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Abstract

Vegetation indices (VIs) are widely used in optical remote sensing to estimate biophysical 

variables of vegetated surfaces. With the advent of spectroscopy technology, spectral bands can 

be combined in numerous ways to extract the desired information. This resulted in a plethora 

of proposed indices, designed for a diversity of applications and research purposes. However, it 

is not always clear whether they are sensitive to the variable of interest while at the same time, 

responding insensitive to confounding factors. Hence, to be able to quantify the robustness of VIs, 

a systematic evaluation is needed, thereby introducing a widest possible variety of biochemical 

and structural heterogeneity. Such exercise can be achieved with coupled leaf and canopy radiative 

transfer models (RTMs), whereby input variables can virtually simulate any vegetation scenario. 

With the intention of evaluating multiple VIs in an efficient way, this led us to the development 

of a global sensitivity analysis (GSA) toolbox dedicated to the analysis of VIs on their sensitivity 

towards RTM input variables. We identified VIs that are designed to be sensitive towards leaf 

chlorophyll content (LCC), leaf water content (LWC) and leaf area index (LAI) for common 

sensors of terrestrial Earth observation satellites: Landsat 8, MODIS, Sentinel-2, Sentinel-3 

and the upcoming imaging spectrometer mission EnMAP. The coupled RTMs PROSAIL and 

PROINFORM were used for simulations of homogeneous and forest canopies respectively. GSA 

total sensitivity results suggest that LCC-sensitive indices respond most robust: for the great 

majority of scenarios, chlorophyll a + b content (Cab) drives between 75% and 82% of the indices’ 

variability. LWC-sensitive indices were most affected by confounding variables such as Cab and 

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license 
(https://creativecommons.org/licenses/by/4.0/).
*Correspondence: pablo.morcillo@uv.es; Tel.: +34-96-354-40-67; Fax: +34-96-354-32-61. 

Author Contributions: P.M.-P. performed the calculus, contributed to the development of the GSA toolbox and wrote the paper, 
J.P.R.-C. developed the GSA toolbox, S.B. supervised the calculus, C.D.G. and H.B. helped interpreting the results, J.M. and J.V. 
supervised the full study.

Conflicts of Interest: The authors declare no conflict of interest.

Europe PMC Funders Group
Author Manuscript
Remote Sens (Basel). Author manuscript; available in PMC 2022 September 07.

Published in final edited form as:
Remote Sens (Basel). ; 11(20): 2418. doi:10.3390/rs11202418.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://creativecommons.org/licenses/by/4.0/


LAI, although the equivalent water thickness (Cw) can drive between 25% and 50% of the indices’ 

variability. Conversely, the majority of LAI-sensitive indices are not only sensitive to LAI but 

rather to a mixture of structural and biochemical variables.
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1 Introduction

In optical remote sensing, vegetation indices (VIs) are by far the oldest, most studied and 

largest group of biophysical variable estimation methods using spectral reflectance data 

[1]. The main reason for their widespread use is their inherent simplicity. The rationale 

behind the usage of VIs is that these are spectral indicators defined to enhance spectral 

features sensitive to a vegetation property while reducing undesired effects [2]. A detectable 

vegetation property can be either a leaf biochemical or a canopy structural variable, such 

as leaf chlorophyll content (LCC), leaf water content (LWC), or leaf area index (LAI). 

Nevertheless, the spectral response of a vegetated surface is driven by a complex interplay 

of absorption and scattering effects [3]. In this respect, indices try to maximize the 

sensitivity of the variable of interest while minimizing the role of confounding factors. 

These confounding factors are related to variations of other leaf or canopy properties, 

background soil reflectance, solar illumination and atmospheric composition (e.g., [4–6]). 

Although multiple studies have compared the predictive power of VIs for variables of 

interest (e.g., [7–10]), only few attempted to explicitly quantify the role of confounding 

factors (e.g., [11–13]).

Apart from relying on VI-based statistical relationships, since the advent of optical remote 

sensing, efforts have been undertaken to develop physically-based radiative transfer models 

(RTMs) to understand the propagation of electromagnetic radiation through different media. 

With respect to the science of vegetation-light interactions, RTMs have been developed 

at the leaf, canopy and atmosphere scales, and these RTMs can be coupled so that 

light interactions can be propagated from the leaf throughout the canopy and eventually 

throughout the atmosphere, e.g., in the direction of a sensor. By coupling a leaf with a 

canopy RTM, a simulation can serve to facilitate the interpretation of vegetation reflectance 

in terms of biochemical and biophysical characteristics. For instance, multiple leaf-canopy 

scenarios can be simulated, thereby varying both leaf biochemical and canopy structural 

variables [14,15]. Consequently, the usage of RTM simulations proved useful in a wide 

range of applications, including designing new VIs, performing sensitivity analyses and 

developing retrieval strategies to infer vegetation properties from remotely sensed data 

[8,16–19]. Hence, this implies that using RTMs would be the logical choice to analyze 

the robustness of VIs given varying canopy scenarios, taken into account that models are 

simplifications of reality. To achieve this in a systematic way, i.e., considering the role of all 

leaf and canopy variables, an exhaustive sensitivity analysis is required.
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A sensitivity analysis can be defined as the process of determining the effect of changing the 

value of one or more input variables, and observing the effect that this has on the considered 

model’s output. Sensitivity analysis methods can be categorized as either ‘local’ or ‘global’. 

Local sensitivity analysis (LSA) methods are often referred to as “one-factor-at-a-time”, 

because they involve changing one input variable at a time whilst holding all others at their 

default values, then measuring variation in the outputs. A drawback of LSA methods is 

that they are informative only at the default point, where the calculation is executed, and 

do does not encompass the entire input variable space. Thus, LSA methods are inadequate 

when aiming to quantify the role of all variables considered in the model [20–22]. Unlike 

LSA, global (variance-based) sensitivity analysis (GSA) explores the full input variable 

space [20]. Variance-based sensitivity analysis methods aim to quantify the amount of 

variance that each input variable contributes to the unconditional variance (variance across 

all simulations) of the model’s output [22]. The approach quantifies the sensitivity to each 

of the model variables and their interactions. A GSA is thus preferred to identify the driving 

variables of an RTM and thus to analyze the sensitivity of VIs towards a biophysical 

descriptor relative to interference factors.

Although earlier GSA studies of RTMs enabled to identify the driving input variables in 

determining the variability of the spectral outputs (e.g., [23–25]), so far only a few studies 

translate GSA results into practical remote sensing applications (e.g., [26]). In this work, 

we aim to use GSA for analyzing the sensitivity of VIs to intended variables and their 

robustness to confounding factors. Hence, analogous to analyzing the spectral output it 

could also be applied to analyze the sensitivity of new VIs, and for a specific sensor band 

setting. A few similar initiatives [27–29] already analyzed the sensitivity of the normalized 

difference vegetation index (NDVI), which is by far the most widely used index, and a few 

other common indices to their sensitivity to LAI and LCC, given a specific sensor. However, 

a systematic analysis of common VIs in view of sensor band settings of operational Earth 

observers such as the Sentinels, Landsat or MODIS is lacking.

