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Abstract

Fiber tractography on diffusion imaging data offers rich potential for describing white matter pathways in the human brain,
but characterizing the spatial organization in these large and complex data sets remains a challenge. We show that level set
trees–which provide a concise representation of the hierarchical mode structure of probability density functions–offer a
statistically-principled framework for visualizing and analyzing topography in fiber streamlines. Using diffusion spectrum
imaging data collected on neurologically healthy controls (N = 30), we mapped white matter pathways from the cortex into
the striatum using a deterministic tractography algorithm that estimates fiber bundles as dimensionless streamlines. Level
set trees were used for interactive exploration of patterns in the endpoint distributions of the mapped fiber pathways and
an efficient segmentation of the pathways that had empirical accuracy comparable to standard nonparametric clustering
techniques. We show that level set trees can also be generalized to model pseudo-density functions in order to analyze a
broader array of data types, including entire fiber streamlines. Finally, resampling methods show the reliability of the level
set tree as a descriptive measure of topographic structure, illustrating its potential as a statistical descriptor in brain imaging
analysis. These results highlight the broad applicability of level set trees for visualizing and analyzing high-dimensional data
like fiber tractography output.
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Introduction

Fiber tractography on diffusion weighted imaging (DWI) data

can provide a high-resolution map of the anatomical connections

between two brain areas [1]. The deterministic variant of fiber

tractography generates a set of simulated fiber streamlines that

provide rich information about the topographic structure of white

matter pathways [2–4]. This method has been used recently to

characterize the sheet-like layout of large, myelinated pathways

[5], map the organization of fiber bundles within the same

pathway [6–8], identify novel neuroanatomical patterns [9–12]

and quantify the global structural connectivity between large sets

of brain regions [3,13], providing a so-called structural ‘‘con-

nectome’’ of the human brain (see Van Essen et al. (2012) [14]).

The topography and connectivity of the structural connections

identified with fiber tractography have also been shown to relate

directly to corresponding functional connectivity [15] and task-

evoked functional dynamics [6,16], highlighting the relationship

between structure and function in neural systems. Despite these

advances, the lack of descriptive metrics for the spatial

topography of white matter pathways remains a standing

problem with structural connectivity analysis (see Jbabdi et al.

(2013) [17]).

Clustering is a popular method for summarizing the spatial

organization of white matter pathways [18,19], but clustering is

often a difficult and ill-defined task. Many of the proposed

approaches, such as fuzzy c-means [20,21], spectral clustering

[22,23], diffusion maps [24], local linear embedding [25],

geometric clustering [26,27] and white matter atlas matching

[28,29], assume there is a single well-defined partition of the data

into K separate groups, where K is presumed known a priori.

However, when the data are noisy or have a high degree of

complexity or spatial heterogeneity, as is often the case in

neuroimaging, it is more appropriate to assume the data have

multi-scale clustering features that can be captured by a hierarchy

of nested partitions of different sizes. These partitions and their

hierarchy provide a wealth of information about the data beyond

typical clustering results, unburdening the practitioner from the

need to guess the ‘‘right’’ number of clusters, providing a global

summary of the entire data set and offering the ability to select

sub-clusters at different levels of spatial resolution depending on

the scientific problem at hand.

There are many well-established hierarchical clustering meth-

ods, some of which have been applied to the problem of fiber track

segmentation [30–33]. However, these methods often suffer from a

lack of statistical justification. Single linkage clustering, for
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example, is known to be inconsistent in dimensions greater than

one [34] and suffers from the problem of ‘‘chaining’’ [18]. In

addition, the dendrograms that result from agglomerative hierar-

chical clustering do not indicate the optimal number of clusters;

the practitioner must specify the desired number of clusters or a

threshold at which to cut the dendrogram. Furthermore, the

dendrograms that result from these methods are rarely used as

statistical descriptors in their own right.

Several recent fiber clustering analyses propose more sophisti-

cated methods that do not require a priori knowledge of the

number of clusters. Wasserman and Deriche (2008) [35] and

Zvitia et al. (2008) [36] use the mean-shift clustering algorithm,

which finds clusters that correspond to the modes of an assumed

probability density function. Brun et al. (2004) use spectral

clustering but avoid choosing a cluster number by doing recursive

binary data partitions [37]. Wang et al. (2011) use a hierarchical

Bayesian mixture model over supervoxels to estimate white matter

segmentation, with the number of clusters chosen automatically by

a Dirichlet process [38]. Different clustering scales are achieved by

defining supervoxels of various sizes. Many of these methods are

capable of clustering at multiple data resolutions, but this is

generally not the focus and the multi-scale clustering results are

typically not exploited for further analysis.

