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1. Foreword

Before starting this review, written for an issue honoring Professor
RamónGonzález Rubio, letmefirst tell youwhy I have chosen complex-
ity in foams as the topic towrite about. Ramón has publishedmore than
200 papers in the area of liquid interfaces, surface rheology, surfactants
and polymer-surfactant complexes in bulk and at interfaces, among
others. We have co-authored several papers on these subjects [1–15].
Thus, when I was invited to write this article, I thought first to write
about one of those subjects, in the line of our jointwork. Then, I realized
that the rest of the researchers participating in this special issue would
probably do the same, and I had a second thought. I spent five years in
Ramón's lab as a postdoctoral fellow, from 2006 to almost 2011; during
those years, I was encouraged by him and other staff members, to pur-
sue my research interests freely. One of these interests was foam
dynamics within the framework of complexity and Self-Organized Crit-
icality (SOC) [16], which I had started studying in a previous postdoc-
toral position and continued in Ramon's group at the Universidad
Complutense de Madrid. The opportunity to choose my own line of re-
search following my own interests was very important for me at that
time, and that is why I finally decided to write about complexity in liq-
uid foams. All my gratitude to Ramón for his support during all those
years.
2. A brief introduction to liquid foams

This review deals with the dynamics of foamswithin the framework
of complexity and Self-Organized Criticality (SOC), thus let me start by
introducing the physics of liquid foams in this section.

Foams are ubiquitous systems in nature and everyday life [17]. The
physics of foams has been reviewed from different points of view in
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many books and reviews [17–21]. Here, I will just provide a brief de-
scription for those who are not familiar with the field of foam physics.

Liquid foams are two-phase systems formed by gas dispersed in a
liquid matrix [18,20]. The gas is dispersed in the form of bubbles, por-
tions of gas enclosed by liquid films, packed together to form a closed
cell structure: the foam (see Fig. 1). Both the shape of the bubbles and
the whole structure of the foam depend on the relative contents of gas
and liquid [22]. This is represented by the liquid volume fraction (or
gas volume fraction,φg),φl=Vl/Vf, beingVl andVf the volumes of liquid
and foam, respectively (φg = 1-φl). For large liquid fractions, the bub-
bles are spherical (minimum area for a given gas volume), but as φl is
reduced, bubbles deform adopting shapes of polyhedra, they pack to-
gether and compress against each other as liquid drains and films get
thinner (see Fig. 1). In the limit of dry foams, φl < 0.05, the liquid
films separating bubbles smoothly meet three at a time, at 120 degrees
angles (first Plateau equilibrium rule [18]). The intersection of these
films forms liquid channels between adjacent bubbles; these channels
are called Plateau borders. Plateau borders meet four at a time in a ver-
tex or node, at angles of approximately 109° (second Plateau equilib-
rium rule [18]). Plateau borders and nodes configure a network
through which liquid can flow by gravity and capillarity (see Fig. 1).

The structure just described is not at equilibrium; foams are out of
equilibrium systems. To create foams we need to do some work [23]
(e.g.to agitate them). Thiswork is used to create the interfaces enclosing
the bubbles. The energy needed to create the interfaces is given by the
product of the surface tension, γ, and the total area created A. This ex-
cess of interfacial energy continuously drives the whole system to min-
imize its area and towards the complete phase separation, i.e. foam
destruction, which is the real (absolute minimum) thermodynamic
equilibrium state. That is why additives, such as detergent, are needed
for foaming. These additives are surface-active agents, generally surfac-
tants, but proteins, polyelectrolytes, and nano- and microparticles as
well as mixtures of them can be used. Surfactants [24] are molecules
that spontaneously adsorb at liquid-air interfaces; they reduce the sur-
face tension and thus the energy needed to create the bubble interfaces.
Foams, when created, are trapped in one of manymetastable states; the
selected state depends on the system history, but for a given liquid frac-
tion, the geometry of both the bubbles and the foam structure in such
metastable state is determined by the minimization (local minimum)
of the interfacial energy [22] (i.e. the interfacial area). However, surface
Fig. 1. Foam in the gravity field. Liquid drains out of the foam though the Plateau borders and
bubbles are spherical; at the top, they are polyhedral. For dry foams, at the top, Plateau's lo
bubbles (Laplace, ΔP ~ 1/r), they coarsen, and gas flows from the small into the large bubbles.
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tension alone cannot explain foam stability [20]. Surface active agents
also confer certain properties to the interfaces, such as surface viscoelas-
ticity [25] for instance, helping to stabilize the liquid film against rup-
ture. The presence of surfactant molecules not only reduces the
surface tension but also helps to kinetically stabilize the system by
slowing down the three main dynamical processes that drive liquid
foams to their final end, namely drainage, coarsening and coalescence
[18]. Drainage refers to liquid flow through the Plateau border network
driven by gravity and capillarity. Immediately after freshly forming, the
liquid begins to drain out of the foamdue to gravity; the top of the foam
becomes dry while the bottom, in contact with the solution fromwhich
the foam was formed, remains wet (Fig. 1). A vertical profile of liquid
content develops along the height of the foam in such a way that, in
themetastable state, the force of gravity is balanced by the vertical pres-
sure gradient [26]. Drainage, for which theoretical models exist [21,27],
is the most widely understood of the three mentioned dynamical
phenomena.