A reason why so far only a few GSA studies were conducted may lie in the absence of a 

user-friendly toolbox that enables calculating GSA for any VI and any sensor configuration. 

The lack of a comprehensive VI analysis toolbox was also a motivation to undertake this 

study and develop a software framework. To do so, we built further on existing GSA codes. 

As part of the scientific graphical user interface (GUI) toolbox called ARTMO (Automated 

Radiative Transfer Models Operator [30]), an extension of the already existing GSA toolbox 

[31], has been developed. In ARTMO, multiple leaf- and canopy-RTMs have been brought 

together and synchronized within a single scientific GUI toolbox. RTMs can be operated in 

a semi-automatic fashion for any kind of optical sensor operating in the visible, near-infrared 

(NIR) and shortwave infrared (SWIR) range (400–2500 nm). The GSA toolbox calculates 

the relative importance of RTM input variables through first-order and total-order Sobol’ 

indices, according to the method of [32].

However, until now, the GSA toolbox only enabled analyzing RTM spectral outputs, e.g., 

reflectance, transmittance, radiance outputs, depending on the analyzed RTM. Although 

these outputs provide insight into the functioning of RTMs, the toolbox has been of limited 

use for practical applications such as assessing the sensitivity and robustness of VIs to 
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vegetation variables. Bringing this all together, it boils down to the following main objective: 

to expand the GSA toolbox to enable calculating GSA of common VIs, given the spectral 

configuration of prevailing terrestrial Earth observation sensors. This work can be broken 

down into the following sub-objectives: (1) to develop a GSA toolbox dedicated to the 

analysis of VIs (GSA-VI); and, (2) to calculate GSA of most common indices sensitive to 

LCC, LWC, and LAI for common remote sensing sensors.

The remainder of this paper is organized as follows. Section 2 introduces the implemented 

global sensitivity analysis theory, while Section 3 presents the tested VIs. Section 4 outlines 

the methodology, i.e., the ARTMO software framework, the RTMs PROSPECT4+SAIL 

(PROSAIL) and PROSPECT4+INFORM (PROINFORM), followed by an experimental 

setup. The results’ analysis is presented in Section 5. A discussion on the sensitivity and 

robustness of commonly used indices is provided in Section 6, and Section 7 concludes the 

work.

2 GSA Theory

Several variance-based GSA methods have been presented in the literature, among others 

the Fourier Amplitude Sensitivity Test (FAST) by [33], (which uses a periodic sampling 

approach and a Fourier transformation to obtain the variance of a model output and 

decompose into partial variances provided by each model parameter), the Sobol’ method 

[34], and a modified version of the Sobol’ method proposed by [32] (both of them 

based on variance decomposition). This modification contributed to introducing a simple 

approximation to identify the Sobol’s sensitivity indices. These indices quantify both the 

main sensitivity effects (first-order effects: Si, i.e., the contribution to the variance of the 

model output by each input variables, it measures the effect of varying each variable) and 

total sensitivity effects (STi, i.e., the first-order effect plus interactions with other input 

variables) of input variables. This method has been implemented in the GSA toolbox. A 

description according to [35] is given below.

Formally, we have a model y = f (x), where y is the model output, and x = [x1, x2, …, xk]⊤ 
is the input feature vector. A variance decomposition of f (·) as suggested by [34] is:

V(y) = ∑
i = 1

k
V i + ∑

i = 1

k
∑

j = i + 1

k
V ij… + V 1, …, k, (1)

where x is rescaled to a k-dimensional unit hypercube Ωk, Ωk = {x|0 ≤ xi ≤ 1, i = 1, …, k} ; 

(y) is the total unconditional variance; Vi is the partial variance or ‘main effect’ of xi on 

y and given by the variance of the conditional expectation Vi = [ (y|xi)]; Vij is the joint 

impact of xi and xj on the total variance minus their first-order effects. Here, the first-order 

sensitivity index Si and total effect sensitivity index STi are given as [20]:

Si = V i
V(y) = V E y ∣ xi

V(y) (2)
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STi = Si + ∑
j ≠ i

Sij + … = E V y ∣ x ∼ i
V(y) , (3)

where x~i denotes variation in all input variables and xi, Sij is the contribution to the total 

variance by the interactions between variables. Following [32], to compute Si and STi two 

independent input variable sampling matrices P and Q of dimensions N × k are created, 

where N is the sample size and k is the number of input variables. Each row in matrices 

P and Q represents a possible value of x. The variable ranges in the matrices are scaled 

between 0 and 1. The Monte Carlo approximations for (y), Si and STi are defined as 

follows [22,32]:

V(y) = 1
N ∑

j = 1

N
f(P)j

2 − f0
2, f0 = 1

N ∑
j = 1

N
f(P)j, (4)

and

Si = 1
N ∑

j = 1

N f(Q)j(f(PQ
(i))j − f(P)j)

V(Y )
, STi = 1

2N ∑
j = 1

N (f(P)j − f(PQ
(i))j)

2

V(y)
, (5)

where … is the estimate; f0 is the estimated value of the model’s output; defining f (P) as 

all outputs for row vectors in P; PQ
(i) represents all columns from P except the ith column 

which is from Q, using a radial sampling scheme [36]. Matrices are generated with a Sobol 

distribution [37,38] of size N × 2k where P and Q are the left and right half of this matrix, 

respectively [32]. In order to compute Si and STi simultaneously, a scheme suggested by [39] 

was used which reduced the model runs to N(k + 2).

Both PROSAIL and PROINFORM models generate bidirectional top-of-canopy (TOC) 

reflectance in the 400–2500 nm, PROSAIL with a spectral resolution of 1 nm as output, 

i.e., 2101 spectral bands and PROINFORM with a spectral resolution of 5 nm as output, i.e., 

421 spectral bands. Based on these data, VIs are calculated and the GSA is run. Each VI is 

calculated as a new RTM output, whereby for each simulation the reflectance data associated 

with the bands as defined by the VI formulation are extracted and then the VI calculated. 

By executing the process according to sensor band settings, additionally, a spectral filter 

of each one of the bands for each sensor is applied. This improves the accuracy of the 

sensor-specific VI calculations, but it is at the expense of an intensive processing time.

3 Common Vegetation Indices Applied to Operational Sensors

For the last four decades a plethora of remotely-sensed VIs have been published (see [5] 

for review). Particularly since the advent of remote sensing spectroradiometer data, from 

which virtually an unlimited number of VIs can be designed, an ever growing variety of 

VIs have been proposed. While ideally each proposed VI must be analyzed on its sensitivity 

to a targeted variable relative to preserving robustness to confounding factors, here we will 

restrict to common VIs that are widely used in remote sensing mapping applications. This 

implies we restrict the analysis to VIs that are applicable to freely available remote sensing 
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imagery data sources, being optical sensors of contemporary operational multi-spectral 

Earth-observing satellites. These missions include Landsat 8, MODIS, Sentinel-2 (S2) and 

Sentinel-3 (S3). The characteristics of these sensors are provided in Table 1. Consequently, 

only VIs will be analyzed that by their design can be obtained from the band settings of 

these sensors. Thereby, while the majority of indices can be calculated for all sensors, some 

can only be calculated from one or two sensors, e.g., S2 or S3. Furthermore, for reasons 

for brevity, only VIs will be analyzed that claim sensitivity towards LCC, LWC, and LAI. 

