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Abstract

Background

A large body of evidence suggests that thyroid hormones (THs) are beneficial for the treat-
ment of cardiovascular disorders. We have shown that 3 days of triiodo-L-thyronine (T3)
treatment in myocardial infarction (MI) rats increased left ventricular (LV) contractility and
decreased myocyte apoptosis. However, no clinically translatable protocol is established
for T3 treatment of ischemic heart disease. We hypothesized that low-dose oral T3 will offer
safe therapeutic benefits in ML.

Methods and Results

Adult female rats underwent left coronary artery ligation or sham surgeries. T3 (~6 pg/kg/
day) was available in drinking water ad libitum immediately following MI and continuing for 2
month(s) (mo). Compared to vehicle-treated MI, the oral T3-treated MI group at 2 mo had
markedly improved anesthetized Magnetic Resonance Imaging-based LV ejection fraction
and volumes without significant negative changes in heart rate, serum TH levels or heart
weight, indicating safe therapy. Remarkably, T3 decreased the incidence of inducible atrial
tachyarrhythmias by 88% and improved remodeling. These were accompanied by restora-
tion of gene expression involving several key pathways including thyroid, ion channels,
fibrosis, sympathetic, mitochondria and autophagy.

Conclusions

Low-dose oral T3 dramatically improved post-MI cardiac performance, decreased atrial
arrhythmias and cardiac remodeling, and reversed many adverse changes in gene expres-
sion with no observable negative effects. This study also provides a safe and effective treat-
ment/monitoring protocol that should readily translate to humans.
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Introduction

Thyroid hormones (THs) serve as a master regulator in the control of diverse molecular, physi-
ological and pathophysiological remodeling processes in the heart and vascular system [1, 2].
Studies have repeatedly shown increased morbidity and mortality in heart failure (HF) patients
with low serum TH levels [3, 4]. In addition, irrespective of the serum thyroid status, peripheral
thyroid signaling mechanisms are impaired in models of cardiovascular disorders including
increased deiodinase 3 enzymes [5]. THs regulate expression of myosin heavy chains (MHC)
and several studies have demonstrated that TH treatment reversed ‘fetal gene reprogramming
or re-expression’ with corresponding improvement in functional performance [6-8].

Many have shown that THs can be safely administered in human HF with significant short-
term therapeutic benefits [9-11]. Nonetheless, the impetus for developing TH analogs to treat
HF is largely based on the premise that THs are too dangerous for such use, implying that a
therapeutic window may not exist. Ironically, current opinions on this topic have been strongly
influenced by two clinical trials involving TH analogs, rather than actual THs, that showed
adverse effects from doses that appeared to be excessive [12, 13]. Recently, we have successfully
demonstrated prevention/attenuation of left ventricular (LV) dysfunction/remodeling without
significantly altering thyroid homeostasis using low dose oral triiodo-L-thyronine (T3) treat-
ment in models of diabetic cardiomyopathy and hypertensive heart failure [5, 14]. The major
goal of this study was to explore a safe therapeutic window for oral T3 treatment of myocardial
infarction (MI) in rats and verify efficacy of a selected dose within that window. The ongoing
THIRST (Thyroid Hormone Replacement Therapy in ST Elevation MI) trial investigating oral
T3 treatment of STEMI patients served as a major catalyst for this animal study (http://www.
ponte-project.eu/).

We have previously demonstrated that 3 days of T3 treatment in rats following MI resulted
in decreased myocyte apoptosis and increased LV contractility [15]. We hypothesized that our
therapeutic T3 treatment/monitoring protocol will achieve safe cardioprotective effects in rats
following MI. T3 was chosen instead of thyroxine (T4) since the conversion mechanisms of T4
into T3 is known to be impaired in nonthyroidal illness syndrome [16]. The administration of
T3 largely by-passes this potential problem of bioavailability by direct application of the active
form of TH [17]. This study, for the first time, has thus established a safe therapeutic window
for low-dose oral T3 administration with marked improvements in cardiac structure and func-
tion, rhythm, remodeling and gene expression without adverse cardiovascular effects. This also
serves as a translatable TH protocol for MI that provides much needed guidance for clinical tri-
als, as in subclinical thyroid dysfunction.

Methods
Experimental design

This study was approved by the Institutional Animal Care and Use Committees at Oklahoma
Medical Research Foundation (OMRF) and New York Institute of Technology College of Oste-
opathic Medicine (NYIT-COM) and is in compliance with the “Guide for the Care and Use of
Laboratory Animals” (National Institutes of Health Publication No. 85-23, Revised 1996) and
presented based on Animal Research: Reporting of In Vivo Experiments, ARRIVE guidelines
(National Centre for the Replacement Refinement & Reduction of Animals in Research,
NC3Rs). Adult female Sprague-Dawley rats (Harlan Labs) aged 11 weeks old were used in this
study. Following acclimatization, the rats were examined to exclude any pre-existing condi-
tions that may complicate surgical outcome. Neck and chest fur were shaven and disinfected
with betadine and 70% alcohol. The chest was draped to maintain asepsis and the surgical tools
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were sterilized with hot bead sterilizer before and between surgeries. As described previously
[18], following standard intraperitoneal ketamine/xylazine anesthesia and endotracheal intuba-
tion and ventilation (~70 breaths per minute), MI was produced by ligation of the left anterior
descending coronary artery by the same microsurgeon (YFC) at NYIT-COM and OMRE. Fol-
lowing completion of the microsurgical procedure, the chest retractor was removed and the
ribs were drawn together using continuous 5-0 silk sutures. The tidal volume (1 ml per 100
gram body weight) was temporarily increased to expel air from the chest, and skin was closed
with continuous 5-0 sutures.

