart Failure Epidemiology in Diabetes

Diabetes is a systemic disease characterized by both micro and macrovascular com-
plications, as well as a wide range of extravascular complications, which weigh heavily
on both patient health and national health systems [23–26]. HF has emerged as a very
common CV complication of diabetes, with a 2.5-fold times higher incidence in diabetic
than nondiabetic people, exceeding that of myocardial infarction (MI) or stroke, with a
prevalence in diabetic patients aged ≥65 years as high as 22% [27–30]. As suggested by
Lundbæk in 1954 who first introduced the concept of specific DM-related cardiomyopathy,
this strict epidemiological relationship depends on the possibility of HF occurrence in
T2DM patients even in the absence of other canonical HF risk factors, mainly atherosclero-
sis and heart ischemic injury. The descriptive terminology of “diabetic cardiomyopathy” is
currently used to define myocardial dysfunctions in the presence of diabetes and in the
absence of coronary artery disease (CAD), valve heart disease, and other conventional risks
for CV diseases (e.g., hypertension, dyslipidemia, and alcoholism) [31]. If diabetes is a
well-established risk factor for HF, strong evidence indicates HF as a risk factor for T2DM.
Roughly 40 percent of hospitalized patients with HF enrolled in clinical trials suffered from
diabetes and among those with HF with reduced ejection fraction (HFrEF) without a known
history of diabetes, 25% had prediabetes, 13% unrecognized T2DM, and 10% developed
new-onset diabetes during the next four years [32–35]. The relationship between HF with
preserved ejection fraction (HFpEF) and diabetes is even closer as T2DM affects about 45%
of affected patients and, when present, the health-related quality of life is worsened and the
risk of hospitalization, CV mortality, and all-cause mortality increased [36–38]. Generally,
when HF and diabetes coexist, the one condition synergistically and mutually worsens the
prognosis of the other. Diabetes or insulin resistance in HF patients reduces the functional
capacity, increases the risk of readmission for HF, and doubles the yearly mortality [39–42].
On the other hand, HF represents a very harmful complication of T2DM, since there is a
frequent progression to end-stage requiring heart transplantation, and a 3-year mortality
of 40%, 10-fold higher than that of non-HF diabetic patients [43,44].

These impressive epidemiological findings emphasize the crucial clinical value of
preventing this CV complication.

3. Activation of AMPK by Metformin

The AMP-dependent kinase (AMPK) is a serine-threonine protein kinase ubiquitously
expressed in nucleated mammalian cells with a crucial role in cellular energy homeosta-
sis. Its malfunction or absence is associated with metabolic disorders, primarily insulin
resistance, and could be involved in the pathogenesis of diabetes. It is structurally a
heterotrimeric protein complex containing a catalytic α domain and two regulatory β

and γ domains [45]. The increase in intracellular AMP/ATP ratio, such as during strong
exercise, hypoxia, or nutritional deficiency, may activate AMPK through phosphoryla-
tion of the amino acid threonine (Thr172) on the catalytic α subunit [46]. This is the site
predominantly involved in AMPK activation, but several other amino-acid residues can
be phosphorylated and determine the same effect [47]. AMP binding to the regulatory γ

subunit preserves AMPK from dephosphorylation by its three protein phosphatases, 2A,
2C, and Mg2+/Mn2+-dependent 1E [48].

Once activated by increased AMP cellular levels signaling a low-energy state, AMPK
prompts a switch from ATP-consuming anabolic pathways to ATP-generating catabolic
pathways in order to maintain energy homeostasis. The result is an inhibition of the
synthesis of triglycerides and proteins, and stimulation of glucose transport, glycolysis,
and fatty acid (FA) oxidation [49,50]. These effects arise from the phosphorylation of a
multitude of downstream effectors involved in the modulation of a myriad of cellular
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processes. In addition to acute regulation of enzymatic activities, AMPK may adaptively
reprogram the metabolism through transcriptional changes [50].

The mechanism of metformin action is not completely clarified in humans, but an-
imal and cell culture experiments indicate an activation of AMPK mainly via inhibition
of mitochondrial respiratory-chain complex I and increase in the phosphorylated- to
unphosphorylated-AMPK ratio [51,52]. For this reason, the drug is classified among the
indirect activators of AMPK also taking into account that metformin may block the AMP-
deaminase [53,54]. In this case too, the result is an increase in the AMP:ATP ratio, which
in turn induces AMPK activation. Ultimately, metformin mimics an imbalance between
energy supply and use as it happens during fasting and exercise. It is noteworthy that
metformin may also directly bind to AMPK subunits determining an increased assembly
of the enzymatically active heterotrimeric complex and a greater accessibility for upstream
kinases [55,56] (Figure 1).

Biomolecules 2021, 11, 1834 4 of 24 
 

fatty acid (FA) oxidation [49,50]. These effects arise from the phosphorylation of a multi-
tude of downstream effectors involved in the modulation of a myriad of cellular pro-
cesses. In addition to acute regulation of enzymatic activities, AMPK may adaptively re-
program the metabolism through transcriptional changes [50]. 

