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ABSTRACT: The rational design of molecules with the desired functionality
presents a significant challenge in chemistry. Moreover, it is worth noting that
making chemicals safe and sustainable is crucial to bringing them to the
market. To address this, we propose a novel deep learning framework
developed explicitly for inverse design of molecules with both functionality
and biocompatibility. This innovative approach comprises two predictive
models and one generative model, facilitating the targeted screening of novel
molecules from created virtual chemical space. Our method’s versatility is
highlighted in the inverse design process, where it successfully generates
molecules with specified motifs or composition, discovers synthetically
accessible molecules, and jointly targets functional and safe properties beyond
the training regime. The utility of this method is demonstrated in its ability to
design ionic liquids (ILs) with enhanced antibacterial properties and reduced
cytotoxicity, addressing the issue of balancing functionality and biocompatibility in molecular design.
KEYWORDS: inverse design, biocompatible materials, antibiotic-free strategy, generative models, virtual screening

1. INTRODUCTION
Due to their unique physical and chemical properties, ILs have
become essential players in many fields of modern science over
the past two decades.1,2 ILs are regarded as “green solvents for
the future” because of their low vapor pressure, nonvolatile
nature, and good solvation ability.2−5 The high ionic
conductivity, wide electrochemical window as well and fire
retardant ability promote ILs as excellent electrolytes in
developing more efficient and safer batteries.6−9 Apart from
this, previous studies have shown that ILs are very efficient in
various biomedical fields including drug delivery, biosensing,
and regenerative medicine.10−14 On the other hand, since the
manufacture and use of ILs are increasing, they are inevitably
released into the environment and cause adverse effects on
human health.15 Although the low vapor pressure makes them
safe in the atmosphere, ILs are highly persistent in terrestrial
and aquatic environments due to their environmental
accumulations, excellent miscibility with most media, and
high stability.16,17 In fact, several studies have demonstrated
that ILs exhibit toxicity in a broad range of organisms such as
proteins,18 cells,19 microorganisms,20 fish,21 plants,22 and even
mammals.23 Then, a question arises, “How to design ILs with
high functionality but low toxicity”?24

Traditionally, trial and error methods generated the desired
molecules or materials. However, these methods are time-
consuming and labor-intensive. In recent years, artificial
intelligence approaches, especially machine learning and deep
learning, significantly accelerated the discovery of novel
molecules and materials.25−28 Machine learning for molecular
design generally involves two main components, i.e., prediction
model construction and virtual screening. For instance, a
broad-spectrum antibiotic was identified from over 107 million
molecules based on a well-trained deep-learning model.29

However, there are several limitations of employing the virtual
screening: 1) substantial prior knowledge is required to design
a virtual compound library, and thus limited candidates can be
provided, 2) massive computing resources are needed to
explore the vast chemical space, 3) it is difficult to find
molecules or materials with better performances from the
existing data sets.
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To address the above challenges, we proposed a deep-
learning-based inverse design framework to generate bespoke
molecules with desired properties. Compared with traditional
virtual screening, our approach is designed to generate ILs
automatically with target properties that avoid brute-force
search and computing of every possible IL. Herein, the
proposed inverse design framework comprised two main parts,
i.e., the generative and predictive models. The generative
model could learn a latent representation of the molecule and
then generate novel molecular structures. In contrast, the
predictive model was used to estimate the properties of every
generated molecule. This study applied the proposed frame-
work to design ILs with high antibacterial ability but low
cytotoxicity. Finally, a novel IL was identified from passive
candidates and experimentally verified. The current study
could facilitate the design of environmentally friendly ILs with
targeted properties.

2. METHODS
The goal of this study is to design ILs with high antibacterial activity
and low toxicity using a deep-learning-based inverse design frame-
work. This framework includes data curation, descriptor calculation,
model construction, virtual screening, experimental validation, and
molecular dynamics (MD) simulation, as shown in Figure 1. In the
inverse design process, the generative model, informed by an
extensive library of IL Simplified molecular input line entry
specification (SMILES) strings, generates novel and synthetically
feasible IL structures. Running parallel, a deep learning predictive

model scrutinizes these structures for specific toxicity end points, such
as the minimum inhibitory concentration (MIC) and the half-
maximal effective concentration (EC50) values. This dual-pronged
approach ensures the selection of ILs that meet predefined toxicity
criteria. After the initial virtual screening, selected IL candidates
undergo experimental validation to confirm their antibacterial activity
and low toxicity levels. Adding to this, MD simulations were used to
elucidate the interactions of ILs with bacterial membrane at the
molecular level.

2.1. Data Collection and Curation
The GPstack-RNN is a comprehensive model composed of two
separate modules: the generative model (G) and the predictive model
(P), each trained independently. During the training of the generative
model, SMILES strings of 1,183 ILs from the ILTox database (http://
www.iltox.com/)30 were employed as samples. The objective was to
train the model to grasp the structural syntax and chemical rules of
SMILES.