In this article we introduce and apply the principles of high-

density clustering [39] for complex fiber tractography from a high-

angular resolution form of DWI. We implement a general

procedure called the level set tree for accurate estimation of nested

subsets of high-density data points. Like other agglomerative

clustering methods, the output of our procedure is a hierarchy of

clusters that can be represented with a dendrogram. But unlike

any other hierarchical clustering method, the dendrogram

obtained by the level set tree procedure has a direct probabilistic

interpretation in terms of underlying probability density function

(see next section for details and background). As a result, level set

trees provide a means to represent and visualize data arising from

complex and high-dimensional distributions that is statistically

accurate in the sense of being a faithful encoding of the level sets of

a bona fide density function. This property extends to any sub-tree

of a level set tree, so that with our procedure it is possible to extract

subsets of data at multiple resolutions while retaining the same

probabilistic faithfulness, effectively allowing for dynamic and

multi-scale clustering that does not require advance knowledge of

the true number of clusters.

In the context of fiber tractography we show how the level set

tree can be used interactively to visualize spatial patterns and to

cluster fiber streamlines that are similar in terms of location and

shape. Unlike most clustering methods that output a single

partition of the data, level set trees encode many different cluster

permutations and act as a scaffold for interactive exploration of

clustering behavior. We also show how uncertainty can be

captured on the level set tree, suggesting the potential for using

the tree as a summary statistic of topographic structure. Taken

together, our results demonstrate that level set trees offer a solution

for describing the topographies found in fiber streamline data sets

and provide a fundamentally new way of visualizing and analyzing

complex spatial patterns in fiber tractography data sets.

Methods

Level Set Trees for Densities
Suppose we observe a collection of points Xn~fx1, . . . ,xng in

Rd and we want to identify and visualize the spatial organization

of Xn without specific knowledge about the data generating

mechanism and in particular without any a priori information

about the number of clusters. To be concrete, think of Xn as the

endpoints in R3 of n fiber pathways, which we hope to describe in

a way that is anatomically meaningful. Clustering is a common

approach to this goal, but clustering is typically an ill-defined task

because the concept of a cluster is vaguely defined. Our level set

tree methodology, in contrast, extends the statistically principled

approach to clustering from Hartigan (1975) [39].

Assume the data points are independent draws from an

unknown probability distribution P on Rd with probability density

function (hereafter pdf) f . That is, f is a non-negative function

such that the probability of observing a data point inside a subset

A5Rd can be computed as

P(A)~

ð
x[A

f (x)dx, ð1Þ

where the integral is the Lebesgue integral in d-dimensions. From

this expression one can see that a set A where f takes on large

values has a high probability of containing many of the sample

points. As a result, points in the sample Xn are likely clustered

inside such a set, so it is natural to define clusters as regions of high

density f .

To formalize this intuition, fix a threshold value l§0 and let

Ll(f )~fx[Rd : f (x)§lg be the upper level set of f , i.e. the set of

points whose density values exceed the level l. Call the set of

connected components of Ll(f ) the l-clusters of f . More

generally, a high-density cluster of f is a l-cluster for some l,

0ƒlƒ maxx f (x). Notice that according to this probabilistic

definition, the notion of a cluster depends on the choice of l and

that for a fixed l the corresponding set of clusters will typically not

give a partition of fx : f (x)§0g. Also, for larger values of l the l-

clusters define regions where the ratio of probability content to

volume is higher.

A key feature of high-density clusters is the tree property: if A
and B are two high-density clusters, then one is a subset of the

other or they are disjoint. This implies that high-density clusters

form a hierarchy–the level set tree of f –that is indexed by the level

values l. The tree property is extremely advantageous for data

analysis for a number of reasons. First, the level set tree can be

depicted as a dendrogram, from which the overall hierarchy of

clusters of f can be visualized across all possible levels of l. In fact,

one can regard the level l as providing a clustering resolution of

sorts, with lower values of l corresponding to larger and coarser

clusters and higher values to smaller, more sharply defined

clusters. Thus, the dendrogram of level sets of f provides a multi-

scale representation of the clustering characteristics of f . As a

result, the practitioner is free to choose the scale and the number

of clusters to extract, depending on the goals of the analysis.

Contrast this with many popular clustering algorithms that

implicitly use a single-scale approach and demand a choice of

the number of clusters. Another advantage of the tree property is

that it allows represention and storage of the entire set of cluster

inclusions efficiently with a compact data structure that can be

easily accessed and queried (see Table 1 and its description in the

Results section). Finally, the dendrogram can be used in a direct

and interactive manner for visualizing and extracting the clusters

at various levels of the tree and for exploring the clustering features

of a data set. With this approach, one can select a varying number

of clusters at the same or different levels of l without having to re-

run the algorithm.

Figure 1 shows how to read and interpret the level set tree from

a dendrogram. Panel A shows the pdf for a mixture of three

Gaussian distributions and dashed lines representing four values of
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l. For each level the solid line segment depicts the corresponding

clusters. Note that these are subsets of the real line, even though

for illustrative purposes we depict them at the same level as the

corresponding l. The tree property can be seen in the fact that

each high-density cluster is a subset of some cluster portrayed

immediately below it but is disjoint from all other clusters at the

same level. In panel B the dendrogram of the level set tree is

shown; note how the hierarchy of clusters corresponding to the

four levels is respected. Branching points correspond exactly to

levels at which two or more modes of the pdf, i.e. new clusters,

emerge. Each vertical line segment in this panel represents the

high-density clusters within a single pdf mode. Line segments that

do not branch are considered to be high-density modes, which we

call the leaves of the tree. For simplicity, we tend to treat the terms

dendrogram and level set tree as synonymous.