The mechanism of metformin action is not completely clarified in humans, but ani-
mal and cell culture experiments indicate an activation of AMPK mainly via inhibition of 
mitochondrial respiratory-chain complex I and increase in the phosphorylated- to un-
phosphorylated-AMPK ratio [51,52]. For this reason, the drug is classified among the in-
direct activators of AMPK also taking into account that metformin may block the AMP-
deaminase [53,54]. In this case too, the result is an increase in the AMP:ATP ratio, which 
in turn induces AMPK activation. Ultimately, metformin mimics an imbalance between 
energy supply and use as it happens during fasting and exercise. It is noteworthy that 
metformin may also directly bind to AMPK subunits determining an increased assembly 
of the enzymatically active heterotrimeric complex and a greater accessibility for up-
stream kinases [55,56] (Figure 1). 

 
Figure 1. Activation of AMPK by metformin and its principal downstream pathways involved in HF physiopathology. 
AMPK: AMP-dependent kinase; AT1R: AngII type 1 receptor; eNOS: endothelial nitric oxide synthase; eEF2: eukariotic 
elongation factor-2 kinase; GLUT4: glucose transporter protein type-4; JNK: c-Jun N-terminal kinase; NF-ĸB: nuclear fac-
tor-kB; OCT: organic cation transporter; p70S6K: protein kinase 70S6; PFK1: phosphofructokinase 1; PGC1α: peroxisome 
proliferator-activated receptor-g coactivator-1α; PKA: protein kinase A; SIRT1-2-3: deacetylase Sirtuin 1-2-3; TGF- β: trans-
forming growth factor- β; TLR4: Toll-like receptor 4. 

  

Figure 1. Activation of AMPK by metformin and its principal downstream pathways involved in HF physiopathology.
AMPK: AMP-dependent kinase; AT1R: AngII type 1 receptor; eNOS: endothelial nitric oxide synthase; eEF2: eukariotic
elongation factor-2 kinase; GLUT4: glucose transporter protein type-4; JNK: c-Jun N-terminal kinase; NF-kB: nuclear
factor-kB; OCT: organic cation transporter; p70S6K: protein kinase 70S6; PFK1: phosphofructokinase 1; PGC1α: peroxi-
some proliferator-activated receptor-g coactivator-1α; PKA: protein kinase A; SIRT1-2-3: deacetylase Sirtuin 1-2-3; TGF-
β: transforming growth factor- β; TLR4: Toll-like receptor 4.

4. Mechanisms of Beneficial Impact of Metformin on Heart Failure

The current knowledge supports a protective role of metformin against HF based on a
series of complex and multidirectional pleiotropic actions. On the one hand, the biguanide
may prevent systemic and coronary atherosclerosis by correcting multiple CV risk factors
and reducing endothelial dysfunction, oxidative stress, and inflammation. In addition, it
may mediate direct positive functional and structural effects preserving LV morphology
and the systo-diastolic performance of the heart (Figure 2) [7,57].
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Sirtuin1; TLR4: Toll-like receptor 4.

4.1. Correction of CV Risk Factors

Metformin may positively influence the development and progression of atheroscle-
rotic disease, and therefore of CAD-related HF, in people with or without T2DM, including
subjects with type 1 diabetes [58]. Merely, the drug is able to correct some atherosclerotic
risk factors. Blood pressure was lowered in salt-induced hypertension of spontaneously
hypertensive rats and in non-diabetic patients, specifically those with impaired glucose
tolerance or obesity [59,60]. As reported in HF patients who lost weight, metformin causes
a decrease in food intake to 300 kcal/day and a loss in body weight that results in improve-
ment of insulin sensitivity, attenuation of inflammation, and a series of beneficial changes in
stroke volume, cardiac output, and myocardial oxygen consumption (MVO2) [61,62]. A de-
crease in blood levels of triglycerides and LDL cholesterol may contribute to atheromatosis
prevention [63].

Regarding hyperglycemia, a beneficial impact of glycemic control on CV outcomes is
reported during acute coronary syndrome [64–66]. Instead, clinical trials targeting more
intensive glucose-lowering therapy obtained benefits only in long-term follow-ups such as
UKPDS, but were not helpful if introduced late in the course of T2DM as demonstrated by
three major trials (ACCORD, ADVANCE, and VA-DT) [67–70].

Likely, the main atheroprotection depends on insulin-sparing and sensitizing action of
metformin that is able to correct the generalized insulin resistance inherent in obesity and
T2DM, and the associated systemic dysmetabolic milieu with low-grade inflammation and
oxidative stress. The resulting beneficial effects on the arterial wall, both on endothelial
and smooth muscle cells, may protect vasculature from fibrosis and remodeling [71–74].
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4.2. Direct Beneficial Actions of Metformin on Myocardium

The heart expresses the organic cation transporters OCT1 and OCT3, which are
able to control the cellular uptake of metformin, and compelling experimental evidence
documents direct effects of metformin on both isolated cardiomyocytes and the beating
heart (Figure 1) [75].