In the predictive model (P), two data sets were selected from the
ILTox database. Data set 1 measures the MIC on the growth of E. coli
after 24 h and contains toxicity data for 125 ILs. The toxicity values
ranged from 0.40 to 5.70 Log10 (μmol/L). Data set 2 is related to the
concentration at which ILs achieve 50% of their EC50 on HeLa cells
over 48 h. It includes toxicity data for 41 samples, ranging from 1.90
to 4.53 Log10 (μmol/L). We employed direct identification of
SMILES to construct an end-to-end deep learning model for toxicity
prediction of ILs. Toxicity distribution is shown in Figure S1. When
using the ILTox database as a sample, the SMILES strings were
carefully checked to ensure their correctness. To mitigate the negative
impact of feature dimensions on model performance, we employed z-
score standardization to transform the original MOE descriptors into
standard data with a mean of 0 and a standard deviation of 1 (eq 1).

z
x x= (1)

Here, for each feature, x represents the raw value, x̅ is the population
mean, and σ is the standard deviation.

2.2. Construction of the Generative Model
After obtaining SMILES structures of 1,183 chemical molecules from
the ILTox database, we pretrained a generative model (G) based on
GRU. This process was focused on learning the structural syntax and
chemical rules of SMILES, enabling the model to generate chemically
viable ILs without any optimization of properties. The GRU network
layer consisted of 500 units, with an additional 512 units in the
stacked expansion layer and a learning rate set at 0.001. The model
underwent training for 1,000,000 epochs, and the changes in the Loss
during the training process are depicted in Figure S2. The generative
model (G) processes SMILES sequences in two ways: training and
generation. During each time step in training mode, the network
acquires the training sequence’s current prefix and predicts the next
character’s probability distribution. It then samples the next character
from this predicted distribution, compares it with the actual character,
calculates the cross-entropy loss, and updates the model parameters.
In generation mode, the model parameters are no longer updated.
Instead, the network uses the already generated sequence’s prefix to
predict the next character’s probability distribution, which is then
sampled and outputted similarly. In this study, the generation count
was set to 1,000. The SMILES optimizer in the generative model (G)
optimizes the newly generated SMILES structures, using the synthetic
accessibility (SA) score in the RDkit library for identification and
scoring, filtering out irrational SMILES. Additionally, SMILES that
were duplicates of the training set or self-repetitive were excluded,
ultimately yielding structurally viable new ILs. We used the t-SNE
algorithm to reduce the dimensionality of molecular fingerprint data
and visualized them on a two-dimensional plane. These data were
generated by RDKit, which provided detailed molecular structure
information. This method allows us to intuitively analyze the
structural similarities and differences among the ILs. Additionally,
we applied the Tanimoto similarity coefficient to quantitatively

Figure 1. Workflow of our proposed inverse design of biocompatible
ILs. The process begins with (1) data extraction for ILs from the
ILTox database, followed by (2) the generation of SMILES
representations using a generative model with GRUs (Gated
Recurrent Units). The generated SMILES structures (3) are input
into a predictive model for cytotoxicity and antibacterial activity
estimation. At the (4) screening stage, ILs are further evaluated using
multiple indicators such as synthesizability and novelty. Subsequently,
(5) experimental validation is conducted, and finally, (6) MD
simulations are employed to analyze the molecular mechanisms
further. IL144 in the figure represents a specific IL instance generated
from this workflow with desired properties.
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analyze the similarity of two ILs. This method measures the similarity
between two sets by comparing the ratio of their intersection to their
union, with results ranging from 0 (completely different) to 1
(identical).
2.3. Construction of the Prediction Model
The RNN is a deep learning network designed for processing
sequential data, capable of using the output from one point in a
sequence as the input for the next. In our predictive model (P), we
directly employ the SMILES structures of ILs to build an end-to-end
model. First, SMILES are standardized to ensure the uniqueness of
molecular representations, aiding in the more accurate identification
of ILs’ molecular structures. Then, characters within the SMILES are
transformed into ASCII numeric matrices (Figure S3) and processed
through GRU network units, aligning them with corresponding
toxicity data, as depicted in Figure 1. Data sets about E. coli and HeLa
cells were selected to train an efficient predictive model. The model
parameters are set as follows: a hidden_size of 200, 2 num_layers, 500
epochs, a batch size of 16, and a learning rate of 0.001. The loss
function is the root-mean-square error (RMSE), and the optimizer is
the Adam algorithm. Additionally, MOE descriptors and two machine
learning methods (Random forest (RF) and XGBoost) were utilized
for QSAR modeling of the data sets, with a model assessment
conducted through 5-fold cross-validation. Since our model is
intended for external validation through virtual screening, we only
conducted 5-fold cross-validation. The evaluation metrics for
regression models included coefficient of determination (R2),
RMSE, and mean absolute error (MAE), which were calculated
according to the following eqs 2, 3, and 4
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where yipred is the predicted value for each specific molecule, yiobs is the
experimental value for each specific molecule, y̅iobs is the average value
across all molecules, and n is the number of molecules.