Indices are selected according to the online database https://www.indexdatabase.de created 

by [40], where indices can be sorted according to variable sensitivity and sensor band 

settings.

According to these criteria, the following VIs will be analyzed, organized per variable 

and sensor type: see Table 2 for LCC-sensitive VIs, Table 3 for LWC-sensitive VIs and 

Table 4 for LAI-sensitive VIs. However, this category is non-exclusive: many more VIs are 

commonly used, for instance those that merely aim to assess the “greenness” of vegetation 

rather than claiming sensitive to a specific quantitative variable. Hence, the here followed 

categorical organization is only indicative.

Considerably more indices can be calculated when moving from broadband sensors towards 

imaging spectroscopy missions. To illustrate this, indices were selected, Table 5, that can be 

calculated with the forthcoming Environmental Mapping and Analysis Program (EnMAP) 

hyperspectral satellite mission [66]. Characteristics are available in Table 1. Despite the 

number of missions currently under development, the choice of the EnMAP sensor is due 

to the large amount of information available from a wide variety of articles [67–73], in 

addition to all the possibilities offered by its large number of bands. Although this mission 

has not been launched yet, it is of interest to analyze the sensitivity of EnMAP-suited VIs in 

preparation of future vegetation monitoring applications.

4 Methodology

4.1 ARTMO’s Software Framework

The entire GSA-VI software development and the conducted analysis were undertaken 

within the in-house developed ARTMO framework [30]. ARTMO is developed in MATLAB 

[84] and consists of a suite of leaf and canopy RTMs, retrieval toolboxes and post-

processing toolboxes, among which is the GSA toolbox [31]. With this toolbox, any of the 

integrated RTMs in ARTMO can be analyzed on input-output relationships. Essentially, the 

GSA toolbox calculates the relative importance of RTM input variables through first-order 

and total-order Sobol’ sensitivity indices. An essential part of GSA methods is that the 

RTM parameter space has to be sampled. In the toolbox various sampling distribution 

methods have been implemented, including: uniform, extreme value, exponential, normal, 

Latin hypercube sampling and the default Sobol sampling [37,38]. The sensitivity analysis 

can be employed along the spectral domain for any kind of optical sensor setting within 

the 400–2400 nm range. In this version (v.1.09), the GSA toolbox has been expanded 

with a GUI module to analyze vegetation indices. In this module, the user can define 

any index formulation and, if a sensor is selected, assign the spectral bands to an index. 

Multiple indices can be as such defined and analyzed at once. Further, a visualization 
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tool has been subsequently developed that enables visualizing the sensitivities of the 

analyzed indices to the different RTM input variables. Among the RTMs implemented 

into ARTMO, the PROSAIL model is the most commonly used coupled leaf-canopy RTM 

[14,15]. Therefore, this model was chosen as baseline model to analyze the selected VIs. 

PROSAIL is commonly applied to describe the reflectance characteristics of a uniform 

canopy derived from the combination of PROSPECT-4 [85] leaf model and the SAIL canopy 

structure model [86]. To account for more heterogeneous canopies, also the INvertible 

FOrest Reflectance Model (INFORM) [87,88] model was chosen because of its suitability in 

simulating forest canopy reflectance while preserving a relative simplicity. The models are 

briefly explained below.

4.2 PROSAIL and PROINFORM

PROSPECT-4 calculates leaf reflectance and transmittance as a function of its biochemistry 

and anatomical structure. It consists of four parameters, those being leaf structure (N), 

chlorophyll a+b content (Cab), equivalent water thickness (Cw) and dry matter content 

(Cm). PROSPECT-4 simulates directional reflectance and transmittance over the spectral 

range going from 400 to 2500 nm at the fine spectral resolution of 1 nm. These outputs 

serves as input into the SAIL canopy model. SAIL is easy to use due to its low number 

of input variables. The model is based on a four-stream approximation of the radiative 

transfer (RT) equations, in which case one distinguishes two direct fluxes (incident 

solar flux and radiance in the viewing direction) and two diffuse fluxes (upward and 

downward hemispherical flux) [89]. SAIL inputs consist of leaf area index (LAI), leaf 

angle distribution (LAD), ratio of diffuse and direct radiation, soil coefficient, hot spot 

and sun-target-sensor geometry, i.e., solar and observer zenith angle and relative azimuth 

angle (SZA, OZA and RAA, respectively). Given that canopy structure is only determined 

by LAI and LAD, this model is therefore used to simulate homogeneous canopies, e.g., 

monoculture crop fields. According to a systematic review on the use of PROSAIL for 

simulating common crops (maize, wheat, rice, soybean, sugar beet) by [15], we constrained 

the dynamic ranges of the PROSAIL variables, which are wide enough to be representative 

and realistic for regional agricultural applications, as described in Table 6.

Regarding the simulation of forest canopies, INFORM was also coupled to PROSPECT-4. 

INFORM is a hybrid model combining the strengths of the turbid-medium and the 

geometric-optical radiative transfer models. It couples the SAILH [86] model which 

simulates the radiative transfer within the turbid-medium canopy layer with the FLIM [90] 

model to account for geometric aspects such as leaf clumping inside, tree crowns and 

crown geometry. When coupled with PROSPECT-4 (PROINFORM), the model simulates 

the forest as a function of the aforementioned leaf-level variables, as well as the canopy-

level variables, i.e., LAI of the single trees (LAIs), LAI of the understory (LAIu), average 

leaf angle (LAD), tree height (H), crown diameter (CD), stem density (SD), besides other 

parameters describing the sun-sensor geometries and irradiance conditions, i.e., sun zenith 

angle (SZA), observer zenith angle (OZA), relative azimuth angle (RAA) and fraction of 

diffuse radiation.
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4.3 Experimental Setup

After selecting the indices and targeted variables defined, the GSA settings need to be 

defined. As mentioned above, the variance-based GSA method of [32] was implemented. 

The PROSAIL variable boundaries from Table 6 were inserted with the Sobol sampling 

scheme, being the standard sampling distribution for calculating a GSA [37]. Finally, the 

number of samples per variable needed to be defined, which is a trade-off between accuracy 

and processing time. To identify this trade-off, an initial study was conducted by gradually 

increasing the sample size. As such, the number of samples when results stabilize can be 

defined, and set for subsequent VI analysis. Only total effect sensitivity results are shown, 

STi, thus taking interactions between variables into account.