Metformin has been proven to stimulate multiple cardioprotective pathways, mainly
implemented by the activation of AMPK, whose subunits in the myocardium display
two different isoforms, the α1 subunit mostly expressed in cardiac endothelial cells and
the α2 subunits in cardiomyocytes [48,76]. At the heart level, AMPK may phosphorylate
a plethora of metabolic enzymes, transporters of metabolites, and signaling molecules,
involved in the regulation of energy metabolism, protein synthesis, mitochondrial health,
autophagy, oxidative stress, inflammation, and so on [57,77,78]. As proofs, metformin-
related improvements in myocardial structure and function are not seen in AMPK-deficient
mice and as indicated by a limited metanalysis of five studies, the myocardiocyte levels of
phosphorylated AMPK from metformin-treated animals were almost double compared to
controls (Figure 3) [78,79].
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4.2.1. Effects on Myocardial Energy Metabolism and Efficiency

Although the cardiomyocytes of a healthy heart can flexibly use different substrates
depending on availability and energy requirements, they prefer FA oxidation to fuel the
high rate of ATP production needed for the continuous heart mechanical work, so much
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that 70–90% of necessary myocardial energy supplied by this source [80,81]. Instead,
profound changes in cardiac energy metabolism take place during the usually long and
complex evolution of HF, with a progressive decline in FA utilization and an initial up-
regulation and subsequent reduction of glucose utilization [82]. The reduction in ATP
production represents a constant feature of heart failure [83].

By activating AMPK, metformin induces a series of cardiomyocyte responses that
ameliorate glucose utilization, mitochondrial respiration, and ATP synthesis resulting in a
better systolic and diastolic effectiveness [79,84,85]. The main AMPK downstream media-
tors of these responses are the eNOS and the peroxisome proliferator-activated receptor-g
coactivator-(PGC) 1α, a crucial regulator of cellular energy substrate metabolism [57,79].

It has been observed that the AMPK activation induced by metformin enhanced
translocation of membrane GLUT4 and glucose uptake in insulin-resistant cardiomy-
ocytes [86,87]. Moreover, in hypertrophied rat heart metformin intensified the glycolysis
by activating the rate-limiting phosphofructokinase 1 (PFK1) [88].

Metformin treatment in vivo or added to the perfusate of ex vivo rat hearts subjected
to a highly increased workload prevented the AMPK down-regulation and, preserving the
glucose uptake–oxidation coupling, avoided the detrimental intracellular accumulation of
glucose 6-phosphate. This latter has been found to be responsible for downstream activa-
tion of mammalian target of rapamycin (mTOR) and consequent endoplasmic reticulum
stress (ER) and contractile dysfunction [89].

The insulin resistance peculiar to HF impairs the metabolic adaptability of the my-
ocardium, leading to an unbalanced lipid and glucose uptake that favors lipid accumu-
lation and lipotoxicity in cardiomyocytes [90]. The protective effects of metformin on
cardiac lipid dysmetabolism were investigated in prediabetic rats affected by hereditary
hypertriglyceridemia, a model characterized by ectopic lipid deposition including the
heart. A reduction of myocardial stearoyl-CoA desaturase, a key lipogenic enzyme, and
increased glucose and decreased FA oxidation in the heart were observed after metformin
treatment [91]. Concomitantly, the accumulation of the lipotoxic intermediate diacylglyc-
erols and lysophosphatidylcholine was attenuated. A human study observed a decreased
cardiomyocyte accumulation of lipids associated with a myocardial reduction of insulin
resistance markers (IRS-1 and IRS-2) and lipogenic factors (PPAR-α and SREBP-1c) in
healthy hearts transplanted in T2DM recipients chronically treated with metformin [92].

Experimental evidence proves that a lower ATP synthesis with a reduced energy
conversion in mechanical work directly impairs contractile function, thus representing
the main culprits of heart failure [83]. In this landscape, mitochondria have a leading role
as suggested by the degenerative changes in cardiomyocytes collected from HF patients,
and the association between mitochondrial abnormalities and severity of LV dysfunction
observed in a canine model of HF [93–95]. In addition, cardiomyocyte mitochondrial
activity is closely coupled to MVO2 as oxidative phosphorylation meets 95% of cardiac
cellular energy demand [93]. Hence, drugs specifically able to influence cardiomyocyte
energetics operating in mitochondria as metformin, so-called mitotropes, provide an
attractive tool to improve cardiac performance in HF [96].