The range of hyperparameters adjusted in machine learning and
deep learning is shown in Table S1. Additionally, we utilized the
SHapley Additive exPlanations (SHAP) algorithm to analyze the
feature importance of the RF model and visualized the RNN model
through the class activation feature method.31 SHAP assigns an
importance value to each feature to explain its contribution to the
model’s prediction outcome. Class activation features are visualized by
displaying detection results of all channels in different colors, where
the intensity of the color reflects their contribution. Moreover, ILs
with effective antibacterial properties and low cell impact were
selected from the E. coli and HeLa cell data sets, with the prediction
accuracy validated through IL synthesis and external experiments.
2.4. Synthesis of the Novel IL Screened from Inverse
Design
To design environmentally friendly ILs, this study utilized the
GPstack-RNN deep learning network to select new ILs with high
antibacterial potential and low cytotoxicity, exemplified by IL144,
which was experimentally validated. E. coli strain (ATCC25922) was
obtained from the Beijing Municipal Culture Collection (BJMCC),
and the HeLa cells were purchased from the ATCC. The compound
IL144 was synthesized experimentally by the Lanzhou Institute of
Chemical Physics, China. Specifically, IL144 was synthesized from
trioctylphosphine (molecular weight 370.64, density 0.831 g/mL),
iodomethane (molecular weight 141.939, density 2.28 g/cm3), and
potassium bis(trifluoromethylsulfonyl)imide (molecular weight
319.244). The synthetic reactions were carried out according to eqs
5 and 6.

P(C H ) CH I CH P (C H ) I8 17 3 3 3 8 17 3+ + (5)

CH P (C H ) I KTFSI CH P (C H ) TFSI KI3 8 17 3 3 8 17 3+ ++ +

(6)

The synthesis process is as follows: 1) Synthesis of the intermediate
methyltrioctylphosphonium iodide: Under nitrogen protection, 8.92
mL (0.02 mol, 7.41 g) of trioctylphosphine was mixed with 100 mL of
anhydrous toluene. The mixture was stirred vigorously in an ice bath,
and 1.25 mL (0.02 mol, 2.84 g) of iodomethane was added dropwise.
The reaction was stirred in the ice bath for about 3 h, then heated to
60 °C and stirred for another 1.5−2 h. After completion, the reaction
mixture was cooled to −20 °C overnight, then subjected to vacuum
filtered and washed with anhydrous ether to yield a pale yellow solid
crude product. The intermediate was purified twice by recrystalliza-
tion from acetone-ethyl acetate and washed with anhydrous ether,
yielding a light yellow methyltrioctylphosphonium iodide. This
intermediate was then transferred to a sealed container and stored
under nitrogen. 2) Synthesis of the IL: Weigh 5.13 g (0.01 mol) of the
methyltrioctylphosphonium iodide intermediate and 3.19 g (0.01
mol) of potassium bis(trifluoromethylsulfonyl)imide, dissolve in 100
mL of high-purity water, and place in a separatory funnel for vigorous
shaking. After settling, wash three times with high-purity water to
remove the potassium iodide byproduct. The water in the IL was
removed using a rotary evaporator, followed by vacuum heating for
drying, then transferred to a sealed container and stored under
nitrogen. The resulting methyltrioctylphosphonium bis-
(trifluoromethylsulfonyl)imide salt was a light yellow viscous liquid
with a yield of 45%.

2.5. Antibacterial Assay
The antibacterial activity of E. coli was determined using the tube
dilution method. First, E. coli was cultured in Mueller-Hinton broth at
37 °C for 24 h. Subsequently, bacterial suspensions with a
concentration of 106 cfu/mL (cfu, colony-forming units) were
prepared from each culture. Solutions of ILs (31.3 to 1500 mmol/L)
were prepared and sterilized further through a 0.45 mm membrane
filter. Then, in a 96-well microplate, varying concentrations of
bacterial suspensions (50 μL) were mixed with IL solutions (50 mL).
The optical density at 600 nm (OD600) was measured using a
fluorescence spectrophotometer, with vigorous shaking to ensure
proper incubation of bacteria, and readings were taken every 10 min
for a total period of 24 h to establish bacterial growth curves (Figure
S4). Control experiments were also conducted, including a negative
control without microorganisms and a positive control without ILs.