Coarsening or disproportionation refers to the continuous change in
bubble sizes as foam ages, due to gas diffusion among them. Large bub-
bles grow at the expense of smaller bubbles in contactwith them,which
shrink. The driving force for this process is the difference in pressures
between bubbles of different sizes. The Young-Laplace equation. [28]
states that the internal bubble pressure varies as the inverse of its ra-
dius, thus the gas tends to diffuse from small bubbles to large ones. In
order to diffuse, the gas has to traverse the liquid films separating the
bubbles; to accomplish this, the gas needs to solubilize in the liquid;
thus, for a perfectly insoluble gas, coarsening is not possible. Coarsening
is also arrested if the bubbles are all exactly the same shape and size
(monodisperse). In this case, all the bubbles have the same internal
pressure, and no driving exist for gas diffusion (except for the bubble
layer in contact with the atmosphere). The rate of disproportionation
not only depends on the gas solubility and the distribution of bubble
sizes but also on the kind of surface-active agent used. The gas has to
go through the interface covered by surfactant molecules (or polymer,
particles, etc.) that could act as barriers. Moreover, in the case of
foams stabilized by solid particles, they can completely arrest the coars-
ening process [29]. Coarsening is also arrested when the surface com-
pression modulus of the surfactant monolayer reaches a value equal to
about half the surface tension [30]. There exist theoretical models for
coarsening in 2D foams (foams sandwiched between two glass plates
nodes. A vertical liquid profile develops: at the bottom, where the liquid fraction is high,
cal equilibrium rules are maintained. Due to pressure differences between neighboring
Photo courtesy of Professor Douglas Durian.
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separated by distances smaller than the bubble size) [18,21], and they
are quite well understood. For 3D foams, the situation is different [31].
In general terms, coarsening is less well understood than drainage.

The process of foam coalescence is the least understood of the three
[32]. It refers to the rupture of the liquid films separating bubbles in a
foam structure. The first model of rupture of a single isolated liquid
film was proposed by Sheludko and extended by Vrij [33], and it is
based on the assumption that film ruptures because of thermal fluctua-
tions in the film thickness. At a certain critical thickness, van der Waals
forces act between both gas/liquid faces of the film producing an insta-
bility that cannot be damped and grows leading to film rupture, being
the process controlled by surface tension and disjoining pressure [19].
Exerowa et al. [34] and de Gennes [35] proposed that a single film rup-
tures via thermal fluctuations of the surfactant concentration at the film
interfaces. These fluctuations could produce holes (i.e. regions without
surfactant molecules) at the interfaces. If the size of these regions is
greater than a certain critical value (typically in the order of half the
film thickness), the hole grows and the film breaks. This process is con-
trolled by compression surface elasticity. Bothmodels are developed for
single isolated films. However, no clear correlation exists between the
dynamics of a single isolated film rupture and the dynamics of the coa-
lescence of those films in macroscopic 3D foams [36]. For them, it was
reported that coalescence occurs when the bubble radius reaches a crit-
ical value (by coarsening) [37]; other authors reported that bubbles co-
alesce when the pressure difference between the gas and the liquid
within Plateau borders reaches a critical value [38]. Foamdestabilization
mechanisms inwhich the dynamics of fast rearrangements of films trig-
gered by coarsening are involved were also proposed [39,40]. Addition-
ally, a film rupture within a foammight trigger a cascade of ruptures, a
phenomenon that makes it more difficult to correlate single film stabil-
ity with macroscopic foam stability. Coalescence in foams is by far less
well understood than drainage and coarsening.

After all the above description of foam dynamics, we conclude that,
in fact, most liquid foams are not evenmetastable; they evolve continu-
ously by drainage, coarsening and coalescence. Each of these processes,
when considered in isolation, acts on different timescales. The rupture
of a single film occurs in fraction of seconds; themetastable vertical liq-
uid profile is reached by drainage in minutes; finally, coarsening might
last for hours. Despite this separation of timescales, in macroscopic
foams, the three processes affect each other. For instance, the rupture
of a film releases liquid that is collected by Plateau borders and films, lo-
cally increasing the liquid fraction and the film thicknesses, which in
turn modifies the coarsening rates and the film stability against coales-
cence. Quite recently, a new numerical simulation approach, under
Fig. 2. Topological changes in 2D foams. (a) Schematic representation of T1 and T2 processes. (
changes in a real 2D foam.
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certain simplifying assumptions, has been presented; it simultaneously
takes into account the occurrence of the three processes in themodeling
of foam dynamics [41].

I have already mentioned the occurrence of bubble rearrangements
or topological changes. They refer to any process that changes the num-
ber of neighbors of a bubble (i.e. the number of faces of that bubble). In
2D foams, all rearrangements can be expressed as the combination of
two elementary topological changes (Fig. 2). One of them is film
switching (Fig. 2a), known as T1 process. The second elementary topo-
logical change is the disappearance of a bubble or cell (Fig. 2a, b), called
T2 process. In 3D, the topological changes are a bit more complex, but
the general idea is the same [21].

These topological changes often occur in cascades. These avalanche-
like dynamics that, as I have mentioned earlier, can also be seen in the
rupture of films when foams coalescence are the main subject of these
review.

3. Complexity, SOC and liquid foams

Some years ago, Weaire and Hutzler [42] published an article enti-
tled ‘Foams as complex systems’ in which they summarized very briefly
the existing papers on 2D foams within the framework of complex sys-
tems; since then, the literature on the subject has been scarce. Before
discussing the research on foams as complex systems, and having intro-
duced the reader to foam physics in the previous section, let me now in-
troduce complexity in physics.