Experimental and clinical studies show that metformin may successfully reverse mi-
tochondrial abnormalities in cardiomyocytes, improving mitochondrial respiration and
ATP synthesis, lessening mitochondrial respiratory uncoupling and myocardial MVO2,
and increasing myocardial efficiency [84,97]. In a mice model of HF after myocardial
infarction, metformin improved cardiac systolic function, reduced apoptosis of myocardial
cells, and improved mitochondrial function. All effects were associated with up-regulation
in myocardial tissue of deacetylase Sirtuin 3 (SIRT3) and activation of PGC-1α, two fac-
tors closely related to mitochondrial energy metabolism as already reported in previous
studies [84,98,99].

In a recent randomized controlled trial (RCT) using PET and transthoracic echocar-
diography, a 3-month treatment with metformin added to optimal medical HF regimen in
36 non-diabetic patients with symptomatic EFrHF, determined a 17% reduction of MVO2
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and a 20% increase in myocardial efficiency expressed as work metabolic index [97]. This
energy-sparing effect was achieved in addition to β-blocker therapy, which may increase
efficiency by 39% and reduce MVO2 by 24% [100]. Overall, by ameliorating glucose
metabolism, mitochondrial function, and ATP production, and by attenuating lipotoxicity
in cardiomyocytes, metformin is able to improve systolic and diastolic effectiveness.

4.2.2. Myocardial Anti-Oxidative and Anti-Inflammatory Effects

Oxidative stress represents one of the most significant insults disrupting cardiomy-
ocyte homeostasis in failing myocardium that can be effectively counteracted by metformin
through an increase of NO synthesis, amelioration of mitochondrial function, and other
mechanisms [101].

The heart expresses three isoforms of NO synthase, endothelial NOS (eNOS) ex-
pressed in endothelial cells but also in the cytoplasm of cardiomyocytes and neuronal
(nNOS) and inducible NOS (iNOS), both mainly located in cardiomyocytes [85]. The
nanomolar amounts of NO generated by eNOS and nNOS play a beneficial physiologi-
cal role. Differently, iNOS produces NO in micromolar concentration, namely an excess
of NO that impairing myocardial contractility may be deleterious for diastolic and sys-
tolic LV function [102,103]. In detail, excessively high cellular NO level activates, via
the second messenger cGMP, both the protein kinase G that blocks the L-type calcium
channels and consequently decreases the calcium influx into cells, and the cGMP-activated
phosphodiesterase that breaks down the cAMP [103].

Metformin activates eNOS via the AMPK-dependent phosphorylation and association
with heat shock protein-9 [104]. The increase in local generation of NO leads to inhibition of
oxidative stress and apoptosis together with vasodilation, and thereby improves coronary
blood flow, afterload, and LV function [105–107]. In addition, studies in vitro demonstrated
that whereas IL-1 beta induces the cardiomyocytes mRNA expression of iNOS and its de
novo synthesis leading to an excess of NO local production, metformin is able to suppress
the lipopolysaccharide (LPS)-induced iNOS and NO production in monocytes [108,109].

Considering mitochondria as the primary energy-generating organelles but also, if dys-
functional, the main source of reactive oxygen species (ROS), the other barrier implemented
by metformin against oxidative stress is the stimulation of mitochondrial biogenesis [110].
In a recent study on H9C2 cardiomyocytes, metformin exerted protective effects against
high glucose-induced oxidative stress by activating AMPK and enhancing the expression
of transcription factors related to mitochondrial biogenesis (PGC-1α, nuclear respiratory
factor-1, and -2) and of mitochondrial genes such as NDUFA13, an indispensable assembly
factor of complex 1, and manganese-dependent superoxide dismutase [111].

Previous observations report that exogenous ROS administration to H9c2 cardiomy-
oblasts stimulated the c-Jun N-terminal kinase (JNK), a well-known member of MAPKs [112].
In experiments in H9c2 cardiomyocytes, metformin administration inhibited the mitochon-
drial overproduction of ROS induced by high glucose plus hypoxia/re-oxygenation injury,
via signaling mechanisms involving activation of AMPK and concomitant inhibition of
JNK expression [113]. Concurrently, metformin mitigated the associated inflammatory
response evidenced by the significant increase in mRNA of pro-inflammatory cytokines
(TNF-α, IL-1α, and IL-6) [113].

Oxidative stress has been implicated in the activation of endoplasmic reticulum (ER)
stress, a promoter of cellular autophagy and apoptosis in the diabetic heart [114]. The
activation of AMPK using metformin may decrease the ER stress-induced cell death [115].

Closely linked to oxidative stress, inflammation is considered a driving mechanism in
the pathophysiology of HF that may also be controlled by metformin, a drug with largely
proven flogosis-inhibitory effects, independently of its blood glucose-lowering action and
with therapeutic potential in clinical conditions other than T2DM [116–119]. Actually, the
use of metformin is significantly associated with reduced circulating levels of inflammatory
markers and cytokines in diabetic as well as in non-diabetic people with HF, indeed in
COVID-19 diabetic patients [120].
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Since a main mechanism linking oxidative stress to tissue injury is the ROS-stimulated
inflammatory response, the anti-oxidative properties of metformin may per se attenuate
inflammation. In addition, metformin seems to exert a direct anti-inflammatory action
by inhibiting the nuclear factor kB (NF-kB) signaling through AMPK-dependent and
independent pathways [121,122].