2.6. Cytotoxicity Assay
To assess the cytotoxicity of ILs on HeLa cells, the following
methodology was employed: HeLa cells (ATCC official Web site)
were cultured in 25 cm2 Corning flasks using high-glucose Dulbecco’s
Modified Eagle Medium (DMEM, Hyclone) supplemented with 10%
fetal bovine serum (FBS, Hyclone), under a controlled environment
of 37 °C and 5% CO2 in a humidified incubator. A suspension
containing 5000 HeLa cells in 100 μL was seeded into each well of a
96-well plate and incubated for 24 h. Subsequently, the cells were
exposed to a range of IL concentrations (90.8, 181.6, 227, 302.7,
363.2, 454, 605.3, 908, and 1816 mg/L) for 48 h, with five replicate
wells per concentration. The plate included blank controls, untreated
controls, and a series of diluents, each replicated at least three times
and a total volume of 100 μL per well. After incubation, the plate was
left to stand at room temperature for 10 min and then washed twice
with 200 μL of PBS. In the darkness, 50 μL of serum-free medium and
CellTiter-Glo reagent were added to each well. The samples were
then placed on a shaker (150 r/min for 2 min) to promote cell lysis
and allowed to stand for 10 min. Luminescence intensity was
measured at a wavelength of 590 nm using a fluorescence enzyme
marker (BIOTEK Synergy HTX). Data fitting was performed using
Micromath Scientist 2.0 software to plot growth curves and
subsequently calculate the EC50 (Figure S5).
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2.7. MD Simulations
The interactions of ILs with cell membranes were simulated using
MD methods. To further investigate the antibacterial mechanism of
ILs, we selected IL144 for mechanistic studies. The topology and
force field parameters of IL144 were generated using CHARMM-
GUI, based on the CHARMM General Force Field (CGenFF),
detailed information can be found in the Method S1.32 The model E.
coli membrane consisted of three main components: POPE (72%),
POPG (23%), and POCL1 (5%), following compositions widely used
in prior simulations.33,34 Water was modeled with the 3-site rigid
TIP3P model and sodium ions were added for charge neutralization.
The initial size of the simulation box was 11 nm × 11 nm × 10 nm.
The IL144 cation and anion were positioned above the equilibrated
bilayer to set up the system.

Energy minimization using the steepest descent method was
performed until the maximum force converged below 1000 kJ/mol.
Then, the system underwent equilibration in NVT (constant Number
of atoms, Volume, and Temperature) and NPT (constant Number of
atoms, Pressure, and Temperature) ensembles, detailed information
can be found in the Method S1. After that, a 200 ns production MD
simulation was performed based on the equilibrated system in the
NPT ensemble. The temperature was fixed at 310 K using the Nose-
Hoove method with a coupling constant of 1 ps. The pressure was
kept at 1 bar using a semi-isotropic Parrinello−Rahman barostat with

a coupling constant of 1 ps. The Lennard-Jones parameters for
nonbonded interactions were determined using the conventional
Lorentz-Bertelot combination rules. All nonbonded interactions were
truncated at a cutoff of 1.2 nm, and the long-range electrostatic
interactions were calculated using the particle-mesh-Ewald method.
The covalent bonds were constrained using the Lincs algorithm. All
simulations were performed with a time step of 2 fs using GROMACS
v2022.2.35 Periodic boundary conditions were considered in all three
directions of the simulation system. The simulation snapshots were
drawn using visual molecular dynamics (VMD).36

3. RESULTS AND DISCUSSION

3.1. The End-to-End Deep Learning Models Exhibited
Excellent Performances for Predicting Antibacterial
Activity and Cytotoxicity of ILs

This study directly utilized SMILES strings to construct QSAR
predictive models, replacing traditional descriptors. To further
demonstrate the advantages of SMILES-based identification of
ILs, MOE descriptors and two machine learning methods (RF
and XGBoost) were respectively used to develop QSAR
models. As shown in Figure 2 and Table 1, the end-to-end
deep learning models exhibited superior performance to

Figure 2. Predictive performance and feature importance analysis of the machine learning models on two data sets. Correlations between the
predictions from RNN models and the experimentations of (a) the E. coli (MIC) data set and (b) the Hela cell (EC50) data set. Ranking of
important features calculated from SHAP value analysis of RF models on (c) the E. coli (MIC) data set and (d) the Hela cell (EC50) data set. R2,
RMSE, and MAE were also shown in the figure.
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traditional machine learning models. For the E. coli data set,
the RNN deep learning model achieved a predictive R2 of 0.77
(RMSE = 0.44), versus 0.64 (RMSE = 0.62) for the XGBoost
model. Similarly, the RNN model attained a predictive R2 of
0.84 (RMSE = 0.20) on the Hela data set, compared to 0.70
(RMSE = 0.36) for the optimal machine learning model. The
comparable R2 and RMSE values from cross-validation and
external validation across all models indicated that the
constructed machine learning models performed consistently