Immediately following surgery, MI survivors were randomly assigned to an MI group
(n =22) and an MI+T3 group (n = 24). A Sham group (n = 18) was produced with a similar
procedure except that the suture was tied loosely around the coronary artery. These animal
counts include surgeries performed at both the institutes (NYIT-COM and OMREF). To ensure
sufficient number of rats were available despite any potential immediate-post-op mortality, we
operated on extra rats in the MI groups. Following extubation, intramuscular Buprenorphine
analgesia was administered. T3 was dissolved in ethanol/glycerol and added to drinking water
(0.05-0.08 pg/ml) for a total duration of 2 months. This provides a dose of 5-8 pg/kg/d based
on daily water consumption (~25 ml/day from pilot studies) and serum TH feedback inhibition
response from previous studies [5]. Vehicle was used in rats not treated with T3 using the
aforementioned diluents. The dose range was selected based on a pilot study showing that
heart rate, heart weight and water consumption begins to increase in some rats at doses above
8 ugrkg/d.

At the NYIT-COM site, two-dimensional echocardiograms (GE Vivid 7 Dimension, Hor-
ten, Norway; M12L transducer) were obtained from LV short-axis to visualize the extent of
infarction immediate post-op [18]. Animals that developed small infarcts [19] and those that
did not survive for more than 48 hours were excluded (data not shown). At 2 months post-MI,
blinded, standard isoflurane-anesthetized (3% induction, 1.5% maintenance) cardiac catheteri-
zation studies were followed by body weight measurements and terminal experiments (surgical
plane isoflurane anesthesia)-blood collection for serum TH levels and tissue collection for his-
tology (fixed in paraformaldehyde) and molecular studies (stored at -80°C). Cardiac function
and remodeling were also assessed by Magnetic Resonance Imaging (MRI) at about 1 week, 1
month, and 2 months of T3 treatment at the OMREF site from another cohort followed by ter-
minal experiment protocols as outlined above. The MRI acquisition was performed at OMRF
and all animals (1 to 3 per cage) were kept on a 12-hour light/dark cycle and food and water
were provided ad libitum. Nine rats became ill or died in the immediate post-op period prior to
experimental endpoint. Animals exhibiting symptoms indicative of severe illness/moribundity
were humanely euthanized per the IACUC protocol.

Determination of LV Volumes and Function by Cardiac Magnetic
Resonance Imaging

For MRI studies at the OMREF site, rats were anesthetized with inhaled isoflurane (1.5% at 1 L/
min oxygen flow) via a nose cone. During the experiment, the rats were positioned supine on a
nonmagnetic warming pad to maintain constant body temperature throughout the MRI study.
Experiments were performed on a 7 Tesla MRI scanner (Bruker BioSpin, Ettlingen, Germany)
as described [20]. For imaging an IntraGateFLASH sequence with te = 2.1 ms, fr = 10 ms, and
300 repetitions was used for all experiments. The heart was initially positioned by measure-
ment to the center of the magnet and then further set by using fast imaging with steady state
precession as the rat was moved. Single slice images in all three planes (axial, sagittal and coro-
nal) were acquired using an IntraGateFLASH sequence with te = 2.1 ms and #r = 10 ms. For
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cine and volume imaging a field of view of 6.00 x 6.00 cm was chosen and 256 each of phase
encode and read steps were used to resolve the spatial distribution of excited spins.

All MRI data are adjusted to accommodate for rate changes and the data are reflective of the
ambient cardiac function and rate. The cardiac period (time between the peaks of the R wave
in the electrocardiogram, ECG trace) ranged from ~220-280 ms, and a respiratory rate of ~18-
30 bpm. The images at each increment of the period were combined and displayed by cine in
the mid-ventricular short axis slice. These provided data for assessment of LV systolic and dia-
stolic dynamics, and calculations of fractional shortening and wall thickness. For volume calcu-
lations, a new set of images were collected with the slice position advanced by the slice
thickness of 1.0 mm.

For LV blood volume measurements, endocardial borders were manually delineated. The
total LV volume at end diastole and end systole was estimated by taking the sum of all cavity
slice volumes assuming a uniform thickness of excitation across a chosen slice at the two trigger
points. For assessment of LV systolic and diastolic dynamics, the cavity slice volume was mea-
sured in all acquired images and was plotted against the time from onset of the QRS trigger,
and a volume-time curve was established.