Estimating Level Set Trees
In practice f is not directly observed and one must use the data

Xn to compute an estimator f̂ of f . Under mild assumptions on f

and if the sample size n is large, f̂ is guaranteed to be very close to

f with large probability [40] and one could use the level set tree of

f̂ to estimate the level set tree of f accurately. Unfortunately,

computing the l-clusters of f̂ is computationally infeasible even in

small dimensions because finding the connected components of

the upper level sets of f̂ requires evaluation of the function on a

dense mesh in Rd and a combinatorial search over all possible

paths connecting any two points of such a mesh.

Instead, we propose a computationally tractable algorithm for

level set clustering that combines and extends procedures outlined

originally by Wishart (1969) [41] and more recently by Maier et al.

(2009) [42], Chaudhuri and Dasgupta (2010) [43], and Kpotufe

and von Luxburg (2011) [44]. At a high level, our algorithm

approximates the level set tree of f̂ by intersecting the level sets of

f̂ with Xn and then evaluating the connectivity of each set by

graph theoretic means. The main method is outlined in Table 2:

Algorithm 1, with detailed sub-procedures described in Table 3:

Algorithm 3, Table 4: Algorithm 2, and Table 5: Algorithm 4. Our

interactive Python toolbox for level set tree construction, analysis,

and clustering is called DEnsity-BAsed CLustering (DeBaCl) and is

available at https://github.com/CoAxLab/DeBaCl.

The first step of our algorithm is to compute a k-nearest

neighbor (knn) similarity graph G with nodes corresponding to Xn

and edges connecting vertex pairs if either node is one of the k
closest neighbors to the other (Table 3: Algorithm 3). In the second

step, we compute a knn density estimator [42,45], which we

evaluate only at the n sample points (Table 4: Algorithm 2). The

parameter k controls the smoothness of the density f̂ ; larger values

of k produce smoother and flatter density estimates with small

variances but large biases. As a result, choosing a large k reduces

the chance of finding spurious clusters but makes it harder to

detect and separate true clusters that are very close to each other.

Choosing a small k yields nearly unbiased density estimates with

large variances. Based on our experiments and theoretical results

([46] and [47]), we tend to favor larger values of k.

Construction of the level set tree proceeds by ordering the

estimated sample densities from smallest to largest and iterating

over these values. For each value l in this list, the upper level set is:

Ll~fxi : f̂ (xi)§lg: ð2Þ

In each iteration we construct an upper level similarity graph Gl

by removing the vertices from G whose sample points are not in

Ll, then finding the connected components of Gl.

The level set tree is the compilation of connected components

over all values of l. The final step of tree construction is to prune

small components of the tree that occur due to sampling variability

or insufficient statistical power (Table 5: Algorithm 4). Pruning

merges components that contain fewer than cn data points into

other nearby components. Larger values of c correspond to more

aggressive pruning, where only connected components of large

relative size are deemed as separate clusters. On the other hand,

setting c to be very small enhances the resolution of the clustering

procedure but increases the chance of seeing spurious clusters.

a-indexing
We defined the level set tree based on density thresholds l.

Because this indexing is highly dependent on the height of f (or f̂ ),

it lacks interpretability (for instance, it is not clear if l~1 would be

a threshold for high or low density regions). To remove the scale

dependence, we instead consider indexing based on probability

content rather than density height. Specifically, let a be a number

between 0 and 1 and define

la~ sup l :

ð
x[Ll(f )

f (x)dx§a

( )
ð3Þ

to be the value of l for which the upper level set of f has

probability content no smaller than a [47]. The map a.la gives a

monotonically decreasing one-to-one correspondence between

values of a in ½0,1� and values of l in ½0, maxx f (x)�. In particular,

l1~0 and l0~ maxx f (x). Because this map is monotonic we can

define the tree in terms of the probability content a instead of l
without changing the topology (i.e. number and ordering of the

branches). The a-index is not a linear re-indexing of l, however,

so the a-based tree is a deformation in which some branches are

dilated and others are compressed. We refer to this probability-

based scale as a- or mass-indexing.

Table 1. Estimated level set tree information for a simple data simulation.

Node Start Level End Level Start Mass End Mass Size Parent Children

0 0.000 0.005 0.000 0.021 2001 None [1,2]

1 0.005 0.061 0.021 0.528 1309 0 [3,4]

2 0.005 0.165 0.021 0.998 649 0 []

3 0.061 0.167 0.528 0.999 359 1 []

4 0.061 0.172 0.528 0.999 295 1 []

doi:10.1371/journal.pone.0093344.t001
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To estimate an a-indexed tree, we index the level sets of f̂\Xn

in a similar way. Specifically, for any a[f0,
1

n
,
2

n
, . . . ,

n{1

n
,1g, we

set la to be the a-quantile of the n estimated sample densities. The

associated hierarchy of subsets Lla
( f̂ )\Xn is computed as a varies

from 1 to 0.