on different data sets, demonstrating good robustness and
generalization capability. All coefficient of determination (R2)
values exceeded 0.61, meaning the machine learning models
successfully captured the relationships between IL structures
and associated toxicity end points. Compared to traditional
machine learning modeling using molecular descriptors,
directly encoding IL SMILES strings as input to construct
QSAR predictive models via RNN demonstrated superior
predictive performance in this study. This can be attributed to
several factors: 1) SMILES strings contain rich chemical
information, enabling effective learning of molecular features
through end-to-end training; 2) sequence inputs retain
molecular graph topology, better capturing inherent struc-
ture−activity relationships; 3) deep learning models have
stronger capabilities for fitting complex mappings. This
sequence-based modeling framework has advantages like
stronger generalization, laying the foundation for developing
universal platforms to predict compound bioactivities.
Feature importance analysis of the predictive models

allowed us to identify several structure features or phys-

Table 1. Predictive Performance of QSAR Models
Constructed by Traditional Machine Learning (MOE
Descriptors) and End-to-End Deep Learning (SMILES)
Algorithms

MOE SMILES

Database RF XGBoost RNN

E. coli 0.63 (0.58)a 0.64 (0.62) 0.77 (0.44)
Hela 0.71 (0.36) 0.68 (0.40) 0.84 (0.20)

aValues in the brackets represent the RMSE of each model.

Figure 3. Generative model created diverse novel ILs. (a) The SMILES-based ILs are transformed into ASCII through an encoder, and the
structure of a new IL is generated from the decoder. (b) Molecular structure diagram of representative ILs. (c, d) The t-SNE distribution of 342
newly generated ILs produced. Each dot represents an IL, and the color indicates the antibacterial activity and cytotoxicity predicted from the deep
learning models. (e) Six representative ILs were selected from the newly generated chemical space. They were predicted to have high, medium, or
low antibacterial and toxic properties, respectively.
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icochemical properties responsible for antibacterial activity and
cytotoxicity, which can be used to elucidate potential
mechanisms for these bioactivities and thus guide the design
of novel ILs. The ranking of molecular descriptors was
calculated from SHAP value analysis of the optimal RF models,
as shown in Figures 2c and d. The high ranking of a molecular
descriptor indicates its pivotal role in the final predictive
model. In Figure 2c, the diversity of atomic distances within a
molecule (VDistEq), molecular diameter, molecular weight,
the complexity of its structural connections (chi0), and its
propensity to distribute between oil and water environments
(h_logP) have been identified as key factors that influence the
prediction of a compound’s antibacterial activity. VDistEq, by
analyzing how atoms are spaced within a molecule, significantly
impacts the compound’s effectiveness in binding to and acting
against bacteria. The molecular diameter is essential in
determining the compound’s capability to penetrate bacterial
cell membranes, influencing how effectively it can reach its
target. Collectively, VDisteq and molecular diameter are crucial
in determining a compound’s antibacterial properties. In
Figure 2d, several key parameters are emphasized for their
importance in predicting cytotoxicity. H_logS indicates the
solubility of a compound in water, PEOE_VSA_FPOL shows
the size of the charged (polar) portion of a molecule, and logP
(o/w) measures the compound’s preference for distribution
between oily and aqueous environments. Additionally,
SMR_VSA5 and SlogP_VSA8 reflect the size of specific
regions on the molecular surface and the area of lipophilic
regions, respectively. Among these, h_logS plays the most
crucial role in the mechanism of antibacterial action. A higher
h_logS value typically means that the compound is more
soluble in water, which aids in its more effective penetration
through bacterial cell membranes to reach its site of
antibacterial action. On the other hand, PEOE_VSA_FPOL
is also vital for the binding of the molecule to bacterial cells. Its
size and distribution directly affect the antibacterial efficacy of
the molecule, as this determines how effectively it can interact
with key sites on the cell. The analysis of feature importance is
instructive for understanding and optimizing the interaction of
ILs with biological systems, guiding the enhancement of safety
and efficacy.