Atrial arrhythmia inducibility and hemodynamic measurements

Electrophysiological studies were performed at the NYIT-COM site on rats operated by the
same microsurgeon based on Zhang et al [21]. Under anesthesia, a 1.6F octopolar Millar
electrophysiology catheter (EPR-802, Millar Instruments, Inc., Houston, Texas) was inserted
through right jugular vein and advanced into the right atrium with 8 poles recording atrial elec-
trograms. Standard surface ECG lead II and 3 right atrial electrocardiograms from 3 pairs of
electrodes were displayed and recorded using a PowerLab data acquisition system (ADInstru-
ments, Colorado Springs, CO). The purpose of recording 3 atrial electrograms from distal,
middle, and proximal pairs was to facilitate determination of atrial capturing and arrhythmia
pattern. Poles 5 and 6 (the third pairs counted from catheter tip) were used for pacing. Regular
pacing and standard S1S2 pacing protocols were used. Burst pacing containing 200 impulses at
50 Hz was used to induce atrial tachyarrhythmias (tachycardia or fibrillation; ATA). ATA was
defined as rapid atrial activations with varying electrogram morphology lasting >0.5 seconds.
The duration of the subsequent spontaneous ATA after burst pacing was documented. The
mean ATA duration based on 5 such tests was used to reflect the ATA substrate in each animal.
If induced spontaneous ATA lasted more than 5 minutes, ATA was considered long-lasting.

LV hemodynamics was obtained under anesthesia by catheterization through the right
carotid artery using a 1.9F SciSense pressure-volume catheter (Transonic Scisense Inc., Lon-
don, Ontario, Canada). The tip of the catheter was advanced through the aorta into the left
ventricle to study heart rate, LV and arterial pressures and change in pressure over time (dP/
dt). The data were acquired and analyzed by the LabScribe software (iWorx Systems, Inc.,
Dover, NH).

Serum hormone measurements

The collected blood was centrifuged at 4000 rpm for 15 minutes at 4 deg C. The supernatant
was aliquoted and stored at -80° Celsius until assayed. Serum T3 and T4 levels were measured
using Enzyme-linked immune-sorbent assay (ELISA) kits according to the manufacturers’
specification. T3 and T4 kits were obtained from Monobind Inc. (Lake Forest, CA). The kits
have been shown to produce excellent results in rats in our laboratory. Rat thyroid stimulating
hormone (TSH) was assayed using a kit from ALPCO (Salem, NH).
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Tissue collection and histology

During terminal experiments, the chest was opened and the heart was arrested in diastole by
injection of 0.2 M potassium chloride in phosphate buffered saline (PBS) via the LV apex.
Blood was collected from the ventricles and processed as described below. The heart was then
rapidly removed and cannulated through the aorta with an 18 gauge gavage needle to allow
coronary perfusion with ice cold 0.2% 2, 3- butanedione monoxime dissolved in PBS. Fat and
aorta were then trimmed off and heart and chamber weights were documented quickly. Basal
and apical LV portions were stored at -80C and used for molecular analyses. The transverse
mid-slice of the LV with septum was used for histological analyses. Paraformaldehyde-fixed

5 um thick LV tissue sections were stained with Masson’s Trichrome stain at the Histology lab-
oratory of the NYIT-COM. Images were acquired using Olympus BX53 microscopes and
transmural infarct tissue area dimensions were analyzed using Image-Pro plus software (Media
Cybernetics, Bethesda, MD).

Real-time quantitative PCR for gene expression

RNA was isolated using TRIzol reagent followed by RNA purification using PureLink RNA
mini kit and DNasel kit (Invitrogen, Carlsbad, CA) as previously described [22]. RNA quantity
and quality were determined and validated using a NanoDrop 1000 (Thermo Scientific, Wil-
mington, DE) and Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA). Equal
amounts of RNA from each sample were converted to cDNA using RT? First Strand Kit (Qia-
gen Inc., Valencia, CA). Gene expression was evaluated by a custom-designed primer plate for
more then 90 select genes that are known or predicted to be involved in thyroid signaling, MI,
or HF using SYBR green/ROX detection (Qiagen Inc., Valencia, CA) and Roche Light Cycler
480. For the purposes of brevity, only those that are more closely relevant/significant are
shown. Ppia (cyclophilin A) and Rplp1I (ribosomal protein, large, P1) were used as housekeep-
ing control genes and expression data was analysed using SABiosciences expression analysis
online software (Qiagen Inc., Valencia, CA).

Statistical analysis

All data are expressed as means+tstandard error unless otherwise noted with standard deviation
and were compared using a two-tailed student’s t-test or one-way analysis of variance
(ANOVA) with Newman-Keuls post-hoc test (GraphPad Prism) to examine significant differ-
ences between groups. Fisher exact test was used to compare the incidence of atrial tachyar-
rhythmias (ATA). The ATA duration data are expressed as median, first and third quartile
(Q1-Q3) values delimiting bottom 25% and top 25% of the distribution and the extremes [21].
A nonparametric Kruskal-Wallis test followed by Dunn’s Multiple Comparison Test was used
to compare the ATA duration data. A value of P < 0.05 was considered statistically significant.