5 Results

5.1 Impact of Number of Samples per RTM Variable on GSA

Because the complexity of a model and the number of simulations exert influence on the 

GSA results, it is important in GSA studies to identify where sensitivity results stabilize. To 

do so, a GSA was run with NDVI calculated from PROSAIL and PROINFORM simulations 

whereby the number of samples has been gradually increased. GSA results (STi) are shown 

in Figure 1 in log scale for both axes. It can be noted that around 1500 samples all 

variables stabilize. Specifically, no more fluctuations occurs after 2000 simulations per 

variable. Hence, all subsequent analyzes were carried out with 2000 samples per variable 

(according to [39] adds up to a total of 20,000 simulations for PROSAIL and 28,000 for 

PROINFORM, Section 2). Although this is a rigorous approach, since the models run 

fast the GSA processing time was reasonable (about 2 min), and we can be sure that no 

biases due to the method instability have been introduced. The Y-axis (STi) is plotted in 

log-scale because the majority of variables appear to be of negligible importance. In fact, 

PROSAIL-based NDVI is predominantly driven by two variables: Cab and LAI. These two 

variables alone determine over 65% of the NDVI variability. This trend is confirmed using 

PROINFORM, with NDVI being predominantly driven by Cab, LAIs, LAIu and CD; These 

four variables determine over 80% of the NDVI variability.

5.2 GSA STi Results along the 400–2500 nm Spectral Range

To gain insight in the variables driving RTM reflectance output, first STi results are 

presented along the spectral range for PROSAIL and PROINFORM (Figure 2). These 

results not only identify the driving variables along the spectral range, but also identifies the 

differences in performances between the homogeneous canopy configurations using SAIL 

and the forest canopy configurations using INFORM. While the leaf model contributions 

of the canopy scenarios are alike, with strong influence of Cab in the visible, and of 

Cw in the NIR and SWIR parts of the spectrum, large differences regarding the variables 

characterizing the canopy structure can be observed. Whereas in SAIL canopy structure 

is driven by LAI and LAD, for INFORM these two variables play only small role in 

representing canopy structure. The key structural drivers are crown diameter (CD) and 

LAI of understory (LAIu). These results can be interpreted as follows. Canopy structure 

is defined by two layers in INFORM: The first layer represents LAI as a single tree LAI 

(LAIs). Canopy leaf density is consequently calculated as the product of LAIs, CD, SD 
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and H, having the greatest impact in this process the variable CD [88]. The second layer is 

defined by the LAI of the understory (LAIu), that fixes the proportion of soil reflectance into 

the TOC reflectance. In this respect, LAIs and LAD of the canopy play a less important role, 

as these variables are no longer the key drivers that determine the proportion of vegetation 

and soil reflectance in the TOC reflectance. Having the overall mechanisms identified, it 

allows us interpreting the GSA STi results of VIs that are designed to be sensitive to LCC, 

LWC and LAI.

5.3 GSA STi Results for LCC-Sensitive Indices

Starting the GSA with LCC-sensitive indices, Figure 3 shows the STi results sorted per 

sensor for PROSAIL and PROINFORM. When inspecting these figures, the following 

general trends can be observed: for all LCC-sensitive indices, they respond effectively 

most sensitive to the RTM variable chlorophyll a+b content (Cab) given all ranging 

RTM variables. Total sensitivities (STi) of Cab are more dominant for PROSAIL than for 

PROINFORM. This is not surprising given the more structural variables introduced into the 

forest RTM INFORM, particularly CD plays an important confounding role. For PROSAIL 

the structural variable LAI is secondly driving the sensitivity of the indices.

Most of the LCC-sensitive indices responded consistently across the tested sensors. For the 

PROSAIL scenarios, top sensitive indices were the following (with each STi): CIrededge 

(for S2 and S3 only) (71% for S3), CVI (68% for L8), CIgreen (69% for MODIS), GNDVI 

(70% for MODIS), GRVI (69% for MODIS) and spatial resolution (SR):550/800 (74% for 

MODIS), which indicates these indices are highly sensitive to Cab. For the PROINFORM 

scenarios, however, CVI no longer reacheed a dominance towards Cab, with a value of 34% 

in the best case. Here, CIrededge (58% for S3), CIgreen (52% for MODIS), GNDVI (65% 

for MODIS), GRVI (53% for MODIS) and SR:550/800 (68% for MODIS) reached a STi 

above 50%, with GNDVI and SR:550/800 being the most sensitive LCC indices for both 

RTMs.

For both PROSAIL and PROINFORM scenarios, the index GLI showed the least sensitivity 

towards Cab (48% for PROSAIL and 30% for PROINFORM). These models were 

strongly influenced by structural variables such as LAI in PROSAIL or CD in the case 

of PROINFORM. When comparing the indices across the four sensors, then only subtle 

differences can be noticed. Although each sensor was configured with their own band 

settings in terms of band centre and band width, these differences tend to be of negligible 

influence in the sensitivity performances of the indices. Thereby, despite that sensors with 

more bands in the Cab-sensitive region (see Table 1) allow to calculate more LCC-sensitive 

indices, i.e., CIrededge for S2 and S3, yet this index yielded about the same sensitivities.

Overall, it can be observed that the PROINFORM structural variables suppressed the 

sensitivity towards Cab. While in PROSAIL, mainly LAI and, to a smaller extent, LAD 

played a role, in case of PROINFORM CD is the dominant structural driver influencing the 

response of the indices. In fact, LAI of the understory (LAIu) mostly drove the index for 

GLI. Summarizing, the inter-comparison analysis suggests that the large majority of LCC-

sensitive indices were effectively sensitive to Cab with only marginally affected by structural 
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variables. The indices SR:550/800 and GNDVI responded the most robust, considering the 

tested sensor settings and the two contrasting canopy scenarios.

5.4 GSA STi Results for LWC-Sensitive Indices

Regarding the LWC-sensitive indices, a first observation was that STi sensitivity results show 

more modest sensitivities towards leaf Cw (Figure 4). While for PROSAIL, all tested indices 

show sensitivity towards Cw, the relative importance was generally less than 50%. In fact, 

the majority of these indices responded more sensitive to LAI or Cab than to Cw. Hence, 

confounding factors are overruling the sensitivity towards Cw. The situation was even worse 

for the forest scenarios as simulated by PROINFORM.

With PROINFORM forest canopy simulations, despite their overall low sensitivity, the 

majority of LWC-sensitive indices responded consistently across the tested sensors. This 

suggests that the role of the sensors was marginal for the tested indices. For the PROSAIL 

scenarios, top sensitive indices are the following: NDWI and SWSI. Total SI sensitivity can 

go up to 37%, in case of NDWI with MODIS, only surpassed by LWVI-2 in case of S3, with 

a STi of 40%. Regarding the PROINFORM scenarios, sensitivities are systematically lower 

given the more structural variables involved. Only the NDWI index reached a STi above 23% 

for S2 and over 25% in the case of LWVI-2 with the sensor S3. For this VI, the sensor used 

is S3-SLSTR, which is equipped with SWIR bands. For both considered RTMs, MNDWI 

responded the least sensitive towards Cw. Similarly as before, differences can hardly be 

noticed when comparing the common indices across the four sensors.