The word complexity derives from the Latin word plectere, which
means to weave and/or entwine. But what do we mean for complexity
in physics? To answer the question, let me propose you to examine
some particular examples [43]. First, consider the behavior of a small
number of ants, say twenty. If you release them into a wood, they will
go around endlessly doing nothing, just walking until they die of ex-
haustion. However, release one hundred thousand of them and you
will find an ‘emergent collective behavior’ that ensures the survival of
the colony by collecting food, eliminating enemies and building shelters
for breeding their larvae. Each of these ants is a blind and unintelligent
animal that communicates by means of a few simple chemical signals.
However, thousands of them behave as if they were an intelligent su-
perorganism. The very simple rules that govern the behavior of a single
ant produce an emergent structure and a collective behavior that is
much more than the sum of the features of the interacting entities
(ants). Let me give you a second example, think of our brain, a group
of hundreds of thousands of neurons arranged in a network, which
can be essentially in one of only two possible states: inactive or firing
b) Sequence of a T2 process in a real 2D foam. (c) A combination of T2 and T1 topological
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a signal to other neurons. A particular neuron sends a signal if it receives
enough signals from other neurons. These simple rules produce signal
patterns (electric and chemical) in the neuron network that give place
to an emergent collective behavior, which in turn results in our intelli-
gence, thoughts, learning capacity, feelings and consciousness. Again,
the emergent result of simple interactions among individual entities in
the system is, by far, much more than the sum or the average behavior
of these individual entities. The same can be said of the immune system,
the stock market (in this case, the single entities are humans acting by
self-interest) and the spread of a disease (quite relevant in the current
COVID-19 crisis) [43]. All the examples I have given so far involve
some living entity; but, of course, complexity is not restricted to living
systems. Complexity can be found in a pile of rice or sand, in forest
fires, in an earthquake, in droplets on a glass window and in vortices
in superconductors [44], aswell as in solarflares and in other astrophys-
ical systems [45], to name just a few. The emergent complexity of these
inanimate systems arises from their statistical behavior (what wemean
by this will be clarified later on). All thementioned examples aremany-
body systems, interacting via some kind of signals or information that
organizes themselves without any tuning from outside the system,
resulting in an emergent collective behavior that cannot be described
simply by averaging or summing. Thus, let us define a complex system
in physics, one that exhibits complexity, as amany body system exhibiting
nontrivial emergent and self-organized behavior [43].

All the systems mentioned are dynamical (i.e. systems that change
and evolve in time). In these dynamical systems ‘the whole is not the
sum of its parts’ which means that they are nonlinear dynamical sys-
tems. These nonlinearities could eventually lead to chaos. Chaotic sys-
tems are those that exhibit a sensitive dependence on initial
conditions; that is, even small uncertainties in themeasurements of ini-
tial conditions can result in huge errors in long-term predictions. Chaos,
bifurcation, period-doubling cascades, attractors, renormalization, criti-
cal phenomena, avalanches, fractals, scale invariants, power laws, self-
organization and random networks are all terms and concepts related
to complexity and complex systems [43], and almost all of them can
be found in relation with liquid foams. Among these concepts, we are
particularly concerned here with SOC.

Self-organized criticality attracted a lot of attention the last two de-
cades [44,46]. This conceptwas introduced by Bak, Tang andWiesenfeld
in 1987 [47], and it proposes that complex behavior can develop spon-
taneously in certain nonequilibrium systems with many-body interac-
tions. These systems are complex in the sense that there is not a single
time or spatial scale characterizing the system behavior, but the statisti-
cal properties are well described by simple power laws. The absence of
the characteristic length and temporal scales is what is observed in the
context of equilibrium thermodynamics at critical temperature in a con-
tinuous (critical) phase transition and the reasonwhy theword ‘critical’
is used in SOC. The self-organized part in the name SOC implies that the
system reaches the critical state by itself without any tuning from out-
side (unlike to what happens in a critical phase transition).

When Bak, Tang and Wiesenfeld (BTW) introduced the concept of
SOC [47], they aimed to explain the origin (and mechanism) of self-
similar fractal structures, in time and space, found in so many physical
systems and phenomena. The following is the main idea [44]: in
many-body systems, a signal can travel through if there is a connected
path above a certain threshold for that signal to travel. The region
above the threshold forms a dynamic random network that changes
continuously by the combination of the internal relaxation and the con-
tinuous (slow) driving by the external field. The signal stops when it
cannot find a region above the threshold to continue travelling, and
the system reaches a new metastable state. Then, by the action of the
external field, some regions of the system are slowly driven above the
threshold once more, and the internal relaxation is restarted. The dy-
namics is intermittent, with periods of activity and inactivity. The au-
thors suggested that the dynamical network formed by the path
followed by the signal has a percolating-like fractal geometry. The
4

fractals could be of any size, as well as the time of the internal relaxation
processes that lead the system to a newmetastable state (i.e. power law
distribution functions and lack of spatial and temporal characteristic
scales).

Systems exhibiting SOC behavior and SOC models are defined in
terms of some dynamical variable (e.g. the stress on the earthquake
fault [48–50] or the slope in a pile of rice [51]). These dynamical vari-
ables evolve over time by the presence of a ‘field’ (e.g. the slow move-
ment of tectonic plates or the slow addition of a rice grain to the pile).
The field slowly drives the system to undergo an event or, using the pre-
vious vocabulary, the signal (e.g. an earth movement, the displacement
of a rice grain on the slope of the pile) when a certain threshold (stress
or slope) is locally overcome. These individual events could produce av-
alanches of events of different sizes leading, for instance, to an earth-
quake. The statistical size distribution (energy realized in an
earthquake or the number of rice grains involved in an avalanche) of
these events follows power laws (scale-invariant, long-range spatio-
temporal correlations). Thus, the key ingredients for the SOC behavior
are: the power laws, the presence of thresholds and metastability (e.g.
the friction force between the plates for earthquakes), and finally a
slow external driving when compared to the internal relaxation times
of the system (e.g. the movement of the tectonic plates that increases
the stress lasts decades or centuries, but the internal relaxation -an
earthquake- occurs in minutes).