Results
Morphometrics

Approximately 85% of rats undergoing MI surgery survived with large infarcts as visualized by
echocardiogram or MRI and comprised the study population. This corresponds to a consistent
30%-50% infarction in both MI groups. The body weights were not altered by T3 (Table 1).
Following MI, heart weight, LV+septal weight and both their ratios with respect to body weight
were significantly increased indicating hypertrophy. T3 did not significantly increase these
parameters indicating that the low-dose did not induce hypertophic changes.
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Serum thyroid hormone levels are unaffected following T3 treatment

In a separate cohort of rats using the same treatment protocol, we had performed serum total
T4 (tT4) and TSH assays 2 weeks following sham/MI surgery. Although there were slight
decreases following T3 treatment, they were not statistically significant (unpublished). There-
fore, we did not repeat the 2-wk time-point in this study. Following 2-mo. T3 treatment in the
current cohort, compared to MI, both serum tT4 and TSH showed a non-significant tendency
to decrease with T3 —i.e., expected feedback inhibition responses following T3 treatment (Fig
1). Importantly, as intended, levels of the active form of TH (free T3) were not significantly
increased above normal.

Oral T3 treatment significantly improves MRI-based cardiac structure
and function

Compared to the vehicle-treated MI rats, T3-treated MI rats exhibited marked and consistent
improvement in ejection fraction (EF) by 2-mo (Fig 2 and S1 Fig). The increase in EF corre-
sponds to 51% at 1 week (Wk), 52% at 1 Mo and 47% at 2 Mo post-MI. The end-systolic vol-
ume significantly decreased following T3 by 29% at 1 Mo and 31% at 2 Mo post-MI (p<0.05).
These data indicate that T3 prevents deterioration of cardiac function following MI and
improves cardiac geometry. Similar and sustained improvements in structure/function were
noted at the earlier time points and additional comprehensive data were collected at 2-mo
time-point.

Oral T3 treatment reduces atrial tachyarrhythmia inducibility and
improves LV contractility

The incidence of atrial tachyarrhythmias (ATA) after discontinuation of experimental atrial
tachypacing [21] was significantly diminished by 88% (Fig 3B) following T3 (1/13 rats)

Table 1. Morphometric data.

Sham mI MI+T3
Body weight (g) 251412 264+16* 260417
HW (mg) 890+15 1213£29%* 1212428%%*
LVW+SepW (mg) 620£59 750463 ** 690+71%*§§
RVW (mg) 170+28 250412 24011
HW/BW (mg/g) 3.610.6 4.640.9%* 4.7+0.98**
(LVW+SepW)/BW (mg/g) 2.540.2 2.840.2%%* 2.740.2%§
RVW/BW (mg/g) 0.740.1 0.910.4 0.940.4

Values are means+SD

MI-Myocardial Infarction; Triiodo-L-thyronine (T3)
BW-Body weight

HW-Heart weight

LVW+SepW-Left ventricular Weight including septal weight
RVW-Right ventricular weight

n = 13-16 sham; 20-21 MI+Veh; 22-24 MI+T3
*p<0.05 vs. Sham

*%*p<0.01 vs. Sham

*%*%p<0.01 vs. Sham

$p<0.05

$8p<0.01 vs. MI.

doi:10.1371/journal.pone.0151413.1001
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Fig 1. Serum thyroid hormone levels. Serum levels showed anticipated mild feedback inhibition inT4 and
TSH without significant increase in free T3 levels. tT4—Total T4; TSH-Thyroid-stimulating hormone; T3—

triiodo-L-thyronine; MI-Myocardial Infarction; tT4: n = 14 sham; 21 MI; 23 MI+T3; TSH: n = 15 sham; 20 Ml;
17 MI+T3; free T3: n= 11 sham; 15 MI; 15 MI+T3.

doi:10.1371/journal.pone.0151413.g001

compared to the vehicle group (7/11 rats). Only two out of nine shams developed arrhythmias.
Correspondingly, arrhythmia duration was also significantly attenuated (Fig 3C).

Importantly, anesthetized heart rates (HRs) did not change significantly between the groups
(Table 2 and S2 Fig) indicating that T3 is safe and did not induce tachycardia at the dose used.
Similarly, the rate-pressure product, an indicator of myocardial oxygen-consumption,
remained unchanged following T3 treatment suggesting functional improvements occurred
without an increase in metabolic cost. In addition, with anesthetized HR 275-450 bpm, the
MI-induced decrease in dP/dtmax was restored following T3 indicating improvement in con-
tractility. Diastolic parameters were not significantly affected.