The modulation of the local inflammatory response triggered by MI is crucial to
protect the infarcted cardiac tissue and to prevent HF development. Acute administration
of metformin in isoproterenol-induced MI in rats may halt the inflammatory responses and
inhibit the MI-associated LV dysfunction through the activation of AMPK and subsequent
suppression of Toll-like receptor 4 (TLR4), a factor that activates the expression of several
pro-inflammatory cytokine genes [123]. Similarly, an inhibitory effect on TLR4 signaling
with reduced post-MI cardiac dysfunction was induced by chronic pretreatment with a low
dose of metformin [124]. Of relevance, studies have demonstrated a pivotal role of TLR4
even in myocarditis and HF [125].

A recent study investigating the inflammatory response during MI demonstrated
that metformin could activate autophagy and subsequently inhibit the NLRP3-mediated
pro-inflammatory response of myocardial macrophages [126]. The same effects on the
autophagy-NLRP3 axis mediated the anti-inflammatory and cardioprotective response to
metformin observed in high glucose-treated cardiomyocytes and in diabetic mice [127].
These results are in line with previous experiments on diabetic OVE26 mice indicating
that through the AMPK signaling pathway, metformin administered for 4 months could
upregulate autophagy activity and prevent cardiomyopathy [128].

The role of a dysfunctional T-cell-mediated immune response in the onset and pro-
gression of CV disease is well documented and increasing evidence supports inhibition of
T-cell-mediated inflammation by metformin [129]. Overall, in vitro and in vivo studies in
animal models of chronic inflammation indicate that metformin exerts its anti-inflammatory
effect through an AMPK-dependent modulation of the mTOR and the signal transducer
and activator of transcription (STAT) 3 and 5 of T-cells [130].

Overall, several studies show the positive effects of metformin on oxidative stress and
inflammation, two crucial processes strongly interconnected by a reciprocal worsening that
threaten heart health both systemically and locally. In the last years, it has been reported
that metformin may protect epicardial adipose tissue, a structure closely interconnected
to the myocardium through a shared microcirculation that when enlarged takes on a
harmful secretory profile of adipokines, which can damage the heart through inflammatory
mechanisms [131,132]. It is believed that this benefit mainly involves HFpEF [133].

4.2.3. Prevention of Remodeling

Metformin shows potent anti-remodeling properties linked to attenuation of my-
ocardial hypertrophy and fibrosis that may preserve LV morphology and systo-diastolic
performance, irrespective of glycemic status and the nature of myocardial insults. These
beneficial actions have been well demonstrated in a pacing-induced HF model in dogs
and in murine models of ischemia-induced cardiac injury or spontaneously hypertensive,
insulin-resistant state. In these experimental models, AMPK activation by metformin
repressed cardiac remodeling and rescued cardiac function [79,106,134].

Mammalian cardiomyocytes lose the ability to proliferate after birth; thus their growth
is the only mechanism that may enlarge cardiac mass to increase the contractile function and
reduce ventricular wall stress in response to a workload excess [135–137]. The development
of cardiac hypertrophy is associated with metabolic reprogramming increasing protein
synthesis and strongly involving AMPK [136,138]. In hearts from AMPK-α2 knockout mice,
hypertrophy induced by phenylephrine is greatly accentuated, and human mutations in the
AMPKγ subunit cause familial hypertrophic cardiomyopathy [139,140]. On the contrary,
AMPK activation can inhibit some molecular mechanisms promoting cardiomyocyte cell
growth such as mTOR [141]. In vitro studies confirm that pharmacological activation of
AMPK by metformin can inhibit two pathways involved in heart regulation of protein
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synthesis, the eukaryotic elongation factor 2 (eEF2) and the p70 ribosomal S6 protein kinase
(p70S6K) [142].

Metformin mitigated cardiac hypertrophy in mice subjected to chronic pressure over-
load, through an AMPK-mediated activation of the eNOS-NO downstream signaling
pathway [143].

In AngII-induced hypertrophy of cultured cardiomyocytes, metformin exerted anti-
hypertrophic effects associated with AMPK-induced blunting of AngII type 1 receptor
(AT1R) up-regulation and of mitochondrial dysfunction through the SIRT1/eNOS/p53
pathway [144]. This effect is in accord with the results of a rodent study in which SIRT2
repressed the aging-related and AngII-induced cardiac hypertrophy, whereas the loss
of SIRT2 expression blunted this protection against cardiac hypertrophy, an effect likely
caused by the failure to activate the liver kinase B1-AMPK pathway [145]. Similarly,
experimental models demonstrated that the activation of SIRT1 along with PGC-1α and
AMPK, and the suppression of mTORC1 along with its upstream regulator Akt, exerted
cardioprotective effects by promoting survival of cardiomyocytes over their growth [146].