Overall, when comparing PROSAIL against PROINFORM, it can be noted that the 

PROINFORM structural variables suppress the sensitivity towards Cw. In PROSAIL, LAI 

is the most important structural driver, and often more sensitive than Cw. In the case of 

PROINFORM, various structural drivers play a role, with CD and then LAIs, LAIu, and SD 

as the most important variables. Summarizing, the inter-comparison analysis suggests that 

the large majority of LWC-sensitive indices are somewhat sensitive to Cw, with the index 

NDWI being the most robust considering the tested sensor settings and the two contrasting 

canopy scenarios. Yet, structural variables play an even more dominant role in the response 

of these indices. Hence, this means that in the case of structurally heterogeneous canopies 

utmost care is required when using and interpreting these indices.

5.5 GSA STi Results LAI-Sensitive Indices

Regarding the LAI-sensitive indices, Figure 5 shows again the GSA STi results sorted per 

sensor for canopy configurations using PROSAIL and PROINFORM. When inspecting 

these figures, the following general trends can be observed. In the case of homogeneous 

canopies, as simulated by PROSAIL, STi results suggest that effectively all analyzed LAI-

sensitive indices show a strong sensitivity towards LAI. Yet, results also suggest that for 

the majority of indices, LAI is not evaluated as the most dominant variable. In fact the LAI-

sensitive indices expose stronger sensitivity towards Cab. In the case of forested canopies 

as simulated by PROINFORM, canopy LAI within a tree (LAIs) shows only marginal 

influence, it is LAI of the understory (LAIu) that is more driving, given its role of covering 

soil reflectance. However, canopy structure is in PROINFORM defined by 4 structural 
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variables (LAIs, SD, H, CD) as it was exposed in Section 5.2. These variables together add 

up to STi values above 50% for all indices, justifying the sensitivity of these indices towards 

canopy structure.

The majority of LAI-sensitive indices behaved consistently across the tested sensors. For the 

PROSAIL scenarios, the top sensitive indices are the following with the associated value of 

STi: CTVI for MODIS with 50% and S3 with 49%, SLAVI for S3 with 49% and L8 with 

39%, WDRVI for MODIS with 42%, S2 with 40% and S3 with 40% and NDVI showed 

high sensitivity among all sensors, being the higher MODIS with a 50%. For these indices, 

STi can go up to 40%, which indicates these indices were highly sensitive to LAI. The S3 

sensor showed great stability, reaching a value of 49% for NDVI, CTVI, and SLAVI, we see 

this same value repeated in MODIS for CTVI and NDVI. For the PROINFORM scenarios, 

considering that canopy leaf density is defined by a combination of multiple structural 

variables (LAIs, SD, H, CD), then SLAVI, CTVI, and EVI are mostly sensitive to canopy 

structure. CTVI shows a STi of 21% for MODIS, 24% for S2 and 20% for S3, reducing its 

value to 17% in L8. Also noteworthy is the impact of LAIu, which reaches a STi of 35% for 

L8 and 28% for MODIS, being higher than the actual contribution of the combined canopy 

structural variables. EVI responded more stable across all the sensors, with a maximum 

value of 52% for S2 and a minimum of 46% for MODIS. SLAVI, as well as EVI, showed a 

robust value across all the sensors (50% for L8, 45% for S2), but also influenced by LAIu 

(8% for L8 and 9% S2).

For both PROSAIL and PROINFORM canopy scenarios, the DVI and MSR responded the 

least sensitive towards LAI. Instead, these indices showed a sensitivity towards Cab. Also, 

WDRVI indices exposed more sensitivity towards Cab than LAI, in the case of PROSAIL 

this difference is very small, between 5% and 10% depending on the sensor. However, 

in PROINFORM this difference becomes much more evident, keeping Cab with a value 

higher than 45% for all the VI and the weight of LAI distributed among all the variables 

of structure not being superior to 40% of STi. When comparing the indices across the 

four sensors, overall the sensors band settings lead to the same results. Yet, in case of 

PROINFORM the CTVI index responded more sensitive to structure for the Landsat-8 and 

MODIS sensors than for the S2 and S3 sensors (in the case of SLAVI, making use of 

S3—SLSTR).

Overall, it can be noted that the multiple structural canopy variables as defined by 

PROINFORM are mostly driving the variability of the LAI-sensitive indices. While LAI 

was the most important structural driver in PROSAIL, in case of PROINFORM, LAI of 

the understory (LAIu) and CD acted as the most important variables. Tree height (H) had 

no impact on any of the indices. Summarizing, the large majority of LAI-sensitive indices 

were effectively strongly sensitive towards canopy structure, i.e., LAI or other variables that 

define the structure in case of PROINFORM, with the index SLAVI as the most robust 

considering the tested sensor settings and the two contrasting canopy scenarios.

5.6 GSA STi Results for Hyperspectral Indices

Since the above broadband sensors are configured with a limited number of bands, the 

number of valid indices that can be derived are limited. Also, because of the overlap in the 
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spectral bands, only small differences were encountered across the tested sensors. Hence, in 

this section indices are evaluated according to the band settings of the forthcoming EnMAP 

imaging spectrometer that is configured with 230 narrow bands. Consequently, given the 

many bands at disposal, not only can more indices sensitive to the variables of interest be 

calculated, but the probability to evaluate robust indices may also be higher. Results for both 

PROSAIL and PROINFORM canopy configurations are provided in Figure 6.

An inspection of the LCC-sensitive indices reveals the same excellent performances 

as observed before. Although no systematic superior performances, as opposed to the 

broadband indices, emerged, yet some indices showed more sensitivity towards structural 

variables than to Cab, namely GLI with a STi of 80% for PROSAIL and 55% for 

PROINFORM. The other tested indices did not reveal a clear advantage, except for the case 

of Chlrededge (56% for PROSAIL and 60% for PROINFORM) and DD (71% for PROSAIL 

and 65% for PROINFORM), with a similar result as the one exposed by CIrededge with the 

S3 sensors.

Many more narrowband than broadband LWC-sensitive indices were found in literature, but 

only a few of them showed a dominant sensitivity towards Cw. Particularly the following 

indices exposed a strong sensitivity in the case of PROSAIL (with STi): WBI (47%), WBI4 

(49%), WC (49%), WI (50%) and Ratio1200 (54%). This trend can be confirmed in the 

case of PROINFORM but with lower values; the combined structural variables govern 

the indices’ variability. Ratio1200 reached the highest sensitivity with Cw STi up to 39%, 

while among the narrowband indices WC yielded the highest sensitivity with a STi of 

32%. It is also worth mentioning that LWVI-2 with STi of 49% for PROSAIL and 36% 

for PROINFORM responded stronger sensitive towards Cw than the other narrowband 

indices due to the contribution of a SWIR band. Moreover, in fact, the strongest sensitivities 

emerged towards structural variables, which are dominating for the majority of indices. This 

again suggests that although LWC-sensitive indices can estimate Cw, they are also sensitive 

towards canopy structural heterogeneity.