All these ingredients are present in the dynamics of liquid foams.
Foams are many-bodymetastable systems that are continuously driven
to equilibriumbydrainage and coarsening. This dynamics lasts frommi-
nutes to several days, but the local internal relaxation, bubble bursting
or topological changes occur in the range of seconds or fractions of a sec-
ond [52].

In foams, the dynamical variables of the system could be the bub-
ble radius or the pressure difference between the gas and the liquid
in Plateau borders. For example, for foam collapse, as it was men-
tioned in §2, some researchers suggested that coalescence occurs
when the bubble radius reaches a critical value (by coarsening)
[37]; others reported that bubbles coalesce when the pressure differ-
ence between the gas and the liquid within Plateau borders reaches a
critical value [38]. In both cases, coarsening acts as ‘field’ driving
parts of the system above a local threshold that produces the first
bubble rupture or rearrangement. If the foam is in a SOC state, this
first event, rupture or topological change, could produce avalanches
of events of any size, in which the macroscopic foam dynamics is
now controlled and dominated by the collective dynamics regardless
of the microscopic features of the liquid films and bubbles. If this is
the case, the size and temporal probability densities of events should
follow power laws. For the limit of infinite system sizes, an expo-
nent < 2 for the power law implies that the average of the distribu-
tion does not exist, and that for exponents <3, the standard
deviation is infinite. In general, for finite size systems, the distribu-
tion of the avalanche sizes s (or duration, τ) should be [46],

P sð Þ ~s−βf Lð Þ ð1Þ

with a certain lower cutoff, s0 (e.g. in bubble rupture, an event involves
at least one bubble, then s ≥ s0 = 1). The function f(L) is a certain func-
tion that tends to 1 as the linear system size, L, tends to infinity [46]. For
example, some systems exhibit a crossover frompower law to exponen-
tial behavior as s increases above a certain value s1, in such a way that P
(s)~ exp [−s/s1] for s > s1, where s1 scales as s1~Lω, with ω > 0.

It is within the framework of SOC dynamics that liquid foams could
be thought as complex dynamical systems. The search of power laws
distributions in the size and temporal distributions of bubble ruptures
or topological changes in liquid foams and its relation with SOC is
reviewed in the following sections.
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4. Foams as complex systems

Foams can be considered as complex systems in several ways, for in-
stance focusing in the fractal structure of foams [53,54] and foams
flowing through porous media [55] and in Hele Shaw radial cells [56]
(see §4, Fig. 8) or even the fractal-like patterns in chaotic light scattering
by foams [57]. Ensembles of soap filmswere even used as synthetic sys-
tems exhibiting some characteristics of the statistics of humanmortality
[58]. Foam production can also serve as an experimental realization of
the ‘period doubling route to chaos’ (bifurcation) mimicking the
Fig. 3. Period doubling route to chaos. (a) Representation of the fixed points (attractors)
for the logistic map. The logistic map is a deterministic equation, Xt+1 = a Xt(1 − Xt) for
which each value of X (Xt+1) is calculated from the previous value (Xt). In the figure, X
(the attractors) is represented as a function a. Depending on the value of a, the iteration
converges to a single fixed point, oscillates between 2, 4, 8, etc. different values or
fluctuates apparently at random (bifurcation to chaos). The chaotic behavior occurs at
values a ~ 3.57. Adapted with permission from reference [59]. (b) Representation of the
bubble diameter (db) produced in a flow focusing microfluidic device. Bifurcation
diagram showing the diameters of the bubbles as a function of the flow rate Q. Period-
doubling and period-halving bifurcations are clearly observed, with a region of
flow rates (Q ~ 3.2) with chaotic dynamics. The solid line shows an outline of the
bifurcation diagram (not to scale). (c)-(f) Micrographs of the generation of bubbles in the
device, associated to a flow rate (Q), shown on panel (b). Adapted with permission from
reference [60].

5

behavior of the logistic map [59], as observed in the production of bub-
bles in microfluidic devices [60] (see Fig. 3 and its caption for a brief
explanation).

However, hereinafter I will focusmainly on avalanche-like dynamics
of bubble ruptures and topological changes within the framework of
SOC.

In 1995, Brunet et al. [61] described the dynamics of breaking foams
stabilized with SDS surfactant and sandwiched between two Plexiglas
plates. They used a light lamp for gently heating these 2D foams to trig-
ger film ruptures whose dynamics was followed by means of a CCD
camera. The authors clearly identified a regime where the dynamics is
controlled by a collective, cooperative behavior: cascades of film
ruptures.

Probably the first article on the subject of foam collapse related to
foams and SOC is the one by Müller and di Meglio [62] published in
1999. They studied foams made from SDS solutions at two concentra-
tions below the critical micelle concentration (cmc) by recording the
sound emitted by the bursting of bubbles at the top of three-
dimensional foam floating on the surface of the surfactant solution
and placed in a fish box. From the sound signal, they were able to
count the number of events (bubble ruptures) as a function of time.
They found that, for aged (dried) foams, the events (cascades of bubble
ruptures) were correlated, and the probability distribution functions of
avalanche sizes were deviated from the Poisson distribution. They also
implemented a highly simplified numerical model fromwhich they ob-
tained results qualitatively similar to those obtained from the experi-
ments and from which they found that the probability distribution of
avalanche sizes followed a power law, P(s) ~ 1/sα with α = 1.75.