Another study demonstrated that aldolase A was hyper-expressed in a mouse model of
cardiac hypertrophy and that activating AMPK by metformin or AICAR this overexpression
as well as the cardiomyocyte hypertrophy were prevented [147].

Other evidence supports those anti-hypertrophic actions of metformin not mediated
by AMPK activation. Repressing mTOR signaling, metformin was able to protect mouse
hearts against ventricular hypertrophy and dysfunction in both wild-type and AMPKα2
knockout mice exposed to transverse aortic constriction-induced hypertrophy [148]. Using
primary cultured cardiomyocytes, a recent study demonstrated that metformin could halt
the transcription of genes involved in hypertrophy response, such as endogenous atrial
natriuretic factor and brain natriuretic peptide genes [149]. In a previous study, metformin
suppressed the acetylation of histone H3K9 by inhibiting the histone acetyltransferase
activity of p300 that has been involved in the development of HF [150].

In humans, a trial enrolling few patients (MET-REMODEL) documented a reduction
in LV mass indexed to height in 68 dysglycemic not diabetic patients with CAD treated
with metformin over a 12-month follow-up [151].

The other deleterious player of heart remodeling is the interstitial accumulation of col-
lagen, an important promoter of increased stiffness, and impaired heart muscle relaxation.

Sasaki et al. demonstrated that metformin reduced myocardial fibrosis and improved
cardiac performance through suppressing mRNA expression of the transforming growth
factor (TGF)-β1 [134]. Another study in mice subjected to transverse aortic constriction
demonstrated that metformin could modulate the expression of extracellular matrix protein
genes. In this model, biguanide inhibited the TGF-β1 synthesis induced by pressure over-
load and the phosphorylation of Smad3 factor and its TGF-β1-stimulated translocation to
the nucleus, leading to impaired collagen synthesis in cardiac fibroblasts [152]. Metformin
determined an AMPK-mediated reduction in the expression of TGF-β1, basic fibroblast
growth factor, and TNF-α in primary cardiomyocytes [153]. In accordance, a reduced
post-MI scar formation occurred in AMPKα1 knockout mice suggesting the centrality of
this kinase in cardiac fibroblast/myofibroblast biology [154].

In a study examining the angiotensin (Ang) II-induced differentiation of cardiac
fibroblasts into myofibroblasts, a critical event in the progression of cardiac fibrosis and
pathological cardiac remodeling, metformin decreased the Ang II-induced ROS generation
in cardiac fibroblasts by inhibiting the activation of the protein kinase C-NADPH oxidase
pathway [155].

As largely documented, metformin may directly impact myocardial hypertrophy and
interstitial fibrosis, the two structural hallmarks in the physiopathology of HF. In addition,
the reduced production of advanced glycation end products (AGE) by biguanide may
contribute. AGEs are reported to induce crosslinks within and between the long-living
protein collagen, thus increasing its resistance to enzymatic breakdown that leads to a
permanent interstitial accumulation [28,156,157]. Interestingly, metformin may correct
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the significant increase of cardiomyocyte apoptosis and death characterizing the heart of
diabetic patients and representing the primum movens for hypertrophic and fibrotic LV
remodeling [31,158]. Furthermore, it is reported that the AMPK activation by biguanide
prevented the apoptosis of cardiomyocytes during their incubation with H2O2 and reduced
the number of dead cardiomyocytes in the hearts of dogs with experimental HF [134].
Other experiments confirmed this effect in the setting of chronic myocardial ischemia [159].

4.2.4. Amelioration of Left Ventricle Function

Several preclinical studies document positive effects of metformin on cardiac per-
formance, as in a genetic model of spontaneously hypertensive insulin-resistant rats, in
rodent models of volume-overload HF with streptozotocin diabetes, in dogs with pacing-
induced HF, and in the setting of post-ischemic HF after permanent left coronary artery
occlusion [79,106,134,157,160–163]. In a rodent model of HFpEF, chronic treatment with
metformin reduced the elevation in right ventricular pressure and the extent of pulmonary
small artery hypertrophy [164]. In a brief meta-analysis of six studies in various experimen-
tal models of HF, metformin therapy was associated with an 8% higher LVEF than other
antidiabetic drugs [78]. A mechanism possibly justifying these results may be the enhanced
phosphorylation of the phosphokinase A sites in the N2B spring element of titin induced
by metformin in a mouse model with an HFpEF-like phenotype [165]. This change may
lower the cardiomyocyte stiffness, a typical finding of myocardial biopsies from patients
with HFpEF, in association with cardiomyocyte hypertrophy and interstitial fibrosis [166].