Regarding LAI, similar as for the broadband indices, a distinction between PROSAIL and 

PROINFORM has to be made. The following trends were observed: first, compared to the 

above leaf variables indices, fewer LAI-sensitive indices were found in literature. Second, 

for the majority of indices, LAI is not the dominant driving variable but rather Cab. Third, 

for PROSAIL only the indices (with STi) DLAI (46%), LAIDI (43%), NDVI (38%) and 

SLAVI (47%) emerged to be dominantly sensitive towards LAI. About the same trend is 

observed with PROINFORM when merging all its structural variables. For PROINFORM, 

combining the canopy density variables (LAIs, SD, H, CD), DLAI shows the higher total 

sensitivity towards LAI, with 58% followed by SLAVI with 48%, being the most dominant 

variables CD and LAIs followed by LAIu with 11% for DLAI and 14% for SLAVI. In fact, 

noteworthy is that when comparing against the LWC-sensitive indices, these indices show 

generally a higher sensitivity towards LAI than the here tested LAI-sensitive indices.
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6 Discussion

After having developed the GSA software framework, we conducted a sensitivity analysis 

of common VIs that were designed to respond sensitively towards the LCC, LWC, and LAI, 

respectively. Their robustness against confounding factors was analyzed by running a GSA 

using PROSAIL and PROINFORM simulations, i.e., representing respectively homogeneous 

and forest canopy scenarios. Based on the derived results given band settings of common 

broadband sensors and the selected imaging spectrometer, the following general trends can 

be observed:

• Regarding LCC-sensitive indices, overall the most robust indices are GNDVI 

and SR:550/800. Those indices showed the highest total sensitivity to Cab 

and are thus most robust to the confounding effects of other RTMs variables. 

Moreover, LCC-sensitive indices are applicable to all the sensors tested including 

the imaging spectrometer EnMAP. For EnMAP, GNDVI showed an increase of 

STi up to 74%, as well as GLI, up to 79%. In a related study by [91], GNDVI 

revealed a similarly high sensitivity towards Cab as well as to LAI, but also small 

differences can be appreciated between both studies, probably due another GSA 

method used, named EFAST. When interpreting the results from a sensor point 

of view, then the broadband indices tend to respond more robust towards Cab 

estimation than the spectrometer narrowband specific indices. Hardly differences 

were encountered across the four tested broadband sensors. Yet, a trend can be 

observed, namely that these robust indices are based on exploiting the bands 

between 450 nm and 800 nm. This spectral range is where all the processes 

related to Cab absorption occur [92,93]. Most of these indices make use of only 2 

bands: one sensitive band is used in the red or green region and this is compared 

against a more stable reference band, which is located in the NIR region [74].

• Regarding LWC-sensitive indices, overall the most robust indices are WI and 

Ratio1200 for PROSAIL, being the only ones that surpass 50% of STi and 

Ratio1200 for PROINFORM. These are narrowband indices available with 

EnMAP. Hence, for LWC-sensitive narrowband indices proved to be more 

effective than broadband indices. The Ratio1200 uses 3 bands located around 

the 1200 nm water absorption region. The influence of the SWIR band is also 

observed in the study by [94], as expressed by a high sensitivity of the LWVI-2 

index with Cw. It is noteworthy that these indices always use a band in the NIR 

and SWIR regions, which is related to water absorption [95,96]. A drawback of 

SWIR-based indices, however, is that only a limited number of sensors cover 

the SWIR range. Results also suggest that multiple-band indices can be more 

effective than traditional 2-band indices. For instance, Ratio1200 exploits this 

relation using the bands: 1205 nm, 1095 nm and 1275 nm. Another remark 

is that the majority of the LWC-sensitive indices show superior sensitivity 

towards LAI, even more than some LAI-sensitive indices. This suggests that 

homogeneous canopies are required for the mapping of LWC [97]. The only 

index where we observed a good sensitivity across traditional and narrowband 
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indices is NDWI, and also LWVI-2, which is only available for S3 when making 

use of SLSTR bands.

• Regarding LAI-sensitive indices, overall the most robust index is SLAVI. This 

index showed the highest overall sensitivity to LAI given the other PROSAIL 

variables and is applicable to all sensors. The narrowband spectrometer EnMAP 

dataset yielded somewhat better results than the broadband sensors, with the 

indices DLAI and LAIDI as best performing. However, when the structure is 

defined by many canopy variables, as is the case for PROINFORM, then LAIs is 

no longer the predominant variable, due to how LAI of the canopy is calculated 

in the model, others values such as CD, SD, and H have to be taken into 

consideration [88]. The greenness index NDVI reaches almost a 50% STi for 

PROSAIL. A more optimistic value is reported in [91], yet the same trend is 

observed in both cases: high sensitivity of LAI followed by Cab. This pattern 

can be observed in LAI-sensitive indices like DVI or NDVI, which are based on 

the comparison of a band in the red against another in the NIR [98], similar to 

LCC-sensitive indices. Another notable pattern is the exploiting of bands that are 

not influenced by Cab or water absorption, such as the DLAI or LAIDI indices, 

where the bands used are in the range of 970–1050 nm and 1725 nm. These 

kinds of indices are particularly promising for sensors that cover the SWIR 

range, such as EnMap [99].

Altogether, the conducted GSA exercises underline that VIs are never exclusively sensitive 

to a single targeted variable; all indices are affected by a greater or lesser extent by 

confounding variables. This is not surprising, given that canopy reflectance is the result 

of a complex interplay between absorbances and scattering of biochemicals and structural 

variables [100]. It suggests that analyzed VIs are above all greenness indices, and we 

should be careful with categorizing them according specific sensitivity properties. As 

was demonstrated here, by running RTMs the contributions of biochemical and structural 

variables can be quantified, for VIs as well for the full spectrum. The here presented 

GSA tool can as such contribute to the development of new generation indices e.g. in 

view of upcoming imaging spectrometer missions, not only by relying on a few bands but 

rather by making use of spectral shapes (e.g., integrals, derivatives) at sensitive regions. 

Also, although in this work sun-target-sensor geometry was not considered because only 

nadir sensors were analyzed, follow-up studies should also take into account the effects of 

geometry, since reflectance anisotropy also play a role [4,101,102]. Also further upscaling is 

possible. A related study explored the possibility of coupling canopy RTM with atmospheric 

RTM [27] proving the additional influence of atmospheric factors. However, this type 

of analysis requires a large amount of time due to the computational cost of current 

atmospheric RTM, so alternative solutions have been explored, as discussed below.

Limitations and Opportunities in RTM-GSA Studies

Models are always a simplification of reality. A well-known limitation of the SAIL model 

is its absence of realism in canopy structure, as the leaf elements are organized in a turbid 

medium. This limitation has been partly resolved with INFORM, where explicit structural 

forest canopy variables have been introduced. Yet, in INFORM tree crowns are based 
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on the SAIL principles. For more realistic realistic canopy configurations, one needs to 

move towards ray tracing RTMs (e.g. FLIGHT, DART) [103,104], Monte Carlo ray tracing 

RTM [105,106] or 3D RTM [107], where all canopy elements are explicitly defined (see 

comparison of these models by [108]). However, as was demonstrated in Figure 1, GSA 

requires many simulations to achieve stable results, typically 2000 samples per variable. 