In a similar acoustic experiment, Vandewalle et al. [63] found power
laws for both the probability distribution of events sizes, h(E), (energy
released, E, calculated from the sound signal by integrating the square
of the amplitude) and the time elapsed between bubble ruptures, h
(τ). For the released energy, they found h(E) ~ E-ν with the exponent
ν between 1.5 and 3, depending on the surfactant concentration. For
the time distribution function shown in Fig. 4, they also found a power
law h(τ) ~ τ-α, with α = 1 ± 0.1 regardless of the chemical system.

Vandewalle and Lentz [64] continued the work done in reference
[63], studying 2D and 3D foams by imaging the foams with a CCD cam-
era. The 3D foamswere produced in a cylinder vessel and observed from
above at the air/foam interface. The rupture of bubbles was detected by
subtracting two successive images. This procedure also allowed observ-
ing topological changes such as edge and vertex movements. They
found that these dynamics are temporally and spatially correlated
(avalanches). The 2D foams were studied in a vertical Hele-Shaw cell
Fig. 4. Scaling law for the time elapsedbetween successive bubble ruptures. Samples 1, 2, 3
and 4 correspond to different surfactant concentrations. All the curves collapse on the
same power law, h(τ) ~ τ 1±0.1. Reproduced with permission from Vandewalle et al. [63].



Fig. 5. Three successive images of a 2D foam in a Hele-Shaw cell. The white arrow indicates the film that is going to break. The numbers correspond to the number of sides of each bubble
(or cell) and show the topological rearrangements. From [64] with permission.
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that allowed observing the dynamics not only at the foam/air interface,
as it was the case of 3D foams, but also in the bulk. This allowed them to
observe film ruptures and topological changes (side switching, T1, and
vertex disappearance, T2; See Fig. 2) triggered by the film rupture.
Fig. 5, reproduced from reference [64], shows a film rupture followed
by topological rearrangements. For these 2D foams, they also found
that, as in 3D foams, film ruptures and topological changes are tempo-
rally and spatially correlated. They also observed that film ruptures
and topological changes are independent of film size and curvature.
This independence from the local (microscopic) characteristics and
the existence of cooperativity and avalanches are the hallmark of SOC.
However, the authors neither statistically analyzed these events (rup-
tures and topological changes) nor mentioned that possibility (SOC).

Ritacco et al. [16] used CDD cameras to investigate the cooperativity
of bubble ruptures in bubble rafts composed of almost monodisperse
bubbles packed in an hexagonal lattice sitting on the surfactant solution.
They used SDS at twice the critical micelle concentration and added dif-
ferent amounts of glycerol to change the bulk viscosity. In this configu-
ration, coarsening and drainage are not present allowing the collapse
dynamics to be studied on its own. Using a fast CCD camera, they
Fig. 6. (a) Avalanche size distribution simulatedwith a cellular automatamodel (see [16]) for di
experimentally measured following power laws. (c) The same as (b), but for ηr = 2.8, showing
transition from power laws to exponential decays as the dissipation parameter (viscosity) cha
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showed themechanical perturbation produced on the bubble neighbors
by a rupturing bubble (see §5, Fig. 10). This led the authors to propose a
quite simple cellular automatonmodel tomimic the foambehavior. The
central idea is that if the energy transferred to a neighboring bubble by a
rupturing one is greater than a certain energy threshold, the bubble
breaks and cascades of ruptures could follow. By changing the bulk vis-
cosity and therefore the energy dissipation, the authors had a certain
control over the energy transferred to the neighboring bubbles. The
main result of the work is reproduced in Fig. 6, which shows the event
size distribution P(s), being s the normalized number of bubbles in-
volved in a cascade for the first simulated and experimentallymeasured
avalanche. The process is compatible with SOC for intermediate viscos-
ity values in which the distribution follows power laws, P(s) ~ s-(1±0.2).
For higher viscosity values, the distribution of avalanche sizes becomes
exponential. This scenario is quite similar to the case of cascades on
piles of rice [51], for which a change from power law behavior to expo-
nential is observed when the aspect ratio of the rice is changed from
elongated grains to more rounded ones (see §54 for a more complete
discussion). The aspect ratio plays here the role of bulk viscosity in the
bubble raft.
fferent values of relative bulk viscosities, ηr. (b) Size distribution for thefirst avalanche size
that P(s) follows an exponential decay. Both experimental and simulation results show a

nges. From [16] with permission.
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Dominguez et al. [65] conducted similar experiments on bubble rafts
composed of about 500 bubbles. The surfactant used was Gemini 12-2-
12 at different concentrations, all above the cmc. As in the work per-
formed by Vandewalle et al.[63], they measured the sound signal emit-
ted by the rupturing bubbles. A preliminary result is shown in Fig. 7.
They found power laws for both the time elapsed between bubble rup-
tures, P(t), and for the size of the avalanches, P(s). For P(t), they found
exponents very close to 1 and independent of surfactant concentrations.
For P(s), they found that the exponents of the power law increased from
2 to 3 as the surfactant concentration increased. Note that the behavior
is similar to the one found by Vandewalle et al. [63], with similar expo-
nents. Although the results are still very preliminary, there seems to be
an exponential cutoff that depends on the system size. However, further
experiments are needed to confirm these results because of the way it
was done. Instead of changing the size of the foam container, the au-
thors changed the average size of the bubbles using the same container,
which could change the conditions of the experiments in an uncon-
trolled way.

Cascades of bubble rearrangements were also observedwhen shear-
ing foams in rheology experiments. Foams can withstand small shear
forces by responding elastically like a solid (linear response). This is be-
cause the shear distorts the bubbles, increasing the surface area, which
is opposed by surface tension. If stress is increased, the response be-
comes nonlinear, and if it further increased, localized cascades of bubble
rearrangements occur and the foam flows as a simple viscous fluid.