On the contrary, the results of clinical studies are somewhat conflicting. In two studies
in diabetic subjects, metformin predicted LV dysfunction. This result is questionable as
treated patients were more obese than controls [167,168]. Instead, other investigations doc-
umented benefits on diastolic and systo-diastolic function, except in a study on advanced
HFrEF [169–171]. Moreover, long-lasting metformin therapy was beneficial for improving
diastolic function and delaying the progression of HFpEF in hypertensive diabetic peo-
ple [172]. The results of the few and small placebo-controlled RCTs evaluating metformin
in the setting of HF are rather disappointing. A 3–4 month therapy in HFrEF patients with
prediabetes or insulin resistance does not improve resting LVEF and global longitudinal
strain, nor exercise capacity [97,173]. In the GIPS-III trial, a prospective study evaluating
the effect of 4 months of metformin treatment in 380 non-diabetic patients presenting
STEMI and a mean LVEF of 54%, the LVEF and the diastolic function was not affected at the
end of therapy, and not even 2 years later [174–176]. Evidence from the nine RCTs included
in a recent systematic review only supports a metformin beneficial effect in improving
MVO2 and reducing NT-proBNP levels in insulin-resistant or T2DM patients with HF,
especially those without overt signs of CVD [177]. Instead, in a recent trial enrolling 54
non-diabetic patients with metabolic syndrome, metformin treatment on top of lifestyle
counseling ameliorated diastolic dysfunction [178].

Overall, an amelioration of cardiac functional parameters by metformin may be more
likely expected in patients with mild forms of HF, mainly HFpEF, no history of CV events,
and after a long time chronic treatment.

5. Effects of Metformin on Adverse Consequences of HF in Clinical Studies

Overall, a huge number of studies on small or large populations reported a beneficial
impact of metformin therapy on HF prognosis.

5.1. Effects on Total and HF Mortality

Several authors described the reduction of HF mortality compared to sulfonylureas,
glucose-lowering regimens other than metformin, or lifestyle modification alone, as well as of
all-cause mortality compared to sulfonylureas or not-metformin monotherapy [14,179–187].
Treatment with metformin determined an 18% lower risk of death in elderly patients dis-
charged with diabetes and HF [13]. A significant reduction of mortality was obtained even
in diabetic patients with incident HF who were metformin new users or already receiving
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oral antidiabetic agents, as well as in subjects with both newly diagnosed HF and diabetes,
with respect to patients not exposed to any antidiabetic drug [14,177,182,188].

Meta-analyses of observational studies or RCTs confirm positive outcome results, such
as improved survival with metformin monotherapy, lower CV mortality vs. sulfonylureas,
and reduced all-cause mortality in metformin-treated diabetic patients [189–191]. In a
recent meta-analysis including 40 studies comprising over a million diabetic patients,
metformin reduced all-cause mortality as well as the incidence of CV events in people with
HF and CHD better than sulfonylureas or non-medication [192].

In HFpEF patients, metformin reduced long-term mortality following admission
for acute HF and all-cause mortality in subjects with poor glycemic control [193,194]. A
recent systematic review and meta-regression analysis confirmed a significant reduction
of mortality in HFpEF by metformin, even after adjustment for HF therapies including
β-blockers and angiotensin II inhibitor ACE-Is [195].

Instead, in a cohort study involving diabetic patients with advanced HF (III and
IV NYHA class), one-year survival in metformin-treated and non-metformin-treated pa-
tients was 91% and 76% respectively, a result not statistically significant after multivariate
adjustment [171].

The lowering of mortality risk by metformin seems to be lower than ACE-I/ARB but
greater than β-blockers and detectable even in diabetic patients usually excluded from clin-
ical trials due to the presence of several comorbidities, such as renal insufficiency, MI, and
obesity [182,184]. Accordingly, in a systematic review of observational studies, metformin
treatment was associated with a mortality of 23% compared to 37% in controls (mostly on
sulfonylurea therapy), across different classes of kidney dysfunction and EF [196,197].

Only a few meta-analyses documented a null effect of metformin on all-cause and CV
mortality and on the risk of HF [107–109]. Others reported a troubling increased risk of
death with the concomitant use of metformin and SU [189–192,198–201].

Interestingly, a significantly lower in-hospital mortality emerged in metformin-user
diabetic patients with COVID-19 [202–204].

5.2. Risk of Admission for HF

Metformin reduced the risk of admission for HF compared to thiazolidinediones,
sulfonylureas, or other non-metformin contemporary regimens, and once again versus
sulfonylureas in T2DM patients who persisted in the use of biguanide despite reduced
kidney function [13,14,181,198,205]. This benefit was confirmed by systematic reviews and
meta-analyses [189–191,196].

In a retrospective observational study, the benefits of metformin in reducing HF exac-
erbations dissipated after a few days of non-use, and the cumulative drug exposure did not
decrease the risk of HF-related exacerbation [206]. Otherwise, in another study metformin
was associated with a lower risk of hospitalization for HF in a dose-response pattern with
a beneficial effect especially significant when used for more than 2.5 years [207].