When many variables are involved this easily leads to several ten thousand simulations, 

which may take too long computational time in case of ray tracing where each simulation 

implies the rendering of a scene wavelength per wavelength. Parallel processing would be 

a good option to reduce the computation time, e.g., only for the wavelengths that take part 

in the calculation of a VI. An alternative approach to bypass the burdensome processing 

time is to approximate the original RTM by means of the surrogate model through emulation 

[109]. Emulators are statistical constructs that enable to approximate the outputs of the 

original RTMs, but this at low computation cost so that a large number of simulations 

can be produced in a short time [110,111]. Recent experimental studies demonstrated 

accurate performances in the emulation of the leaf, canopy and atmosphere RTMs including 

PROSAIL, SCOPE and MODTRAN [25,112–114]. The GSA toolbox has recently been 

updated with an option that apart from original RTMs also their emulated counterparts can 

be used for GSA calculation. It would, therefore, be of interest to explore in follow-up 

studies: (1) the consistency of GSA results from emulation-based VIs as opposed to original 

RTM VIs, and if consistent, (2) apply GSA to VIs for complex, heterogeneous canopies as 

emulated from original ray tracing models or RTM 3D.

Related to this approach, given that RTM run-time time should no longer be a drawback 

with parallel computing or emulation, opportunities have opened up to evaluate spectral 

indices beyond the common vegetation properties using advanced RTMs. One example 

involves the emergence of indices for the exploitation and interpretation of sun-induced 

chlorophyll fluorescence spectral data [115,116], which can be calculated from the RTM 

SCOPE [117]. Another example involves the calculation of water indices [118], e.g., as 

calculated from the water RTM Hydrolight [119].

As a final remark, regardless of the realism capability of the RTM under study, it is well 

understood that models, at best, can only approximate reality. Hence, the observed findings 

on the indices’ behavior serve merely as guidelines on how indices would behave when 

calculated from spectral measurements over real vegetated surfaced. In this respect, for 

specific applications and when field data is available, GSA studies can be customized by 

setting the variable boundaries according to the area of study. The input variables of interest 

and their boundaries can easily be defined in the GSA toolbox.

7 Conclusions

VIs are widely used in optical remote sensing as fast indicators of biophysical variables 

of a vegetated surface. Yet their robustness as an indicator of a variable of interest is not 

fully clarified, as many factors drive variability in reflectance of vegetated surfaces. To be 

able to quantify the robustness of VIs, we demand a systematic and rigorous evaluation, 

thereby introducing a widest possible variety of biochemical and structural variability in 

canopy scenarios. Such kinds of exercises can be achieved with leaf and canopy RTMs, 
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whereby multiple input variables can simulate a diversity of vegetation scenarios. In order 

to evaluate multiple VIs in an efficient way, we have extended ARTMO’s GSA toolbox 

so that the sensitivity and thus the robustness of multiple VIs can be effectively analyzed. 

The toolbox can be freely downloaded at https://artmotoolbox.com/. To demonstrate its 

utility, we analyzed the indices that were designed to respond sensitive towards LCC, LWC, 

and LAI and are applicable to ongoing operational satellite Earth observers (Landsat 8, 

MODIS, Sentinel-2, and Sentinel-3). GSA total sensitivity results suggest the following key 

findings: (1) none of the indices responded exclusively sensitive towards a targeted variable; 

(2) LCC-sensitive indices behave generally most robust towards leaf chlorophyll content 

with STi up to 84%; (3) LWC-sensitive indices responded the least robust towards LWC; 

they are strongly influenced by structural variables such as LAI; and, (4) LAI-sensitive 

indices, in turn, respond sensitively to a mixture of structural variables but also to leaf 

chlorophyll content. When moving from broadband indices to narrowband indices, e.g., as 

can be derived from the imaging spectrometer EnMAP, substantially more indices can be 

analyzed, yet the analyzed indices revealed the same patterns. Summarizing, all the analyzed 

indices are to some extent affected by variability in leaf and canopy variables, meaning that 

VIs are never exclusively sensitive to a single vegetation variable. This suggests that utmost 

care is required when applying these indices as vegetation properties indicators, especially 

when using them for mapping applications over heterogeneous canopies.
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Figure 1. 
Analysis of the impact of number of samples on global sensitivity analysis (GSA) stability. 

GSA has been run for NDVI with PROSAIL (left) and PROINFORM (right), increasing the 

number of samples.
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Figure 2. PROSAIL (left) and PROINFORM (right) STi results along the 400–2500 nm spectral 
range.
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Figure 3. Comparison of leaf chlorophyll content (LCC)-sensitive indices for PROSAIL (top) and 
INFORM (bottom) simulations for band settings of four sensors.
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Figure 4. Comparision of leaf water content (LWC)-sensitive indices for PROSAIL (top) and 
PROINFORM (bottom) simulations for band settings of four sensors.
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Figure 5. Comparison of leaf area index (LAI)-sensitive indices for PROSAIL (top) and 
INFORM (bottom) simulations for band settings of four sensors.
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Figure 6. 
Comparison of GSA results (STi) for LCC (top), LWC (middle) and LAI (bottom) 

sensitive indices for PROSAIL (left) and PROINFORM (right) canopy configurations for 

the EnMAP band settings.
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Table 1

Main characteristics of analyzed sensors. ⋆SR: spatial resolution.

Landsat 8 MODIS Sentinel-2 Sentinel-3 EnMap

Full Name Moderate-resolution 
Imaging 
Spectroradiometer

Environmental 
Mapping and Analysis 
Program

Bands 11 36 13 OLCI: 21/SLSTR: 9 230

Spectrum [nm] 435–12,510 405–14,385 433–2280 OLCI: 400–1020 
SLSTR: 554–12,022

420–2450

⋆SR [m] 15–100 250–1000 10–60 300–1200 30–30

Inclination 98 98.2 98.6 98.65 97.98

Orbit Height 
[km]

708 705 797 814.5 653

Orbit Type 
Platform

Sun-synchronous Sun-synchronous circular 
Terra/Aqua

sun-synchronous 
Sentinel-2

polar, sun-
synchronous 
Sentinel-3

Sun-synchronous

Operator NASA/USGS NASA ESA EUMETSAT DLR/GFZ

Launch Date 20-02-2011 18-12-1999 23-06-2015 16-02-2016 2020
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Table 2

LCC-sensitive indices organized per sensor. Indices are selected according to [40].

Index Abbreviation Formula References

LandSat 8, MODIS, Sentinel 2 and Sentinel 3

Chlorophyll vegetation index CVI NIR RED
GREEN2

[41]

Chlorophyll index green CIgreen NIR
GREEN − 1 [42–44]

Green leaf index GLI 2 ⋅ GREEN − RED − BLUE
2 ⋅ GREEN + RED + BLUE

[42,45]

Green NDVI GNDVI NIR − GREEN
NIR + GREEN

[7,46]

Green Ratio Vegetation Index GRVI NIR
GREEN

[47]

Simple Ratio 550/800 SR:550/800 ρ550
ρ800

[7]

Sentinel 2 and Sentinel 3

Chlorophyll IndexRedEdge CIrededge NIR
rededge − 1 [42–44]
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Table 3

LWC-sensitive indices organized per sensor. Indices are selected according to [40].