Park and Durian [56] performed experiments on the flow of foams
using a commercial shaving cream in a Hele Shaw radial cell (two plates
separated a distance b,with a hole in the center throughwhich the foam
is injected). They observed and analyzed the different flow patterns,
Fig. 7. Power laws in the dynamics of bubble raft collapse. The foamwas stabilized with a
Gemini 12-2-12 surfactant at a concentration of 10 times the cmc. P(s) is the distribution
of avalanche sizes and P(t) is the distribution of times elapsed between bubble ruptures.
From [65].
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fingering features and fractal dimension of the patterns (Fig. 8) as a
function of flow conditions such as plate separation, driving pressure
gradient and shear strain rate. They tried to relate pattern morphology
to foam rheology. Although the fractal dimension of all patterns is the
same (about 7/4) they identified two different morphologies (A and B
in Fig. 8; see caption for an explanation) and concluded that the transi-
tion between them depends only on the shear strain rate γ

:
. For large γ

:

(> 9 s−1), the dissipation occurs in liquid films between sliding bubbles,
shear stress is viscous in origin, and the flow pattern corresponds to
type A. For small γ

:
(< 9 s−1), the shear stress is elastic due to surface

tension, and type B patterns are observed. They suggested a similarity
between foam flows, for which nonlinearities arise from large distor-
tions of bubbles and avalanche-like rearrangements, and the flow dy-
namics in granular systems and earthquakes. Although the authors did
not refer to SOC behavior explicitly when comparing the behaviors of
foam flows and granular materials, they indirectly suggested it. Hatzler
et al. [66] explicitly suggested the possibility of SOC dynamics for bubble
rearrangements in simulations of disordered 2D foams subjected to ex-
tension. They found that for large volume liquid fractions, the frequency,
f(s), of occurrence of cascades involving a number s of topological
changes follows the power law f(s) ~ s−1.

In line with the work done by Park and Durian [56], Okuzono and
Kawasaki [67] conducted computer simulation experiments on the
rheology under steady shear of 2D foams both in the absence of
Fig. 8. Patterns of foam flow. The line traces correspond to the observed pattern at
different times. (a) Type A pattern corresponds to high shear strain rate, for which
fingers advance at constant velocity as it happens in normal viscous fluids. (b) Type B
pattern corresponds to low shear strain rate, for which a side branching less aligned in
the radial direction as in the fracture of solids, is observed. With permission from [56].



Fig. 9. (a) Probability density, P(ΔE), for bubble rearrangement events releasing an energy
ΔE. Only small events exhibit a power-law behavior; exponential cutoffs independent of
system size are found for large events. Data from simulations with the bubble numerical
model, reproduced with permission from reference [69]. (b) Probability density P(s) of
the avalanche size s calculated by simulations using the vertex model for two system
sizes (Nc). The results are compatible with SOC. Reproduced with permission from [71].
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coarsening and in the dry limit. They used the so-called vertex model,
which considers the viscous dissipation in the liquid. In their simula-
tions, the authors found an intermittent dynamics with avalanches
of topology changes. The probability density, P(s), of the avalanche
sizes, s, followed power laws with an exponent 1.5. They compared
their results with models exhibiting SOC behavior, in particular with
stick-slip models for earthquakes [48,50], and suggested that foams
indeed could self-organize in a critical state. However, Gopal andDurian
[68], using Diffusing-Wave Spectroscopy (DWS), performed experi-
ments on 3D foams made from shaving cream (wet foam, φl = 8%) to
study the dynamics of topological rearrangements in those foams.
They conducted DWS experiments before, during and after an applied
shear strain. They found that, although the dynamics of topological
changes is a nonlinear stick-slip process similar to the avalanches ob-
served in piles of granular media and in earthquakes, DWS showed
that the events are temporal and spatially uncorrelated; thus, a charac-
teristic time and spatial scale can be identified in the foam dynamics
contradicting the SOC scenario. Despite this, the authors stressed at
the end of the article that the resolution of contradictions between the
results of DWS and those of computer simulations [67] should lead to
a deeper understanding of the dynamics not only of foams but also of
other disorderedmaterials. In this line, Durian presented computer sim-
ulation results of the complex macroscopic rheological behavior of
foams [69] by implementing the so-called bubble model [70]. He
found that the distribution function of released energy is a power law
for small events but exhibits an exponential cutoff independent of sys-
tem size (see Fig. 9a). This result contrasts those obtained by Okuzono
and Kawasaki with the vertex model [67] for which, as we have already
seen, the behavior is compatible with SOC. Kawasaki and Okuzono [71]
extended their work by performing simulations with the vertex model
exploring the effects of shear rate and system size. They again found re-
sults compatible with SOC (see Fig. 9b).

The difference in the results of both models (the vertex model and
the bubble model) in relation to SOC probably comes from the fact
that the vertex model is an expansion about the dry limit (polyhedral
foams cells) whereas the bubble model is an expansion about the wet
limit (spherical foam cells). This topic is discussed in §5.

Bubble geometry depends on the liquid content. In this respect,
Hutzler et al. experimentally observed cascades of topological rear-
rangements in 3D foams as the volume liquid fraction increased [72]
in an experiment of forced drainage in highly polydisperse foams,
where liquid is added to the top of the foam column. The liquid flow in-
duces movements of the bubbles: the large ones go up and the small
ones go down. The small bubbles move irregularly; that is, small arrays
of bubblesmove down in an avalanche-likewaywithmoments of activ-
ity when they descend several centimeters, separated by periods where
they stay at the same column height for about 20 s. Dunne et al. [73]
studied by computer simulation (using PLAT software) the occurrence
of these topological changes but in 2D foams, as a function of the liquid
fraction. They found that the histograms of the frequency of occurrence
of the avalanches are well fitted with exponentials, contradicting the
SOC scenario for which power laws are expected. However, as the au-
thors stated, their simulations are quasi-static and do not involve dy-
namical variables, which are essential ingredients for SOC.