Additionally, we demonstrated how stack-RNN learns and
memorizes information while processing SMILES strings. We
analyzed the activations of neurons within the neural network
during data processing. Figure S6 shows a sample IL with
interpretable activations in hidden layers, with each line
representing neuron activations at different processing steps,
where colors change from dark blue to dark red indicating
activation values from −1 to 1. As depicted in the color map,
our RNN model contains two types of interpretable neurons:
chemically sensible neurons and syntactically sensible neurons.
The chemically sensible neurons activate in the presence of
specific chemical moieties, and the syntactically sensible
neurons monitor the syntactic groups of SMILES such as
numbers and brackets. Although neural-network-based models
are typically hard to interpret, the partial interpretability
provided by this method can help understand how the models
make prediction and is highly valuable to researchers.
3.2. Novel IL Structures Were Created from stack-RNN
Generative Models

In this study, we utilized a stack-RNN to construct a generative
model (G) capable of producing 342 novel ILs with diverse
chemical properties, demonstrated by the detailed SMILES
representations available in Table S2. This model, comprising
an encoder-decoder architecture, efficiently transforms input
SMILES sequences of ILs into molecular latent vectors, which
are then decoded back into new SMILES sequences (Figure
3a). Notably, the generated ILs, including various types such as
imidazoles and pyridines, showed a broad diversity, indicating
a substantial expansion of the chemical space (Figure 3b).
342 novel ILs contain 233 cations and 86 anions. To visually

demonstrate the structural features of the ILs, we analyzed
several representative compounds. Among these cations,
quaternary ammonium compounds dominate due to their
diversity, including simple quaternary ammonium cations,
cyclic quaternary ammonium cations with closed-ring features,
and quaternary ammonium cations containing heterocyclic
elements. Moreover, our generative model has also produced a
variety of other types, such as ammonium cations and their
derivatives, pyrrolidinium cations, and imidazolium cations.
Furthermore, the cation structures generated by the model
include simple inorganic cations, such as Na+. These categories

Figure 4. Novelty and synthesizability evaluation for newly generated ILs. (a) The Tanimoto similarity between the newly generated ILs and those
collected from the ILTox database. The higher the similarity, the greater the Tc score. Most generated ILs are dissimilar from the molecules in the
ILTox database. The figure shows two extremely different (IL5 and IL30) and essentially identical (IL4 and IL118) ILs. (b) The SA score
distribution of the generated new IL structure; most ILs are easily synthesizable. IL144 showed high antibacterial activity (E. coli) and low
cytotoxicity (Hela cells).
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of ILs have distinct advantages in chemical properties and
applications. For example, quaternary-ammonium-based ILs,
recognized for their extensive antibacterial properties, have
been extensively studied in various fields, including dis-
infectants, surfactants, and herbicides. Imidazolium-based ILs
are currently being developed into new antimicrobial drugs due
to their potential antibacterial, antifungal, and anticancer
properties and ecological toxicity effects. Additionally,
pyridinium-based ILs are also under investigation as potential
anticancer agents.37−41 In the array of anions, those containing
sulfates and halides are the most abundant, followed by acetate
and other complex fluoride-containing anions. The diversity of
these anions expands the potential for the development and
application of ILs across various fields. For instance, ILs
comprising sulfate and halide anions exhibit efficacy in
antimicrobial and anticancer applications.42−45

To evaluate the structural diversity of the generated ILs, we
calculated their distribution in chemical space. We used t-SNE
dimensionality reduction to map 342 ILs onto a two-
dimensional plane. The chemical space was filled with
predicted toxicity data for E. coli (Figure 3c) and Hela cells
(Figure 3d) as biological end points, with different colors
marking the values. Six ILs, each with high, medium, or low
antibacterial and toxic properties were presented in Figure 3e.
As shown in Figure 3, the generated ILs were widely
distributed across the chemical space, covering various types
of ILs containing imidazolium, pyrrolidinium, quaternary
ammonium, and phosphonium cations. This indicates that
the stack-RNN model could effectively learn the latent
representations of molecules and generate novel ILs with
rich structural diversity. Additionally, ILs with similar toxicity
tended to cluster together in the chemical space, consistent
with the rules of structure−activity relationships. ILs with

analogous chemical structures and physicochemical properties
also exhibited approaching bioactivity.46−48

In addition, to quantify the novelty of the generated ILs, we
employed the Tanimoto coefficient (Tc) to compare chemical
similarities between the virtual library from our stack-RNN
model and existing compounds in the ILTox database. As
shown in Figure 4a, a total of 583,11 distance values ranging
from 0 to 1 with an average of 0.13 were produced among the
342 ILs. Generally, two molecules with a Tc greater than 0.5
are considered structurally similar. The lower the Tc value, the
more dissimilar the structures of the two molecules.49 For
example, IL71 and IL264 had different cation and anion types,
with a Tc of 0, and thus were deemed structurally dissimilar.
The Tc distribution was mainly concentrated between 0 and
0.4, accounting for 96.2%, indicating that most generated ILs
were structurally distinct from those in the training set and
exhibited high novelty. Therefore, the ILs generated by
GPstack-RNN possessed high structural diversity, which
increased the probability of discovering novel ILs with high
antibacterial activity and low toxicity.
In addition to structural evaluation, synthetic feasibility is an

important criterion for assessing the “quality” of inverse
designed molecules. Therefore, we utilized the SA score
method to evaluate the plausibility of the newly designed IL
structures. The SA score is calculated by weighting the
frequency of ECFP4 fingerprints obtained from 10 million
compounds in PubChem, allowing rapid assessment of
synthetic difficulty for many compounds.50,51 As shown in
Figure 4b, the SA scores of the ILs in this study ranged from
2.11 to 6.09 with an average of 3.53. Higher SA scores indicate
greater difficulty in synthesis, and molecules with SA scores
above 6 are generally considered infeasible to synthesize.52 In
this study, 99.1% of the new molecules had SA scores below 6,
with only 3 molecules slightly higher than 6 but close to it.