Decrease in infarct area and length following T3

Histologically, the increase in infarct area following MI-Veh was reduced by 29% in T3-treated
MI hearts (Table 3 and and S3 Fig). This was associated with a decrease in infarct length.
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Fig 2. Magnetic Resonance Imaging shows significantimprovement in LV function with T3 treatment.
Compared to MI-Veh, oral T3 administration markedly improved MRI-based ejection fraction (A); EF. End-
systolic (B), end-diastolic (C) and stroke volumes (D) also improved. * p<0.05, ** p<0.01, *** p<0.001 vs.
Sham at corresponding time-point; # p<0.05, ## p<0.01 vs. MI-Veh at corresponding time-point; n = 8 Sham,
10 MI-Veh, 10 MI-T3 at 1 week; n =6 Sham, 10 MI-Veh, 10 MI-T3 at 1 mo; n =6 Sham, 10 MI-Veh, 10 MI-T3
at2 mo.

doi:10.1371/journal.pone.0151413.g002

PLOS ONE | DOI:10.1371/journal.pone.0151413 March 16, 2016 7/16



" ®
@ ' PLOS ‘ ONE Safe Post-Infarct Oral Therapy with T3

Burst pacing

ECG (shame Y I Y Y W
D bt a7 7777, o o

Ye==y

Burst pacing

| N
Atrial tachyarriythmia
Al

Burst pacing

EEE T -

Incidence (%) of rats with inducible
Atrial Tachyarrhythmias

Duratien (see) of Inducible
Atrlal Tachyarrhythmlas

Shamien  WLVeh  IBTY Shamieh  WNen AT
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tachypacing. This demonstrates rapid irregular atrial activations with varying electrogram morphology
following MI, with T3 treatment preventing the effect. Importantly, the (B) incidence of ATA that persisted
following discontinuation of experimental atrial burst/tachypacing was significantly diminished by 88%
subsequent to T3 treatment post-MI. (C) Mean duration also significantly diminished (box and whisker plot).
n=9sham; 11 MI-Veh; 13 MI-T3; # p<0.05 vs. MI-Veh.

doi:10.1371/journal.pone.0151413.g003

Furthermore, the viable tissue area in LV mid-section infarct segment partially increased fol-
lowing T3.

Oral T3 restores gene expression related to key cardiac and cellular
processes

Quantitative Real-time PCR using custom array showed that MI significantly impaired the
expression levels of thyroid genes including Deiodinase 3 (Dio3) and monocarboxylic acid trans-
porter 10, MCT'10 (Slc16a10) (Fig 4A-4C and S4 Fig). Oral T3, although not significant, tended
to partially improve expression of these genes. Midkine also followed a similar pattern (Fig 4A).
Cardiac troponin T (Tnnt2) significantly increased and sodium calcium exchanger (NCX1) sig-
nificantly decreased following oral T3 (Fig 4D and 4E). Beta-myosin heavy chain (Myh?)
increased 2.9-fold following MI and was reduced to 0.65-fold with T3 (Fig 4D). Sarco-endoplas-
mic reticulum adenosine triphosphatase and phospholamban levels were not significantly altered
(data not shown). Interestingly, the increase (1.38-fold) in angiotensin converting enzyme (Ace)
levels following MI was downregulated by T3 by 23.4% without significantly altering angiotensin
receptors (Fig 4F). In addition, T3 also increased stimulatory G-protein alpha expression (Gnas;
p<0.05; Fig 4G) without significantly affecting adrenergic receptors or the adenylyl cyclases.
THs also restored voltage-gated potassium channel Kv4.2 (Kcnd2) and cyclic nucleotide-gated
potassium channel Hen2 (Fig 5A). The increase in matrix metalloproteinase Mmp2 levels following
MI was prevented by T3 (p<0.05) (Fig 5B). Similarly, the T3-induced reductions in collagens,
Col3al and Collal were not significantly different from the sham levels (Fig 5B and S5 Fig).
Importantly, expression levels of several mitochondrial complex enzymes were restored by
T3 (Fig 5C and 5D and S6 Fig). This includes reduced nicotinamide adenine dinucleotide,
NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 5 (Ndufb5; complex I), succinate
dehydrogenase complex, subunit B, iron sulfur (Ip) (Sdhb; complex II), mitochondrially
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Table 2. Low-dose oral T3 treatment did not adversely affect heart rate and improved contractility.

