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Previous studies suggest that the complexity of fiber connections in the brain plays a key role in the evolutionary process of the
primate brain and behaviors. The patterns of brain fiber systems have been studied in detail in many nonhuman primates, but not
in Sapajussp. Behavioral studies indicated that Sapajus sp. (bearded capuchins) show highly cognitive behaviors such as tool use
comparable to those in other nonhuman primates. To compare the brain fiber systems in capuchins with those in other nonhuman
primates and humans, the intrahemispheric fibers systems in 24 cerebral hemispheres of Sapajus were dissected by a freezing-
thawing procedure. Dissection of the hemispheres in lateral view indicated short arcuate fibers, uncinate fasciculus, and inferior
longitudinal fasciculus, while that in amedial view indicated short arcuate fibers, the cingulumunitedwith the superior longitudinal
fasciculus, and inferior longitudinal fasciculus.The results showed that the fiber systems in Sapajus are comparable to those in rhesus
and humans, except for a lack of independent superior longitudinal fasciculus and cingulum in Sapajus.

1. Introduction

The Sapajus sp. (bearded capuchins), as an exception among
NewWorld primates [1], present high cognition andmemory
[2], tool use associated with intermittent bipedalism in the
captivity and in the wild [3–8], handling rocks to open
coconuts [9], and fishing for termites using twigs [10]. Thus,
they share a range of behaviors with Pan (chimpanzees) and
Homo (hominids) [11–17] (Figure 1). Sapajus also have well-
developed brains relative to their body weight [18, 19] and a
high degree of motor development [20].

However, recent anatomical studies demonstrated that
bearded capuchins do not have true thumb opponency [21],
and their anatomical structures are more similar to those

of baboons than chimpanzees, except for some features in
the forearm muscles [1]. Accordingly, comparison with Old
World primates and apes suggests that cognition ability in
bearded capuchins is similar to that in chimpanzees [21].
These contradicting findings suggest that more studies are
required to explain the unexpected high cognitive abilities
in Sapajus. Indeed, studies on brain anatomy are scarcer in
that genre. The present known evidence in brain anatomy
in Sapajus does not permit inferring correctly their higher
cognitive abilities comparable to other nonhuman primates.

Connectivity between different parts of the brain is one
of the important indices for complex brain functions. The
brain with complex neural networks can acquire a more
elaborate repertoire of behaviors in primates (because of its
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Figure 1: A simple primate cladogram to indicate the distance of
the derivation among primates. Sapajus is a NewWorldMonkey and
Macaca mulatta is an Old World Monkey.

large size and complexity), resulting in highly sophisticated
cultural behaviors in humans, such as language, tool use, and
social learning [6, 22, 23].Thus, primates havewell-developed
association cortices, and the sensory areas are well separated
in the cortex.Manyprimates have the prefrontal cortex aswell
as the parietal, temporal, and occipital cortices, all of which
have long association fibers that run through thewhitematter
[24–32].

The connections between the frontal and other cortical
regions, that is, the association fibers, have been studied
in detail in humans and nonhuman primates, using var-
ious kinds of techniques [32, 33]. The postmortem blunt
fiber dissection is an important initial technique to study
association fibers [34]. However, few studies investigated
association fibers and white matter in Cebid monkeys, or
any other New World primates. In the present study, we
investigated association fibers in the brain to characterize
anatomical features of this species in comparison with Old
World primates, Macaca mulatta mainly, and Homo. Based
on the findings, we discussed evolution of the primate brain
and characteristics of Sapajus brain among the primates.

2. Materials and Methods

2.1. Subjects. A total of 24 hemispheres of Sapajus (consisting
of 12 left antimeres and 12 right antimeres) were used in this
study. These specimens were provided by the Department of
Surgery, Faculty of Veterinary and Animal Science, Univer-
sity of São Paulo (FMVZ/USP), Brazil.These specimens were
derived from wild primates that underwent natural death in
the neighborhood of citizens in three different provinces in
Brazil. Four adult males and 1 adult monkey of unknown
gender (because only the head was received) were obtained
in Sete Lagoas, state of Minas Gerais, Southeast of Brazil,
in the 1970s decade. Two adult males, 1 young male, and 1
adult female were obtained in the Goiânia, state of Goiás,
Midwest of the Brazil (in the proximity of the campus of the

Federal University of Goiás) 10 years ago. One adult male, 1
young female and 1 adult female were obtained in Palmas,
state of Tocantins, north of Brazil, 3 years ago. Those animals
were found by IBAMA (Brazilian Institute of the Natural
Resources) and sent to Federal University of Goiás. They
had been used in previous studies and they were kept for
further use in order to avoid the unnecessary sacrifice of
animal lives, in compliance with international standards of
bioethics and animal welfare.The research was accomplished
in the Federal University of Goias (UFG), Brazil. We declare
for any purposes that it may be necessary that the research
follows the Principles for the Ethical Treatment ofNonhuman
Primates indicated by the guidelines of the American Society
of Primatologists (ASP).