We regard a-indexing as more interpretable and useful for

several reasons. The a level of the tree indexes clusters

corresponding to the 1{a fraction of ‘‘most clusterable’’ data

points; in particular, smaller a values yield more compact and

well-separated clusters. The mass index can be used for de-noising

and outlier removal: to eliminate 5% of the data with lowest

estimated density, retrieve all the points in the clusters indexed by

levels a~0:05. Scaling by probability content also enables

comparisons of level set trees arising from data sets drawn from

different pdfs, possibly in spaces of different dimensions. The a
index is also more effective than the l index for representing

regions of large probability content but low density and is less

affected by small fluctuations in density estimates.

Figure 1. Illustration of population and sample level set trees. A) The true pdf is a mixture of three Gaussians (black curve). For each of four
example density levels (dotted lines), the high-density clusters are indicated by solid line segments. B) Population level set tree for the density in
panel A. The high-density clusters of panel A are found at the intersections of the selected levels (dashed lines) with the tree. C) Estimated density
(black curve) based on 2,000 data points sampled from the pdf in panel A. High-density points belonging to the leaves of the sample level set tree in
panel D are shown on the horizontal axis and on the estimated density function. D) Level set tree estimate based on the sample in panel C. Leaves are
colored to match corresponding points in the sample. For illustration, the trees in this figure are indexed by density levels while all other trees in this
article are plotted on the mass scale.
doi:10.1371/journal.pone.0093344.g001
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Pseudo-density Analysis
A fiber track can be thought of as a set of points sampled along a

random curve in three dimensions. Although probability distribu-

tions for these random functions are well defined, they cannot be

represented with pdfs [48]. We can extend level set trees to work

with this type of non-Euclidean data by using pseudo-density

functions in place of pdfs [49]. Pseudo-densities cannot be used to

compute probabilities as in Equation 1, but they can be regarded

as measures of similarity among points and of the overall

connectivity of a space.

To compute the sample level set tree for a collection of fiber

pathways, we use the knn density estimate as in Table 4:

Algorithm 2 but replace the Euclidean distance with a distance

relevant to fibers, expunge the term vd in the knn density

calculation, and set d arbitrarily to 1. In general this does not yield

a bona fide density function, but it is sufficient to induce an ordering

on the data points based on each point’s proximity to its neighbors.

We measure the proximity of a pair of fibers with max-average-

min distance [50], computed using the Dipy Python module’s

bundles_distances_mam function [51]. Suppose a set of fiber

pathways Z1, . . . ,Zn, where Zu is a sequence of r points fZugr
i~1,

Zui[R3. The distance between two fibers Zu and Zw is:

D(Zu,Zw)~

max mean
i
fmin

j
d(Zui,Zwj)g, mean

j
fmin

i
d(Zui,Zwj)g

� � ð4Þ

where d(Zui,Zwj) is the Euclidean distance between the i’th point

in fiber Zu and the j’th point of fiber Zw. In practice, points with a

small minimum distance to the other fiber are removed from the

computation. Intuitively this distance matches each point in fiber

Zu to the closest point in fiber Zw and vice versa, then averages the

matched point distances that are sufficiently large.

Once the distance is computed for each pair of fibers, the

pseudo-density function is evaluated for each fiber and a similarity

graph is constructed. Level set tree construction then follows the

procedure in Table 2: Algorithm 1.

Benchmark Simulations
We compared the performance of level set trees in a traditional

clustering task against several popular methods: K-means++ [52],

Gaussian mixtures [53], hierarchical agglomeration with the Ward

criterion [39], hierarchical agglomeration with the single linkage

criterion [53], spectral [54], diffusion map [55], and DBSCAN

[56]. Each method was given the true number of clusters K in

order to isolate the effectiveness of the algorithms from the

heuristics for choosing K . For the sake of comparison we used the

fixed K clustering option with level set trees, even though this

ignores the ability of level set trees to automatically choose K .

Each method was tested in several three-dimensional data

simulations with varying degrees of realism. The easiest setting was

a mixture of six Gaussian distributions, the medium difficultly

scenario was a mixture of three Gaussian distributions and three

noisy arcs, and the most difficult test was a resampling from real

fiber endpoint data. For the latter scenario, we generated data sets

by resampling 5,000 points from a set of 10,000 striatal fiber

Table 2. Algorithm 1. Conceptual level set tree estimation procedure.

Input: fx1, . . . ,xng
Input: k

Input c

Output: bTT , a hierarchy of subsets of fx1, . . . ,xng.
1: G/Compute:knn:graph(fx1, . . . ,xng,k)

2: for j/1 to n do

3: lj/Compute:knn:density(fx1, . . . ,xng,j,k)

4: Llj
/fxi : (xi)§ljg.

5: Gj/subgraph of G induced by LlJ

6: find the connected components of Glj
.

7: end for

8: bTT/ dendrogram of connected components of graphs G1, . . . ,Gn , ordered by inclusions.

9: bTT/Prune:tree( bTT ,c)

10: return bTT
doi:10.1371/journal.pone.0093344.t002

Table 3. Algorithm 3. Compute.knn.graph. Construct a k-
nearest neighbor similarity graph.

Input: fx1, . . . ,xng
Input: k

output: G, a k-nearest neighborhood graph.