Sham Mi MI+T3
Heart rate (bpm) 331+14 324+11 33418
Rate-pressure product (mmHg/min) 3942042217 35157+1552 3602611545
LV dP/dt(max) (mmHg/sec) 83241478 6892+228* 7737+285"
LV dP/dt(min) (mmHg/sec) 82841656 5119+384*** 4967+417%**
LVESP (mmHg) 1172 102+5* 99+5*
LVEDP (mmHg) 60.5 10.6+1.6** 11.9+£0.8**
Tau (msec) 9.2+0.5 13.3+1.3* 13.4+1.2%
Arterial BP (mmHg) 100+2 93+3 96+3

LV-Left ventricular; dP/dt(max)-maximal rate of LV pressure development
dP/dt(min)-maximal rate of LV pressure decline
ESP—End-systolic pressure

EDP-End-diastolic pressure

BP-Blood pressure

T3-triiodo-L-thyronine

MI-Myocardial Infarction

n = 7-8 sham; 7-9 MI-Veh; 11 MI+T3

*p<0.05

**p<0.01

**¥p<0.001 vs. Sham

#p<0.05 vs. MI.

doi:10.1371/journal.pone.0151413.t002

encoded cytochrome b (mt-cytb; complex III) and adenosine triphosphate, ATP synthase, H+
transporting, mitochondrial F1 complex, alpha subunit 1, cardiac muscle (Atp5al; complex V).
Interestingly, T3 further increased expression of Beclin 1 (Becn1) and LC3 II (Map1lc3b) genes,
suggesting an autophagy-mediated novel cardioprotective role in MI (Fig 5F). Proapoptotic
caspase 3 (Casp3) increased with MI and was not significantly different from sham levels with
treatment (Fig 5G). The increase in Glutathione peroxidase 1 (Gpx1) was partially restored by
T3 (15%) (S6 Fig).

Discussion
Low-dose therapeutic T3 in clinical translation

While a number of studies have shown that THs can be safely administered to MI/HF patients
[9-11], a general assumption by clinicians and experts, particularly those studying TH analogs,

Table 3. Changes in infarct parameters.

MI+Veh MI+T3
Infarct area (mm?) 11.9£3.0 8.5+2.9%
Infarct length (mm) 10.4+1.4 8.3+2.0*
Percent infarct area/LV area (%) 38.2+6.4 32.619.8
Percent viable area within infarct zone (%) 26.9+16.9 39.7£17.3

LV-Left ventricular

T3-triiodo-L-thyronine

MI-Myocardial Infarction

Veh—Vehicle; means+SD; n = 5-9 MI+Veh; 8 MI+T3
*p =0.05.

doi:10.1371/journal.pone.0151413.t003
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Fig 4. Expression of cardiac genes. Gene expression was normalized using cyclophilin A and Rplp1. MCT,
monocarboxylate transporters; Mdk, midkine; DiO, deiodinase; Tnnt2, cardiac troponin T type 2; Tnni3,
cardiac troponin | type 3; Myh, cardiac alpha myosin heavy chains; Ace, angiotensin converting enzyme;
NCX1, sodium calcium exchanger 1; Gnas, GNAS complex locus, G protein stimulatory alpha; n = 8 per
group; *p<0.05, **p<0.01 vs. Sham; #p<0.05 vs. MI-V (Veh).

doi:10.1371/journal.pone.0151413.g004

is that maximum benefits may not be achievable within a therapeutic treatment window. This
is the first study to show that oral administration of low-dose T3 after acute MI and continued
over a 2-month period at doses between 5-8 pg/kg/day (0.05-0.08 pg/ml) significantly
improved cardiac structure and function, decreased incidence of tachyarrhythmias, reduced
adverse LV remodeling, partially reversed gene reprogramming, and expression of thyroid,
mitochondrial, neurohumoral, sarcomeric, ion channel and fibrotic genes. All of these were
accomplished without significant negative changes in HR, rate-pressure product, serum TH
concentrations or heart weight indicating safe cardiovascular therapeutic benefits. This is the
3" paper in a series of experiments from our lab exploring therapeutic oral T3 treatment bene-
fits in heart diseases. Previous studies in rats with diabetic cardiomyopathy and hypertension
[5, 14] demonstrated significant cardioprotective benefits with low-dose oral T3 therapy at
3-4 ug/kg/day (0.03-0.04 pug/ml). We tested doses ranging from 3-8 pg/kg/day in 2 additional
cohorts of infarct rats (unpublished) and found that doses exceeding 8 pg/kg/day led to a bor-
derline increase in HR and/or decreasing serum tT4/TSH levels (expected feedback response).
Taken together, cumulative data from our lab now suggest that oral T3 doses between 3-8 ug/
kg/day are safe and effective in treating cardiovascular disorders in rats.