2.2. Dissection of the Intrahemispheric Fiber Systems of the
Sapajus Brain. The brains were stored in 10% formaldehyde
solution. This fluid was replaced after 24 hours, then the
brains were kept in a renewed solution for 30 days. We
used Klingler’s preservation method with minor adjustments
[35, 36]. We also used, as a study reference, the technique
by de Castro et al. [37]. The freezing-thawing procedure
was repeated three times, which made it easier to prepare
for dissections of fiber tracts and nuclei, highlighting the
distinction between the gray and white matter. The fiber
dissection technique allows three-dimensional understand-
ing of anatomy of the brain. Klingler’s method allowed
the demonstration of structures that make up the internal
anatomy of the fiber systemswithin the cerebral hemispheres.

According to Klingler’s freeze-thaw method, the brains
were washed for about 4 hours in water at room temperature.
The pia mater, arachnoid, and the vessels of the brains
were carefully removed with small tweezers, the brains were
immersed in 10% formaldehyde and they were frozen for 8
days at an average temperature of −10∘C. The brains were
then washed under running water for 24 hours. The freezing
procedure (in 10% formaldehyde solution)was repeated three
times. After the last freezing process, the brains were kept
in 10% formaldehyde solution. The dissections were made
using wooden spatulas in different but appropriate sizes and
shapes according to the gyri and cerebral sulci dissected
(modified from sticks with a length of approximately 25 cm).
The spatulas were used for a careful removal of the gray
matter. After this procedure, the hemispheres were washed
in running water and then they were gently wiped and dried
using paper towels. Later, we used pins or sewing needles
to follow the path of fibers that were coming from or going
towards the prefrontal region.

The characteristics of the fiber systems in each hemi-
sphere were analyzed and photographed both before and
after the dissection with a Canon Power Shot A520. The
photos showed the lateral, medial, and frontal patterns of the
anatomic orientation.

3. Results

The results showed that there was a large amount of the
gray matter in the frontal region as well as in other brain
regions. After dissecting the cerebral hemispheres, we found
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Figure 2: Medial aspect of the right hemisphere. (a) 1: united cingulum and superior longitudinal fasciculus; 2: the cingulum fasciculus; 3:
the superior longitudinal fasciculus; 4: the inferior longitudinal fasciculus; 5: the short arcuate fibers (in “U”); 7: the body of corpus callosum;
8: the thalamus; 9: the lateral ventricle; 10: the occipital lobe (bar = 1 cm). (b) Fascicles 1, 2, 3, and 4 are highlighted (bar = 1 cm).
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Figure 3: Lateral aspect of the right hemisphere. (a) 5: short arcuate bers (in “U”); 10: occipital lobe; 11: temporal lobe (bar = 1 cm). (b) Fascicles
5 are highlighted (bar = 1 cm).

complex patterns of fiber organization beneath the cortex.
The technique of fiber dissection proved to be a very useful
and safe method.

Dissection of cerebral hemispheres of Sapajus showed
the same distribution patterns of the fiber systems without
anatomical variations. We found a variety of fibers in the
white matter, linking the frontal region to several brain
regions, mainly the temporal and parietal lobes in the Sapajus
brain. The cingulum and inferior longitudinal fasciculi as
well as the uncinate fasciculus were found in the all cerebral
hemispheres. The specimens also showed an arcuate path
with fibers around the splenium, body, and genu of the corpus
callosum. In a medial view (Figures 2 and 5), we observed
short arcuate fibers, the cingulum fasciculus united with the
superior longitudinal fasciculus, and inferior longitudinal
fasciculus. These structures were seen in all cases in both
antimeres. In a lateral view (Figures 3 and 5), we found
short arcuate fibers (or “U” fibers) and inferior longitudinal
fasciculus. The inferior longitudinal fasciculus displayed a
clear pattern of distribution linking the occipital and tem-
poral regions in all the dissected cerebral hemispheres. Short
arcuate fibers (in “U” fibers) connecting adjacent gyri were
found in themedial viewof the occipital lobe and in the lateral
view of the frontal and parietal lobes.The uncinate fasciculus
that connects the orbital frontal region to the temporal lobe
was also observed in an orbital view (Figures 4 and 5).