1: for i/1 to n do

2: rk(xi)/ k-nearest neighbor distance of xi among the other sample points.

3: end for

4: E/1

5: for all ivj do

6: if Exi{xjEƒ maxfrk(xi),rk(xj )g then

7: E/E|f(i,j)g
8: end if

9: end for

10: G/(f1, . . . ,ng,E)

11: return G

doi:10.1371/journal.pone.0093344.t003
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pathway endpoints (from a single subject) and adding Gaussian

noise. True group labels were assigned with a careful application

of level set clustering. To further vary the degree of difficulty of the

clustering tasks, the group means in each scenario were contracted

toward the grand mean by a coefficient r, which took 20 values on

a grid ranging from 0.1 to 1.2. Finally, for each simulation type

and separation coefficient, we drew 20 data sets of 5,000 points

each.

Both types of agglomerative hierarchical clustering were

implemented with the R hclust function [57]. K-means++,

Gaussian mixture modeling (GMM), and DBSCAN were imple-

mented with the Python module scikit-learn [58]. For DBSCAN

we set the neighborhood parameter to be the second percentile of

all pairwise distances and the level set parameter (i.e. the number

of neighbors required for a point to be a core point) to be the first

percentile of pairwise distances. Note that DBSCAN does not

allow K to be specified, making it difficult to compare to other

methods.

We used our own implementations for spectral clustering and

diffusion maps. For spectral clustering we constructed a symmetric

knn graph on the data, with k set to one percent of the sample size.

The points in the first percentile of degree in this graph were

removed as outliers. For diffusion maps we used a complete

similarity graph with Gaussian edge weights:

e(xi,xj)~ exp {
Exi{xjE2

s

� �
ð5Þ

with s set to twice the squared median of all pairwise distances

[59]. For both spectral and diffusion map clustering we used the

random walk form of normalized graph Laplacian:

L~D{1(D{W ) ð6Þ

where W is the similarity graph adjacency matrix and D is the

diagonal degree matrix for W [54]. For diffusion maps the i’th
eigenvector yi is scaled by a function of its corresponding

eigenvalue ri:

y’
i~

1{ri

ri

� �
yi ð7Þ

which creates a multi-scale diffusion map [60]. For spectral

clustering and diffusion maps we use K-means++ to cluster the

data after it is projected into the eigenspace, and for spectral

clustering we use a knn classifier to assign outliers to clusters.

Comparing Whole-fiber Segmentations
To evaluate the application of the level set tree method to

entire fiber streamlines (rather than streamline endpoints), we

compared the clustering results for middle frontal gyrus

streamlines from two subjects to the output of single linkage

hierarchical clustering and K-means clustering. Both comparison

methods were computed in DSI Studio (http://dsi-studio.

labsolver.org). K was first set to be the number of modes

identified by the level set tree for each subject, then the largest K
clusters were selected in both single linkage and K-means

clustering. For single linkage clustering, we measured the distance

between a pair of fibers Zu and Zw as [61]:

D(Zu,Zw)~ max
i

min
j

EZui{ZwjE: ð8Þ

The DSI Studio implementation of K-means does not use each

point on fiber streamlines, but rather extracts several features: the

endpoint coordinates, the middle coordinate, and the streamline

length.

Participants
Twenty male and ten female subjects were recruited from the

local Pittsburgh community and the Army Research Laboratory in

Aberdeen, Maryland. All subjects were neurologically healthy,

with no history of either head trauma or neurological or

psychiatric illness. Subjects ranged from 21 to 45 years of age at

the time of scanning and four were left handed (2 male, 2 female).

Participants provided written informed consent prior to partici-

pating in the study. All procedures, including the consent

procedure, were approved by the Institutional Review Board

(IRB) at Carnegie Mellon University.

Imaging Acquisition
All thirty participants were scanned on a Siemens Verio 3T

system in the Scientific Imaging and Brain Research (SIBR)

Center at Carnegie Mellon University using a 32-channel head

coil. We collected a 50 min, 257-direction diffusion spectrum

imaging (DSI) scan using a twice-refocused spin-echo EPI

sequence and multiple q values (TR = 9,916 ms, TE = 157 ms,

voxel size = 2:4|2:4|2:4 mm, FoV = 231|231 mm, b-

max = 5,000 s/mm , 51 slices). Minimization of head motion

during acquisition was done through a custom designed setup of

foam padding within the coil, designed to minimize variance of

head motion along the pitch and yaw rotation directions. This

Table 4. Algorithm 2. Compute.knn.density. Compute the
k-nearest neighbor density estimate at a sample point.

Input: fx1, . . . ,xng
Input: j, a sample index.

Input: k

Output: (xj ), the knn density estimate for sample point xj .

1: rk(xj )/ k-nearest neighbor distance of xj among the other sample points.

2: vd/ volume of the Euclidean unit ball in Rd , where d is the dimension of xi .

3: bff (xj )/
k

n:vd
:rd

k(xj )

4: return bff (xj )

doi:10.1371/journal.pone.0093344.t004

Table 5. Algorithm 4. Prune.tree. Remove small leaf nodes
from the level set tree.