5. Foam dynamics in the light of SOC in other physical systems

So, do foams evolve into a SOC dynamical state? Before discussing
this question let me first comment on SOC in other physical systems. I
will specifically discuss two physical systems, piles of granularmaterials
and earthquakes, trying to draw a parallel between them and the dy-
namics of bubble rearrangements and collapse in foams.

In their original paper, BTW [47] introduced SOC referring to ava-
lanches in sandpiles. They did not perform a real experiment; they im-
plemented instead a cellular automaton simulation mimicking a
sandpile. In the simulations, they found power laws both for the size
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distribution of the avalanches P(s) ~ s-1.35 and for the distribution of
the avalanche lifetimes P(t) ~ t-0.9. However, experiments on real sand-
piles [74–76] showed that only the sizes of small avalanches are distrib-
uted according to power laws, exhibiting (pseudo) SOC behavior. This
behavior is cut off and buried for large avalanches. The latter dominate
the whole dynamics of the pile slope; for them, the size and duration
of the avalanches are narrowly distributed [76]. It seems that this be-
havior has its origin in inertial effects: once the grains role down the
pile slope, they gain momentum and they get harder and harder to
stop. The dynamics develops an oscillatory behavior where the slope,
represented by the angle between the horizontal and the free surface
of the sandpile, changes between two values: the angle of repose (θr),
below which no flow of sand can occur, and an upper angle (θu) above
which large avalanches occur returning the slope to the angle of repose;
both θr and θu are very narrowly distributed, making the behavior of the
sandpile predictable. It could be concluded that real physical sandpiles
are not in SOC state. However, when the sand grains are replaced by
rice grains, the situation is different, at least for certain types of rice
grains. Frette et al. [51] performed experiments with piles of three
different types of rice grains, one of which was quasi-spherical with
a smooth surface; the other two had an elongated shape, but they
differed in the roughness of their surfaces. They found that the piles of
elongated grains, regardless of the roughness of their surfaces, organize
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themselves in a critical state, and the size distribution of the avalanches
follows power laws with exponents ~2; they are in SOC state. For the
rounded rice grains, the size distribution of the avalanches follows a
stretched exponential; thus, the authors concluded that this system is
not in critical state. Rounded grains role down the slope and the behav-
ior is dominated by inertia, as in piles of sand grains. For elongated rice
grains, their shape anisotropy restricts the way the grains move, in-
creasing the frictional effect (local thresholds), suppressing inertial ef-
fects, and leading to a variety of metastable configurations, essential
ingredients for SOC behavior. The obvious conclusion is that for piles
of granular materials, SOC is not a universal phenomenon; it depends
on somemicroscopic characteristics that ensure the existence of thresh-
olds and a large number of metastable configurations.

I consider that the parallelism of the previous discussion about piles
of granular materials and dynamics of bubble rearrangements in foams
is quite straightforward. The bubble model, an expansion about thewet
limit (spherical bubbles), for which power laws were found for small
avalanches but not for the large ones (exponential cutoff independent
of the system size), behaves the same as piles of sand grains or spherical
rice grain. The behavior is dominated by ‘inertia’; the local thresholds
are eliminated reducing the number of possible metastable configura-
tions. In contrast, the vertex model, an expansion about the dry limit
(polyhedral cells), behaves like the elongated rice grains, exhibiting
the features of systems in SOC state. Regarding the experiments in real
foams, the only systemwith a complete and relevant statistical analysis
I found in the literature is the one by Gopal and Durian [68] in shaving
foams. These are wet foams formed bymicrometer sized spherical bub-
bles, whose dynamical behavior of bubble rearrangements under shear
agreed with the results of the simulations with the bubble model, con-
tradicting the SOC scenario. Unfortunately and surely due to experimen-
tal difficulties involved, I did not find any studies on the dynamics of
topological changes in 3D dry foams. Will they behave as in the vertex
model displaying SOC?

Now, I would like to introduce a nonconservative cellular automaton
algorithm to model earthquakes dynamics [50]. This model is relevant
in our discussion about SOC dynamics in cascades of film ruptures in
foams. Earthquakes occur by the abrupt release of the elastic energy ac-
cumulated during decades by the relative motion of tectonic plates
along the contact interfaces between them (the faults). Friction be-
tween the plates hinders the relative movement of the plates and is re-
sponsible for the slow, continuous accumulation of elastic energy. The
energy storage increases until the build-up stress exceeds the friction
force (the threshold); at that moment, the plates suddenly slip with re-
spect to each other, the energy stored for decades is released in seconds
and an earthquake is triggered.