Based on our observations, rats subjected to MI surgeries take ~6 hours to start drinking
water. In spite of this delay, remarkable benefits in cardiac structure/function, rhythm, remod-
eling, etc. were observed. This finding suggests possible cardiac benefits in patients who are
unable to receive rapid reperfusion therapy. Short-term TH treatment inhibited myocyte apo-
ptosis during early post-MI remodeling [15], and improved myocyte preservation in the peri-
infarct zone after long-term T4 treatment [8, 18]. Additional mechanistic studies exploring the
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Fig 5. Expression of ion channel, mitochondria-related and extracellular matrix pathway genes. Gene
expression was normalized using cyclophilin A and Rplp1. Hen, hyperpolarization activated cyclic
nucleotide—gated channel; Kecnd2, Potassium voltage-gated channel, Shal-related subfamily, member 2;
Mmp2, matrix metallopeptidase 2; Timp2, tissue inhibitor of metalloproteinase 2; Col3a1, Collagen, type llI,
alpha 1; Sdhb, Succinate dehydrogenase complex, subunit B, iron sulfur (Ip); Ndufb5, NADH dehydrogenase
(ubiquinone) 1 beta subcomplex, 5; Atp5al1, ATP synthase, H+ transporting, mitochondrial F1 complex, alpha
subunit 1, cardiac muscle; mt-cytb, mitochondrial Cytochrome b; Tfam, Transcription factor A, mitochondrial;
Becn1, Beclin 1, autophagy related; Map1lc3b; Microtubule-associated protein 1 light chain 3 beta; Casp3,
caspase 3; Bcl2, B-cell CLL/lymphoma 2; n = 8 per group; *p<0.05, **p<0.01 vs. Sham; ***p<0.001 vs.
Sham; #p<0.05, ##p<0.01 vs. MI-V (Veh).

doi:10.1371/journal.pone.0151413.g005

protective mechanism of acute oral T3 are warranted. The non-infarct anatomical and isolated
myocyte shape pattern after MI has been shown to be virtually identical in rats and humans.
Consequently, there is good reason for optimism about translation from the current studies to
humans. Unlike patients with MI, these rats were subjected only to experimental ischemic
injury and did not have preexisting/associated risk factors like atherosclerosis that can worsen
the prognosis. However, the inhibitory effect of THs on serum lipids and atherosclerosis may
offer further benefits in humans [23, 24]. Free T3, with its low serum protein binding proper-
ties, is now recognized as an important biomarker in HF and our data also supports these clini-
cal observations [4, 25, 26].

THSs and cardiac remodeling

Oral T3 significantly improved or partially normalized expression of fetal genes including
beta-myosin heavy chain, alpha-myosin heavy chain, cardiac troponin T and sodium calcium
exchanger [1, 7, 8]. G-protein stimulatory alpha is an important mediator of beta-adrenergic
signaling, and its mRNA expression/activity is compromised in hypertrophy and HF. Although
we did not find such a decrease following MI, low-dose oral T3 increased Gs alpha expression
indicating potential therapeutic effects [1]. In addition, the increase in post-MI ACE expression
was also partially decreased with T3, indicating potential cardioprotective effects via reducing
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the sympathetic neural activation characteristic of MI/HF [27]. Similar to our past observations
[5, 18, 28], we also found significant attenuation in infarct fibrotic area and associated restora-
tion in MMP and collagen gene expression. We have already published several studies [6, 7, 15,
29] on acute T3/T4 cardioprotective effects and hence did not repeat them.

THs and arrhythmia

We recently demonstrated that ATA are inducible in post-MI [30] and hypothyroid [21] rats
that have cardiac dysfunction as suggested by some clinical observations [6, 26]. T4 treatment
reduced ATA inducibility post-MI with associated attenuation in atrial fibrosis. In the present
study, we have, for the first time shown significant attenuation/prevention of arrhythmias with
therapeutic low-dose oral T3 treatment post-MI without a change in HR, indicating remark-
able clinical potential. Mechanistically, this may be partially due to effects on ion channel gene
expression observed here (Kv4.2 and Hcen2) [1, 31, 32]. Besides genomic mechanisms, THs act
via nongenomic signaling [2, 33]. Therefore, acute treatment studies will be helpful to dissect
these mechanisms. Considering that a significant portion of cardiac deaths are linked to
arrhythmias, this issue certainly merits clinical investigation [34].

Mechanisms of therapeutic low-dose oral T3-mediated cardioprotection

Mitochondria are critical for cardiac energy homeostasis and THs are known to affect mito-
chondrial biogenesis and function via classical nuclear receptor-mediated or direct mitochon-
drial mechanisms [6, 35, 36]. We found that therapeutic T3 treatment restored expression of
genes from the mitochondrial respiratory chain complexes I, II, IIT and V-both nuclear- and
mitochondrial-encoded. Autophagy has been considered to be protective or detrimental
depending on a number of factors including type or duration of injury [37, 38]. However, the
role of THs in mediating cardiac autophagy is unclear. Recent studies indicate T3-mediated
stimulation of autophagy in liver and skeletal muscle [36]. This is the first known study to dem-
onstrate that low-dose oral T3 further increased Beclin-1 and LC3 II expression indicating a
possible protective role of cardiac autophagy 2-mo post-ML. It is now a well-understood phe-
nomenon that animal models of heart diseases, such as ischemia [39-41], diabetic cardiomyop-
athy [5] and hypertensive/hypertrophic HF [14, 40, 42] result in increased Dio3, decreased
MCT-10 (one of the important T3 transporters) along with fetal gene reexpression. A number
of studies from our laboratory have shown that LV functional improvement and altered Dio3,
MCT10 and fetal genes are intimately linked to each other in DM, hypertension, or hypothy-
roidism and TH treatment of rats reverse these abnormalities [5, 14, 17, 43]. The findings in
the current study reinforces all these mechanisms and T3 partially restored them.