Figure 5. A novel IL was identified from our deep learning framework. (a) Comparison of predicted and experimental values of IL144. The selected
IL144 contained a P(C8H17)3CH3 cation and a N(SO2CF3)2 anion. (b) MD simulations to clarify the binding modes of IL 44 with the cell
membrane. (c) The average energies of both van der Waals (LJ) and electrostatic (Coul) interactions between the IL144 cation and the membrane.
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Therefore, although the newly generated ILs exhibited novelty,
most designed compounds were deemed synthetically
accessible.
In summary, this study evaluates the usefulness and success

of a generative model optimized with a stack-RNN (G) based
on several criteria: (1) molecular diversity and novelty
evaluated by the chemical space distribution and structural
similarity analysis; (2) chemical synthesis ability measured with
the SA score; (3) learning progress tracked by cross-entropy
loss during model training; (4) model performance confirmed
by virtual screening and experimentation. These evaluations
demonstrate that the generative model has successfully created
novel, synthetically feasible candidate compounds, providing
the potential for further discovery of ILs with enhanced
functionalities.
3.3. A Desired IL with High Antibacterial Activity and Low
Cytotoxicity Was Identified and Experimentally Validated

The screening objective of this study was to obtain ILs with
antibacterial activity and low cytotoxicity. Therefore, two main
screening criteria were established: first, the ILs should inhibit
the growth of typical bacteria; second, the ILs should have less
toxic effects on human hosts. In addition, the feasibility of IL
synthesis was also considered, and those molecules with lower
synthesis difficulty were preferred. For Hela cells, the EC50
value of IL144 was predicted to be 634.25 mg/L, while the
predicted MIC value for E. coli was 9.08 mg/L. Additionally,
the SA score of IL144 was calculated as 3.44, indicating that
the compound has high antibacterial activity and low toxicity
and is easy to synthesize. According to these screening criteria,
a novel compound, IL144, was finally selected from the
constructed IL library.
In the structure of IL144, phosphorus serves as the central

atom of the cation. Specifically, phosphorus-containing ILs,
due to their lower hydrophobicity (i.e., higher polarity), reduce
bacterial tolerance to quaternary phosphate salts, thus
exhibiting superior antibacterial properties structurally.53 In
the context of anions, while fluorine-containing anions might
contribute to cytotoxicity through the release of fluoride ions,
their overall impact on the toxicity of ILs is comparatively
minor.54,55 Therefore, given the structural features of IL144, it
is expected to demonstrate high antibacterial activity and low
cytotoxicity. The results of the nuclear magnetic resonance
(1H NMR) (Figure S7) and electrospray ionization mass
spectrometry (ESI-MS) for IL144 are as follows: 1H NMR
(400 MHz, DMSO-d6) δ (ppm) = 2.15 (t, 6H, P-CH2-), 1.90
(t, 3H, P-CH3), 1.51−1.23 (m, 36H, -CH2-), 0.91 (t, 9H,
-CH3); C27H54F6NO4PS2; ESI-MS: m/z 666.3 (m+1)+.
As shown in Figure 5a, we compared the predicted and

experimental values of the ILs screened by the GPstack-RNN
model. Overall, there were minor differences between the
predicted and experimental values, further indicating the
robustness and generalizability of our constructed machine
learning models. The predicted EC50 value for Hela cells was
634.25 mg/L, while the experimental value was 611 mg/L; the
predicted MIC value for E. coli was 9.08 mg/L, while the
experimental value was 9.5 mg/L. The experimental results
verify that IL144 has a good antibacterial effect and low
cytotoxicity. This process demonstrates the effectiveness of
computationally driven targeted screening strategies. Further-
more, a good model depends on the high quality of data rather
than just the size of the data set. Although the data set used in
this study is not large (125 and 41 data points in two data

sets), the model still demonstrated excellent predictive
capability through experimental validation.
In this study, IL144 exhibited different effects on E. coli and