Input: bTT , a hierarchy of subsets of fx1, . . . ,xng.
Input: c

Output: A pruned tree bTT
1: for all A[ bTT do

2: if jAjvcn then

3: bTT/ bTT \A
4: end if

5: end for

doi:10.1371/journal.pone.0093344.t005
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setup also included a chin restraint that locked the participant’s

head to the receiving coil itself. Preliminary work on resting state

EPI images at the imaging center showed that this setup

minimized resting head motion to about 1 mm maximum

deviation for most subjects.

Scanning at multiple b-values, particularly the high b-values of

DSI, can cause different distortion patterns and eddy current

artifacts. Applying motion correction (which assumes that these

noise sources are stationary across images) can introduce more

noise into these data sets. For quality control, the diffusion

weighted images were inspected before further analysis. If head

motion was present in any of the diffusion weighted images (ring

artifact), the whole scan section was discarded. All data used in our

study passed the quality control and there was no tractable head

motion in the acquired diffusion weighted images.

Diffusion MRI Reconstruction
All DSI images were processed using a q-space diffeomorphic

reconstruction method [62], implemented in DSI Studio. The co-

registration was conducted using a non-linear spatial normaliza-

tion approach [63], and a total of 16 iterations were used to obtain

the spatial mapping function. From here orientation distribution

functions (ODFs) were reconstructed to spatial resolution of

2|2|2 mm and a diffusion sampling length ratio of 1.25. To

determine the average tractography space, we generated a

template image (the CMU-30 Template) composed of the average

whole-brain ODF maps across all 30 subjects. The CMU-30

Template data is available for download from the datasets page at

http://www.psy.cmu.edu/,coaxlab/.

Fiber Tractography
All fiber tracking was performed using DSI Studio. We used an

ODF-streamlined region of interest (ROI) based approach [64]

similar to that used in previous studies [7,8]. Tracks were

generated using an ODF-streamline version of the FACT

algorithm [64–66]. For our initial test-set analysis, in MNI-space,

we mapped two corticostriatal pathways: lateral frontal (middle

frontal gyrus to striatum) and orbitofrontal (gyrus rectus to

striatum). For tractography analysis on the 30 subject template

brain, a whole-brain seeding was used in the tractography process,

with 300 seeds per voxel in the whole-brain mask (31,100,100

total). For the fiber endpoint analysis and the test-retest analysis,

we only collected 10,000 streamlines per pathway per subject. This

was done to minimize processing and computational demands in

the level set tree generation process and to make equivalent

comparisons across pathways with the same number of samples.

Fiber progression continued with a step size of 1 mm, minimum

fiber length of 10 mm, and maximum of 70 mm. To smooth each

track, the next directional estimate of each voxel was weighted by

20 percent of the previous moving direction and 80 percent by the

incoming direction of the fiber. The tracking was terminated when

the relative quantitative anisotropy (QA) for the incoming direction

dropped below a preset threshold of 0.2 or exceeded a turning angle

of 750. The CMU-30 template fiber pathways can be downloaded,

along with a Python script illustrating level set tree estimation, at

http://psy.cmu.edu/,coaxlab/data/kent_plosOne_data/.

Results

Visualizing Data with Level Set Trees
Table 1 displays the information in an example level set tree.

The tree is a collection of nodes; each node has start and end l
and a levels, a parent, children (possibly an empty set), and

constituent data points at the node’s start level. This information–

particularly the parent-child relationships–is conveyed more

effectively with a dendrogram. Figures 1C and 1D show a density

estimate for 2,000 points sampled from a mixture of three

Gaussian distributions and the corresponding level set tree

estimate. Each vertical line segment of the tree represents the

clusters contained in a mode of the estimated pdf; all of these

clusters are subsets of the cluster at the start level of the mode.

The tree visualization contains several other pieces of informa-

tion. The height of each tree branch indicates the prominence of

the corresponding density mode. Nodes are sorted so that density

modes containing more sample points appear to the left of smaller

siblings. The thickness of each tree branch and amount of

surrounding whitespace are also proportional to the mass of the

corresponding density mode. For example, in Figure 1D, the first

split yields two nodes containing approximately 75% (black node)

and 25% (red node) of the mass respectively, so the black segment

is thicker and surrounded by whitespace occupying about 75% of

the width of the plot.

The mode hierarchy shown in a level set tree is a natural

platform for interactively exploring interesting subsets of compli-

cated data; by selecting a tree branch one can zoom in on

structurally coherent groups, while largely avoiding overplotting

problems. Figures 2 and 3 illustrate the use of level set trees for

interactive data visualization on a set of endpoint locations from

10,000 streamlines tracked from the lateral frontal cortex to the

striatum. Figure 2B shows each streamline endpoint, color coded

by its local density (higher densities are shown in warmer colors).

The tree for this data set (Figure 2C) shows there are two primary

clusters, each of which is further separated into well-defined sub-

groups.

In Figure 3 we use the tree to navigate through the data.