Limitations

The limitations of the study include the following. It remains to be shown whether the
improved cardiac structure/function and reduced tachyarrhythmia are associated with favor-
able long-term survival. Female rats were used in the study since, unlike males, they maintain a
more stable body mass during altered thyroid states. Compared to males, females also have a
much higher incidence of thyroid disorders associated with coronary artery disease [23]. In
addition, we have previously shown that post-MI changes in LV function and myocyte remod-
eling in similar young adult Sprague-Dawley rats are remarkably similar in male and female
rats [44]. Other studies using males have shown cardioprotective benefits [8, 45] and the selec-
tion of females only is not likely to affect generalization of the results to male rats. Nevertheless,
further investigation would be helpful. Multiple sections of infarcted LV were not acquired for
assessment of infarct characteristics since we have repeatedly shown transverse mid wall LV
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sections to be representative of the LV, which is consistent with the observations of others [38,
46]. Our experience from several hundreds of MI microsurgeries has shown remarkable consis-
tency. For instance, the mean infarct length of 2 months post-MI is virtually the same number
in about a dozen repeat experiments over the years. Any small infarction is excluded by early
screening. A sham T3 treatment group was not deemed necessary since the focus of the study
was therapeutic treatment of MI. The pharmacology of TH treatment of normal rats (hyper-
thyroidism) has been extensively reported.

Conclusions

ML, like other cardiac pathologies [14, 40-42], is associated with Dio3 upregulation and fetal
gene re-expression, impairments in cardiac structure, function and rhythm. This is the first
study to establish a safe therapeutic window using low-dose enteral/oral T3, providing signifi-
cant therapeutic benefits over the aforementioned defects without adverse effects on the cardio-
vascular system. These changes are likely not due to hemodynamic/systemic effects as neither
arterial pressure nor serum thyroid levels were significantly altered. Based on our gene expres-
sion results and numerous published in vitro/ex vivo studies from our and other groups, these
benefits likely stem from TH effects on local actions [6, 7, 29].

As seen in our studies, feedback inhibition of tT4 and TSH provide a reasonable guide to
monitor serum T3 levels with remarkable cardiovascular benefits. Given the upregulation of
Dio3 and subsequent conversion of T4 to inactive rT3, it seems logical to use T3, the active
form of TH for therapy. Nonetheless, we have observed similar benefits with T4 [18, 30, 43], as
have many clinical studies. The issue of T3, T4, or both as the ideal treatment mode merits fur-
ther investigation. As is the case with T4 (Synthroid) or T3/T4 (Armour), T3 is commercially
available, inexpensive, and can therefore offer remarkable healthcare savings. Preliminary data
from the THiRST PONTE pilot study suggests safe therapeutic benefits with similar T3 proto-
col in acute MI patients. However, longer-term randomized, placebo-controlled large clinical
trials are awaited.

Supporting Information

S1 Fig. Cardiac Magnetic Resonance Imaging (MRI). Representative Cardiac MRI from mid-
ventricular short axis showing systolic and diastolic phases of the three groups at 2 mo. post-
op. Arrowheads point to dyssynergic infarct area. In a triiodo-L-thyronine (T3)-treated heart,
the infarct area is reduced.

(TTF)

S2 Fig. Pressure tracings. Representative left ventricular pressure tracings.
(TIF)

S3 Fig. Cardiac histology. Representative transverse mid-left ventricular 2x histological sec-
tions following trichrome staining showing partially attenuated infarct characteristics with oral
T3 treatment.

(TIF)

S4 Fig. Expression of cardiac genes. Gene expression was normalized using cyclophilin A and
Rplp1. Thrb, thyroid hormone receptor beta; Nppb, natriuretic peptide precursor B; Tnni3, car-
diac troponin I type 3; n = 8 per group; **p<0.01 vs. Sham.

(TTF)

S5 Fig. Expression of extracellular matrix pathway genes. Gene expression was normalized
using cyclophilin A and Rplp1. Collal, Collagen, type I, alpha 1; Tgtb, transforming growth
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factor beta; n = 8 per group; *p<0.05 vs. Sham.
(TIF)

S6 Fig. Expression of mitochondria-based pathway genes. Gene expression was normalized
using cyclophilin A and Rplp1. Ndufa5, NADH dehydrogenase (ubiquinone) 1 alpha subcom-
plex 5; Nox4, NADPH oxidase 4; Ppargcla, Peroxisome proliferator-activated receptor
gamma, coactivator 1 alpha; Hspa9, Heat shock protein 9; Gpx1, Glutathione peroxidase 1;

n = 8 per group; “p<0.05, **p<0.01 vs. Sham.

(TIF)

S1 Table. Primers used for gene expression experiments. Primers were obtained from
SABiosciences (Qiagen Inc., Valencia, CA). The RefSeq Accession number refers to the repre-
sentative sequence used to design the enclosed primers.

(DOCX)
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