HeLa cells. For E. coli, IL144 directly disrupts the bacterial cell
wall or membrane, causing rapid cell death, and thus shows
significant antibacterial activity at lower concentrations.56,57 In
contrast, the complex eukaryotic structure of HeLa cells
requires IL144 to act through more intricate intracellular
pathways, such as affecting cell signaling, inducing apoptosis,
or interfering with the cell cycle, necessitating higher
concentrations for similar effects.58,59 The differences in EC50
values primarily stem from the structural and permeability
differences between the two cell types.
3.4. MD Simulations Revealed the Antibacterial
Mechanisms of the Newly Discovered IL

In the MD simulations, Figure 5b illustrates the dynamic
interaction between the IL144 cation−anion pair and the cell
membrane. Initially, at 0 ns, the IL144 cation is positioned
externally to the membrane. The simulation reveals that,
progressing toward 24 ns, the cation gradually approaches and
commences interaction with the membrane’s surface. By the
100 ns mark, we observe partial insertion of the IL144 cation
into the membrane. This insertion progresses, between 100
and 200 ns, the cation fully integrates into the membrane,
signifying a stable binding interaction. The insertion of the
IL144 cation into the cell membrane at 100 ns can be
attributed to its relatively high lipophilicity, facilitating
interaction with the hydrophobic tails of the phospholipid
molecules in the membrane. This characteristic of lipophilic
cations is known to disrupt the structural integrity of bacterial
membranes, potentially leading to bacterial cell death or
growth inhibition. Furthermore, the cation’s integration into
the membrane could modify the membrane potential,
influencing ion channels and transport proteins. This alteration
may have consequential effects on the normal physiological
functions of the cell. In conclusion, the IL144 cation’s
distribution and interaction within the membrane are crucial
for understanding its toxicity mechanism and are directly
related to its antibacterial potency.
Concurrently, during the 0 to 200 ns simulation period, the

IL144 anion consistently remained external to the cell
membrane. This observation can likely be attributed to its
higher hydrophilic nature and the electrostatic repulsion it
experiences from the negatively charged phospholipids of the
membrane. Anions typically have difficulty penetrating cell
membranes which are composed of lipophilic molecules.
Therefore, the IL144 anion’s biological activity could occur
through interactions with positively charged proteins or other
molecules on the membrane surface rather than through
membrane penetration.
Figure 5c presents the time-based progression of the average

energies associated with van der Waals and electrostatic
interactions between the IL144 cation and the cell membrane.
During the early stages of the simulation, the dramatic
fluctuations in van der Waals energy correspond to the
dynamic movements of the IL144 cation as it progressively
nears the cell membrane. Over time, these fluctuations in van
der Waals energy diminish, indicating a progression toward a
more stable interaction between the cation and the membrane.
In contrast, the electrostatic energy remains relatively stable
throughout the simulation, indicating a consistent charge
interaction between the IL144 cation and the membrane. This
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suggests that electrostatic interactions are pivotal in the
binding process. This stable electrostatic interaction is a key
factor in determining whether the IL144 cation can effectively
penetrate and establish a stable binding with the membrane.
Figure S8 illustrates the energy changes between IL144 anions
and the cell membrane over time. Coulomb energy remains
stable and slightly negative, indicating balanced charge
interactions. Van der Waals energy shows major fluctuations,
particularly between 100 to 200 ns, dropping sharply below
−800, suggesting strong repulsion due to changes in distance
between the anion and the membrane.
We can conclude that this interaction is a complex process

through MD simulation and energy analysis of the interaction
between IL144 and the cell membrane. It encompasses initial
contact, exploration of binding sites, and, ultimately,
penetration or stable binding. The energy analysis offers a
dynamic view of this process, revealing the variations in
interaction forces over time and molecular position. These
insights deepen our understanding of the antibacterial
mechanism of IL144 and lay a foundational scientific
groundwork for developing more efficacious ILs.

4. CONCLUSIONS
In this study, we proposed a novel strategy for the inverse
design of environmentally friendly ILs, termed GPstack-RNN.
This method integrates a generative model (G) and a
predictive model (P) based on deep learning, which, after
separate training, are jointly used to generate ILs with targeted
characteristics (high antibacterial and low cytotoxicity). Using
GPstack-RNN, we screened several novel ILs with high
antibacterial and low toxicity, among which IL144 was
experimentally validated as an example. Experimental results
show that the generative model can produce ILs with the
desired properties beyond the training data and possess strong
generalization capabilities. By learning the structure and
chemical rules from existing data, the generative model creates
diverse molecular structures, expanding the chemical space and
enhancing the likelihood of discovering new functional
materials. The same basic approach can be applied to other
types of functional material design, such as anticancer drugs,
which could increase the discovery rate and decrease
associated costs. Finally, perhaps the most useful benefit of
using our proposed framework to create molecules is that they
can offer a powerful means to balance functionality and
biocompatibility. We are confident that our proposed approach
will help accelerate the path to useful, safe, and sustainable
material science. We hope stakeholders will join this discussion
and explore broader applications in the future.
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