The morphology of the faults is fractal-like and all the ingredients of
SOC are present in the dynamics described: slow driving, threshold and
metastability. The probability of energy released in real earthquakes is
indeed distributed in a power law P(E) ~ E-B with B ~ 2 (the
Gutemberg-Richter law). Olami, Feder and Christensen (OFC) [50] pro-
posed a nonconservative cellular automaton to model earthquake dy-
namics. Their algorithm is based on the Burridge-Knopoff spring-block
model1 for earthquake faults [77]. The OFC algorithm is as follows: a
2D lattice is defined and a dynamical variable Ei is randomly assigned
to each lattice site i, being Ei a force (or an energy). Now, all sites are
driven simultaneously at the same rate Ei = Ei + a, being a a constant.
When in a simulation step the dynamical variable of a site i becomes
larger than a certain critical value Ec, the site is relaxed according to
the rule,
1 The model for the fault consists of a 2D sheet of blocks connected by linear springs to
their nearest neighbors. The blocks are also connected to a moving (tectonic) plate by lin-
ear springs, and they rest on a surface (the other tectonic plate) with friction forces.
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Ei ! 0
En,n ! En:n þ αEi

if
�

Ei > Ec ð2Þ

where En,n refers to the neighboring sites of the lattice site i. The excess
energy of the overcritical site i is distributed among its neighboring
sites. Depending on the value ofα, part of the energy is lost (dissipated),
the model is nonconservative, except when α= 1/qi being qi the coor-
dination number of the site i. The OFCmodel exhibits SOC behavior, and
the distribution of size events followed power laws P(E) ~ E-B. The B
values were found to be dependant on α and a transition from power
laws to exponential decay was found for a certain value of α
(α ≤ 0.05). This crossover from power law to exponential is what was
observed in bubble rafts as bulk viscosity changes [16] (see Fig. 6). Here
viscosity plays the role of the parameter α (dissipation) in the OFC
model. Similarly, the change in the exponents of the power laws as
the dissipation parameter changes in the OFC model is what was ob-
served in the experiments with Gemini 12-2-12 shown in section §43
(Fig. 7 and associated text), for which the exponent varies from 2 to 3
as the surfactant concentration increases.

In fact, the OFC model could be directly applied to the dynamics of
bubble ruptures in bubble rafts. We only need to imagine that
each site of the lattice is occupied by a bubble. When the dynamical
variable of a particular bubble goes over the threshold by slow driving
(Ei = Ei + a, Ei > Ec), it breaks; the energy (the dynamical variable) of
the site goes to zero and part of the released (interfacial) energy is trans-
ferred to neighboring bubbles (rules in eq.(2)). This is what we did in
our cellular automaton in reference [16]. Fig. 10, reproduced from
[16], shows a sequence of images taken with a fast CCD camera that
shows the effect of a bubble rupture on its neighbors on the bubble
raft. After the bubble rupture, a cascade of ruptures could follow due
to the mechanical perturbation produced on the neighbors (see video
in [78]). The relation between the phenomenon observed and the OFC
model is obvious.
Fig. 10. Sequence of a bubble rupture on a raft of bubbles and its effect on its neighbors.
The images were taken with a fast CCD camera, being the time between snapshots of
0.00225 s. The energy released by the rupturing bubble is transferred to the neighbors
that in turn can rupture, triggering cascades of ruptures (see video in reference [78]).
This is exactly the mechanism proposed in the cellular automaton OFC model (see text).
From [16].
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Now, the question with which we started this section can be an-
swered: not all foams organize themselves in a critical state, but some
of them can indeed be in SOC dynamical state for both topological rear-
rangements andmacroscopic foam collapse. Foams could set in SOC dy-
namical state depending on the particular mechanisms of energy
dissipation and thresholds of the system.

6. Concluding remarks

Fractal, chaos, unpredictability, SOC, power laws, cooperativity and
avalanches are all terms and concepts associated to complex nonlinear
dynamical systems that can also be found in relation to foam dynamics.
The concept of SOC is of particular interest. Self-organized criticality ap-
plied to foams does not necessarily have to capture all the details of the
phenomena nor does it need to explain everything about foam dynam-
ics. It could be for example, relevant for small scales, such as small ava-
lanches of bubble rearrangements that are power law distributed
exhibiting SOC (or pseudo-SOC), but not for large scales forwhich “iner-
tia” dominates. At this respect, the result of the bubble model [69] and
the DWS experiments on shaving foams [68] are similar to the random
OFCmodel for sandpiles [79] forwhich and exponential cutoff, indepen-
dent of system size, exists. The same might be said of the collective dy-
namics of the collapse of macroscopic foams. For them, the bulk
viscosity of the foaming solutions as well as the interfacial properties,
such as surface viscoelasticity, could operate to set the foam in a critical
state or out of it. If by modifying one of those properties, say the bulk
viscosity as in [16], we induce a transition from SOC to non-SOC behav-
ior, or vice versa, without noticing it, any attempts to understand the ef-
fect of viscosity on foam stability will be difficult or impossible. This
could be the origin of the problems to correlate the stability of single iso-
lated liquid films and macroscopic foam stability in some experimental
systems. If a foam is in critical state, its dynamics will be independent of
the microscopic features of the films, at least in a certain range. How-
ever, if the modification of these microscopic properties induces a tran-
sition to a noncritical state, there might be a correlation between the
properties and the macroscopic behavior of the foam.

From the point of view of SOC, foamsmight be a perfect experimen-
tal system to test ideas andmodels.We knowhow to change the thresh-
old/dissipation by adjusting bulk viscosity or surface elasticity and
viscosity by modifying the chemical systems used to stabilize them; in
this way, the experimental counterpart of the parameter α (or Ec) in
the OFC model is changed. Moreover, by changing and controlling the
liquid volume fraction in foams,we can change the equivalent to the as-
pect ratio of grains in piles of granular materials [51]. The slow driving,
which is mainly coarsening in foams, can also be changed by using, for
example, more or less soluble gases.

In view of the small number ofworks that have appeared on the sub-
ject, it seems that the community of foam physics researchers has ruled
out the possibility that the foams are SOC dynamical systems. Certainly,
some foams are not in critical state but, as it happens in piles of granular
materials, some others could be. Studying how the transition from SOC
to non-SOC behavior occurs will help understand more deeply not only
foam dynamics and its relation with microscopic features, but also the
emergence of SOC behavior in nature.
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