Selecting the points associated with one of the large primary

branches (Figures 3A and 3B) shows that this high-density region is

spatially isolated in a single cluster in the dorsal portion of the

striatum, specifically the dorsal caudate nucleus. By zooming in on

some of the smaller components of the other primary branch

(Figures 3C and 3D) we see that these are reflected as independent

sub-clusters from the first branch, with endpoints in the anterior

aspect of the caudate near the shell region of the nucleus, and with

local density hierarchies within the cluster (Figure 3D). This

illustrates how, by interacting with the branches of the level set

tree, it is possible to characterize local topographic structures at

different resolutions that reflect known, anatomically distinct sub-

regions of the projections into the caudate [67].

Clustering with Level Set Trees
Level set trees have several useful properties for solving practical

clustering problems. Most notably, they provide different ways to

obtain cluster labels, some of which do not require a priori

knowledge of the number of clusters. Level set trees also identify

outliers automatically and allow an investigator to visualize many

different clustering permutations simultaneously and interactively.

Figure 4 shows the output from three different cluster labeling

methods applied to the endpoint data shown in Figures 2 and 3.

By construction, the tree is a compilation of connected

components at each level of a pdf estimate, so the most

straightforward cluster labeling is to retrieve the connected

components at a single level (Figures 4A and 4B). In addition to

its definitional nature, this method conveys the most intuitive sense

for where the highest density data subsets are located. It also allows

the investigator to control the number of points in the clusters;

choosing a low mass level produces clusters that contain most of

the data, while high mass thresholds produce clusters with only the

peaks of the data modes. Finally, this method avoids the need to
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specify a priori the number of clusters, K , which must be

determined heuristically in many popular clustering methods (K-

means, for example).

The drawback of clustering at a single level is that it requires an

arbitrary choice of l or a. All-mode clustering, which uses each

leaf node of a level set tree as a cluster, avoids this choice and

automatically chooses the number of clusters [68] (Figures 4C and

4D). This method does remain sensitive to the choice of smoothing

and pruning parameters, however. For a given degree of pruning,

this method tends to produce more and smaller clusters than level

set clustering.

If the clustering task demands a pre-set number of clusters, this

can be done with a level set tree by identifying the first K disjoint

components to appear in the tree as the level increases from l~0.

Unlike K-means (and related methods), there is no guarantee that

there will be K disjoint nodes in a level set tree (Figures 4E and

4F).

Each labeling method captures general streamline clusters

approximately near macroscopic divisions of the striatal nuclei.

For instance, the red branch in each panel of Figure 4

highlights an isolated cluster of prefrontal projections that

terminate on the putamen. The remaining clusters on the

caudate nucleus also break down into two major sets of

endpoints. One set (dark blue in Figures 4A and 4E, brown and

cyan in Figure 4C) identifies clusters of streamlines that

terminate on the tail of the caudate, while the third major set

(green and purple in Figure 4A; orange, green and blue in

Figure 4C; orange, green and purple in Figure 4E) identifies

streamlines terminating about the shell of the caudate nucleus.

Thus, the first three branches of the level set tree appear to

capture known anatomical sub-divisions of inputs to the

striatum, with slight differences in sub-cluster identification

depending on the labeling approach used.

Each of these three methods assigns cluster labels to a

fraction of the sample, which we call the foreground points.

The by-product of this is the intelligent removal of outliers.

Figure 4 shows that the size of the foreground and outlier sets

varies greatly depending on the choice of cluster labeling

method and parameter values. In particular, the all-mode

technique tends to create a larger number of small clusters.

When a full segmentation is needed, the unlabeled background

points can be assigned to a cluster with any classification

technique.

Together, the advantages of a level set tree approach–avoiding

the need to specify the cluster number, multiple cluster labeling

methods, visualization of many cluster permutations, interactive

cluster exploration, and automatic outlier identification–allow the

practitioner to gain greater insight into the topography of a data

set, using fewer assumptions than would be necessary for standard

methods.

Clustering Performance Evaluation
To analyze the effectiveness of level set tree clustering we tested

it in a range of simulations against several standard clustering

methods. The simulations ranged in difficulty over both the degree

of separation of the clusters and the type of data generating

process, with the most complex scenario closely mimicking fiber

pathway endpoint distributions (see Methods for more detail).

Not surprisingly, for the easiest clustering task–a mixture of six

spherical Gaussian distributions–all methods achieved perfect

identification of the true clusters when the groups were well

separated (Figure 5B). Single linkage hierarchical clustering had a

very high error rate even at medium degrees of separation between

Figure 2. Level set tree for corticostriatal fiber endpoint locations. A) 10,000 streamlines (yellow) mapped from the lateral frontal cortex
(middle frontal gyrus) to the striatal nuclei (caudate nucleus, putamen and nucleus accumbens) shown as a gray region of interest (ROI). Data taken
from a representative subject. B) Endpoint locations (in millimeters) of the streamlines shown in panel A, colored by estimated density (red is high). C)
The corresponding level set tree, which indicates a complex cluster structure in these data. A major split occurs when 10% of the data are excluded
from the density upper level set, and each branch of the split has relevant sub-clusters at various resolutions. Note the lack of information in the
density level index on this plot, which is a typical outcome.
doi:10.1371/journal.pone.0093344.g002
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clusters, due to the well-studied problem of chaining. The density-

based methods DBSCAN and level set trees also required more

separation between clusters before achieving the same error rate as

parametric methods, possibly due to the challenge of assigning

low-density points to clusters.