Index Abbreviation Formula References

LandSat 8, MODIS, Sentinel 2 and Sentinel 3

Modification of normalized difference water index MNDWI GREEN−ρ1500 − 1700
GREEN+ρ1500 − 1700

[48]

Moisture stress index MSI ρ1600
ρ820

[49,50]

Shortwave infrared water stress index SIWSI ρ800 − ρ1640
ρ800 + ρ1640

[51]

MODIS, Sentinel 2 and Sentinel 3

Normalized difference water index NDWI ρ860 − ρ1240
ρ860 + ρ1240

[51–53]

Sentinel 3

Leaf water vegetation index-2 LWVI2 ρ1094 − ρ1205
ρ1094 + ρ1205

[54]
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Table 4

LAI-sensitive indices organized per sensor. Indices are selected according to [40].

Index Abbreviation Formula References

LandSat 8, MODIS, Sentinel 2 and Sentinel 3

Corrected transformed vegetation index CTVI NDV I + 0.5
NDV I + 0.5 ⋅ NDV I + 0.5 [55]

Difference vegetation index DVI NIR
RED

[7,56,57]

Enhanced vegetation index EVI 2.5 NIR‐RED
(NIR + 6red − 7.5BLUE) + 1

[42,58,59]

Modified single ratio MSR ρ800 − ρ445
ρ680 − ρ445

[60,61]

Normalized difference vegetation index NDVI NIR − RED
NIR + RED

[62,63]

Specific leaf area vegetation index SLAVI NIR
RED + SW IR

[64]

Wide dynamic range vegetation index WDRVI 0.1 ⋅ NIR − RED
0.1 ⋅ NIR + RED

[44,65]
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Table 5
Indices organized per application and selected bands for EnMAP [40]—BLUE: 449.25 
nm, GREEN: 527.25 nm, RED: 670.25 nm, NIR: 1085 nm, RedEdge: 709.25 nm, SWIR: 
2195 nm.

Index Abbreviation Formula References

LCC

Chlorophyll vegetation index CVI NIR RED
GREEN2

[41]

Chlorophyll index green CIgreen NIR
GREEN − 1 [42–44]

Green leaf index GLI 2 ⋅ GREEN − RED − BLUE
2 ⋅ GREEN + RED + BLUE

[42,45]

Green NDVI GNDVI NIR − GREEN
NIR+GREEN

[7,46]

Green ratio vegetation index GRVI NIR
GREEN

[47]

Simple Ratio 550/800 SR:550/800 ρ550
ρ800

[7]

Chlorophyll Index Red-Edge CIrededge NIR
Rededge − 1 [44]

Chlorophyll Red-Edge Chlrededge (Rededge
Red )−1 [74]

Double difference index DD ρ749 − ρ720 − ρ701 − ρ672 [7,60]

Double peak index DPI ρ698 + ρ710
ρ697

2
[53,60]

Green ratio vegetation index hyper GRVIHyper ρ560
ρ658

[75]

Transformed chlorophyll absorption ratio TCARI 3(( ρ700 − ρ670 ) − 0.2( ρ700 − ρ550 )(
ρ700
ρ670

)) [42,60]

Triangular chlorophyll index TCI
1.2 ρ700 − ρ550 − 1.5 ρ670 − ρ550

ρ700
ρ670

[42]

LWC

Modification of normalized difference water 
index

MNDWI GREEN − ρ1605
GREEN + ρ1605

[48]

Moisture stress index MSI ρ1600
ρ820

[49,50]

Shortwave infrared water stress index SIWSI ρ800 − ρ1640
ρ800 + ρ1640

[51]

Normalized difference water index NDWI ρ860 − ρ1240
ρ860 + ρ1240

[51–53]

Leaf water vegetation index-2 LWVI-2 ρ1094 − ρ1205
ρ1094 + ρ1205

[54]
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Index Abbreviation Formula References

Disease water stress index DSWI ρ802 + ρ547
ρ1657 + ρ682

[54]

Disease water stress index-1 DSWI-1 ρ800
ρ1660

[76]

Leaf water vegetation index-1 LWVI-1 ρ1094 − ρ983
ρ1094 + ρ983

[54]

Normalized difference infrared index NDII ρ819 − ρ1649
ρ819 + ρ1649

[77]

Water band index WBI ρ970
ρ902

[78]

Water band index-4 WBI4 ρ895
ρ972

[79]

Water content WC ρ1193
ρ1126

[80]

Water Index WI ρ900
ρ970

[81]

Three-band ratio 1200 Ratio1200 2
ρ1205

ρ1095 + ρ1275
5

[82]

LAI

Corrected Transformed Vegetation Index CTVI NDV I + 0.5
NDV I + 0.5 ⋅ NDV I + 0.5 [55]

Difference Vegetation Index DVI NIR
RED

[7,56,57]

Enhanced Vegetation Index EVI 2.5 NIR − RED
(NIR + 6RED − 7.5BLUE) + 1

[42,58,59]

Modified single ratio MSR ρ800 − ρ445
ρ680 − ρ445

[60,61]

Normalized difference vegetation index NDVI NIR − RED
NIR+RED

[62,63]

Specific Leaf Area Vegetation Index SLAVI NIR
RED+SWIR

[64]

Wide Dynamic Range Vegetation Index WDRVI 0.1 ⋅ NIR − RED
0.1 ⋅ NIR + RED

[44,65]

Difference 1725/970 Difference LAI DLAI ρ1725 – ρ970 [8]

Simple Ratio 1250/1050 LAI determining index LAIDI ρ1250
ρ1050

[83]
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Table 6

Parameters considered in the data simulations. The observer zenith angle is kept at nadir (0°). The fraction of 

diffuse radiation and hot spot parameter are kept at their default value (SAIL parameters).

Input Description Unit Min Max

Leaf: PROSPECT4

N Leaf structural parameter [-] 1 2.6

Cab Chlorophyll a+b content [μg/cm2] 0 80

Cw Equivalent water thickness [g/cm2] or [cm] 0.001 0.08

Cm Dry matter content [g/cm2] 0.001 0.02

Canopy: SAIL and INFORM

LAD Leaf angle distribution [°] 0 90

SZA θS Solar Zenith Angle [°] 0 60

ρS Soil Coefficient [-] 0 1

Canopy: only SAIL

LAI Total leaf area index [m2/m2] 0 10

Canopy: only INFORM

LAIs Single tree leaf area index [m2/m2] 0 10

LAIu Leaf area index of understory [m2/m2] 0 5

SD Stem density [1/ha] 0.5 1500

H Tree height m 0.5 30

CD Crown diameter m 0.1 10
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