5.3. Risk of New-Onset HF

In some studies, chronic treatment with metformin linked with a lower risk of new-
onset HF [208,209]. McAlister et al. estimated that 4.4 cases of HF per 100 treatment-years
developed in patients using sulfonylurea monotherapy versus 3.3 cases per 100 years in
those using metformin monotherapy [210]. Examining 232 meta-analyses evaluating ten
classes of diabetes drugs, metformin appeared neutral with regard to all CV outcomes,
but it might decrease the risk of major adverse CV events, comprising HF, compared with
placebo or no treatment [211].

Although with the well-known limitations of observational studies and meta-analyses
but considering the advantage of a huge amount of data, these studies collectively empha-
size the benefits of metformin in HF outcomes and confirm its better effectiveness in the
first stages of EF, particularly HFpEF, as emerged in preclinical studies.
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6. Concluding Remarks and Future Perspectives

Today, a large number of people suffer from concomitant diabetes and HF and there
will be even more in near future. It is therefore a relevant focus to identify the best
pharmacological approach for glycemic control, also useful to both prevent and manage
this CV complication in diabetic people.

Metformin is the current first choice for the great majority of patients with newly diag-
nosed T2DM requiring medical therapy. Based on the literature, the data suggest the ability
of metformin to avert the development and/or progression of HF. This early inclusion in a
therapeutic protocol of diabetes is a great opportunity to implement a preventive strategy
against HF, such an advantage is not documented for other antihyperglycemic drugs, com-
prising the newer ones. For instance, the CVOTs randomized to SGLT2 inhibitors showing
CV benefits included patients generally with advanced diabetes and a great burden of
CVD. Only a recent observational study evaluating the SGLT2-I effectiveness compared to
metformin for reducing CV events in T2DM patients, treatment-naïve in the preceding year,
registered after a short-/mid-term follow-up of approximately 600 days an 18% reduction
in CV events including IMA, HF, and stroke. However, the wide 95% CIs of many outcomes
precluded a definitive conclusion on an eventual greater CV benefit for gliflozins [212].

As regards the management of established HF, choosing to treat diabetic patients
with metformin is a sensitive matter given the robust data from CVOTs published since
2015 providing compelling benefits for new classes of antihyperglycemic agents. However,
these studies had as comparator group an active medicament and not placebo. Moreover,
the high prevalence of baseline metformin use in these trials may corroborate a role for
biguanide as first-line therapy for T2DM with high CV risk.

Unfortunately, after over 60 years of clinical use and apart from the UKPDS, no large
trial has specifically assessed the impact of metformin therapy on risk for HF development
or on the prognosis of established HF among patients with T2DM. Nor do we have
comparison data with SGLT2-Is apart from those that had as a primary outcome the change
in HbA1c [213]. This gap is not proof that advantages do not exist for metformin. Moreover,
we cannot ignore the deep experience with its use in clinical practice and the long-term
evidence, lasting almost two decades, from a great harvest of data from experimental
investigations providing mechanistic explanations that incessantly continue to emerge in
the literature. Otherwise, the information on the long-term CV outcomes of SGLT2-Is and
GLP1-RAs are lacking, and mechanistic studies are quite scarce since the objective difficulty
for new medications is to equalize the extraordinary endurance for well over half a century
of metformin.

To date, we know that, at a minimum, metformin is not harmful to diabetics with
concurrent HF and that it may even be beneficial in reducing CV mortality and morbidity,
in addition to the not negligible potential role in the prevention of aging-related diseases
as well as cancer [214–217].

To dispel any doubt and make complete clarity on the metformin efficacy in HF
diabetic patients, large long-term clinical trials powered to assess CV protection would
be needed. This project is extremely difficult to implement for many reasons, primarily
the lack of an economic profit, and unlikely will be conducted unless the initiative starts
from governments.

Future research is awaited to address other not negligible issues. First, it is necessary
to clarify definitively the CV interaction of metformin with SGLT-Is. Second, the metformin
protection against HF is worthy of more extensive investigation even in people without con-
comitant diabetes, since its cardioprotective properties detached from antihyperglycemic
effectiveness. In this matter, the ongoing DANHEART is the first study powered to address
the effect of metformin (and of hydralazine-isosorbide dinitrate) in people with prediabetes
or diabetes suffering from HFrEF [218]. Other data of interest will be provided by a large
US trial evaluating the effects of extended-release metformin on clinical outcomes among
nearly 8,000 patients with prediabetes and established atherosclerotic CVD, in which hospi-
talization for HF is a secondary outcome measure (VA-IMPACT; NCT02915198). This study
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was placed on temporary administrative hold since the COVID-19 pandemic (last update
posted: 24 September 2021). Another placebo-controlled trial is evaluating the effects of
prolonged-release metformin on the risk of CV events in patients with dysglycemia and
high CV risk [219].

Finally, it can be appealing to explore if metformin may be an efficient therapeutic
approach for the HFpEF phenotype, a condition notoriously linked to systemic metabolic
or inflammatory diseases and for which no established therapies currently exist.
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