4. Discussion

4.1. Anatomical Consideration. The cingulum and superior
longitudinal fasciculus were found as the evident major
fibers. No previous study investigated the cingulum and
intrahemispheric connections in other primates of the New
World. The literature on nonhuman primates investigated
principally Macaca mulatta (rhesus monkeys) [20, 25, 38–
44]. In Macaca and Homo, the cingulum bundle links the
cingulate gyrus with the hippocampus and parahippocampal
gyrus involved in spatial working memory and motivation
and emotional aspects of behaviors [32].

The superior longitudinal fasciculus in Macaca and
Homo, which connects the parietal, occipital, and temporal
lobes to the frontal cortex [32, 34], can be divided into 5
subcomponents [45] and is involved in emotions, attention,
memory, and language [46]. In the present study, we could
not recognize such 5 subcomponents of the superior longitu-
dinal fasciculus at least by visual inspection. Furthermore, the
superior longitudinal fasciculus seems to be reduced in Sapa-
jus comparedwith that inHomo. Since the superior longitudi-
nal fasciculus is important as a “language pathway” [34], this
might be attributed to highly primitive ability of language in
these monkeys, which requires less associative connections.

The cingulum had upward traffic directed to the pos-
terior region of the brain observed in the medial view in
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Figure 4: Orbital aspect of the right hemisphere. (a) 6: the uncinate fasciculus; 12: the orbitofrontal region; 13: the optic chiasm (bar = 1 cm).
(b) Fascicle 6 is highlighted (bar = 1 cm).
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Figure 5: Schematic drawings of the brain of the Sapajus (a),Macaca (b), and Homo (c), indicating the studied fasciculi. 1: united cingulum
and superior longitudinal fasciculus; 2: the cingulum fasciculus; 3: the superior longitudinal fasciculus; 4: the inferior longitudinal fasciculus;
6: the uncinate fasciculus.

Sapajus, which is similar to the traffic in Macaca and Homo
[20, 25]. However, the cingulum united with the superior
longitudinal fasciculus in its anterior-ventral part in Sapajus,
which is unprecedented in other primates as far as we know.
Although the superior longitudinal fasciculus and cingulum
are separated in Homo in a lateral view [20], such two
separated fiber systems were not observed in Sapajus. It
is important to note that the cingulum bundle and the
superior longitudinal fasciculus share the same associative
functions such as memory and emotions in Macaca and
Homo [32], suggesting that both fasciculi might take similar
trajectory in an initial stage of brain development. However,
no lateral expansion of the brain happened in Sapajus in
contrast toHomo, because of their evolutionary option,which

might result in unification of cingulum and the superior
longitudinal fasciculus.

The inferior longitudinal fasciculus observed in the
present study was also reported inMacaca and Homo, where
its functions are related to recognition and discrimination
of faces and objects and its memory [32]. The uncinate fas-
ciculus connecting the frontal and temporal lobes observed
in the present study was also reported in Macaca as well
as Homo [32]. This fasciculus is suggested to be involved
in processing new information, understanding emotional
aspects of the sounds, regulation of emotions, and interaction
between emotion and cognition [32]. Although we observed
short arcuate fibers (in “U” fibers) connecting adjacent gyri,
these fiber bundles were less frequent in Sapajus than in
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Homo. This might be ascribed to the anatomical differences
between the two species where the Homo brain had much
richer cortical circumvolutions than Sapajus [18].

4.2. Evolutionary Consideration. The present study reported
similar size and amount of association fibers originating from
the frontal lobe in Sapajus to those inMacaca andHomo.The
frontal cortex in Sapajus keeps high percentage in its brain
[47]. Extensive studies reported that Sapajus monkeys have
similar relative neocortical size as in big apes and are highly
encephalized [8, 15, 20, 48–50].

Schoenemann et al. [50] compared brains of several
primate species including Sapajuswith those inHomo sapiens
as a control group. They reported that the percentage of
the white matter in Homo sapiens was significantly larger
than all the other primate species, except for Gorilla gorilla
(gorilla) and Sapajus apella, although the gray matter did not
show significant differences.This suggests that the complexity
of fiber connections with other cortical areas played a key
role in the evolutionary process of the primate brain and
behaviors. In the present study, the cingulum bundle united
with the superior longitudinal fasciculus in Sapajus. This
might suggest that brains of the New World primates are
more primitive than Macaca and Homo primates compared
here, although no other data are presently available. In fact,
the results in this paper are insufficient to support the high
cognition observed in Sapajus, mainly because few data for
comparison are available in other primates. Indeed, this work
is the first to investigate association fibers in New World
primates, and further studies are required to understand the
nature and evolution of the white matter in primates.
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