The results are more difficult to interpret for the moderately

difficult simulation scenario with three arcs and three spherical

Gaussians (Figure 5D). Single linkage hierarchical clustering again

required the most separation between clusters to achieve highly

accurate classification. Spectral clustering was perfect when the

clusters were well separated and was as good as any other method

when the clusters were very close, but performed poorly at mid-

range degrees of separation. The closely related technique of

diffusion maps actually became less accurate at large degrees of

separation. Level set tree clustering performed poorly for tightly

packed clusters, but was comparable to the parametric methods

(K-means++, Ward linkage, and GMM) for somewhat- and very

well-separated clusters.

In the most realistic setting with resampled real data, the

parametric methods performed poorly, achieving only about 70%

accuracy, even when the clusters were very well separated

(Figure 5F). Each of the nonparametric methods (level set

clustering, DBSCAN, diffusion maps, and spectral clustering)

performed best at some degree of separation, making it difficult to

identify clearly superior or inferior methods. DBSCAN and level

set trees have accuracies somewhat less than 100% even for well-

separated clusters, probably due to the problem of assigning low-

density points to clusters. A more nuanced classifier for this step in

level set tree clustering would likely improve the results for level set

trees in particular.

Level set trees enjoy several categorical advantages over

methods like spectral clustering and diffusion maps, namely a

more intuitive representation of data structure, facilitation of

interactive data exploration, a concise representation of many

different clustering permutations, and automatic selection of the

number of clusters. This experiment suggests level set trees are also

at least as accurate in practical clustering tasks, particularly with

challenging non-convex clusters.

Finally, we note that we made no attempt to choose the

parameter k in an optimal manner in our experiments.

Whole Fiber Segmentation
So far our analysis has focused on level set trees estimated for

fiber pathway endpoints, rather than entire fiber pathways. This

ignores the rich data contained in the rest of each streamline, data

that can provide substantially more information about differences

between sets of fibers. To work with whole fiber pathways, we

adopted the pseudo-density approach, where the pairwise max-

average-min fiber distance was used to rank each streamline

according to the spatial proximity of its neighbors (see Methods).

Using this method, we looked at the organization of corticos-

triatal projections from two areas, the lateral frontal cortex and

orbitofrontal cortex, in the 30 subject template brain (Figure 6). In

the lateral frontal cortex we detected seven clusters of streamlines

Figure 3. Exploring data subsets with a level set tree. A) Striatal endpoints from Figure 2. Red points are members of a selected node of the
level set tree, shown in red in panel B. C) Striatal endpoints belonging to a different mode of the level set tree, shown in panel D.
doi:10.1371/journal.pone.0093344.g003
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(34,982 foreground fibers out of 51,126 total fibers) that were

organized in a consistent, evenly spaced rostral-caudal direction

along the middle frontal gyrus (Figure 6A), an organization that is

consistent with previous reports in both the animal and human

literatures [8,67,69]. Each identified cluster reflects regions of high

pseudo-density along the middle frontal gyrus. It is important to

note that this whole-fiber clustering was able to capture divergent

patterns in the white matter pathways. The dark blue and cyan

streamlines start in the same region of the middle frontal gyrus, but

diverge to different sub-cortical targets (namely, the caudate and

putamen). This split is easy to identify in the level set tree by the

emergence of an early branching in the tree into two major

divisions that reflect caudate versus putamen fibers (Figure 6B).

This provides a clean anatomical segmentation of the fibers despite

the fact that these two fiber sets start in the same region of the

middle frontal gyrus.

In the projections from the orbitofrontal cortex we identified

five mode clusters (Figures 6C and 6D). Close inspection of the

endpoints of these streamlines in the striatum reveals that each

cluster forms a striated-like pattern in the caudate that is similar to

patterns previously reported in corticostriatal projections [8]

(Figure 6C, inset). These striated formations are thought to reflect

the modularized biochemical makeup of the striatum [70,71]. This

complex arrangement is difficult to capture with clustering

methods that assume convex cluster shapes, but the whole-fiber

pseudo-density clustering approach successfully extracts the

patterns with minimal assumptions.

As with the fiber endpoint data, we also evaluated the whole-

fiber level set tree results against other clustering methods: single

linkage hierarchical and K-means. Figures 7A and 7B show the

high-pseudo-density level set tree clusters. The single linkage

method identified clusters (Figures 7C and 7D) that are similar to

the high-density clusters of the level set tree result, but the

boundary between clusters is less clear in both subjects (see the red,

cyan and green clusters in Figure 7C and compare to Fig. 7A) for

single linkage.

As expected, the K-means clustering performed much worse

than the level set tree and single-linkage approaches (Figures 7E

and 7F). The boundaries between the clusters are even less well

defined than with single linkage, particularly for the second

subject. Furthermore, there appears to be substantially

larger within-cluster variation in the shape of the fiber pathways

with K-means than with either of the hierarchical methods. To

summarize, in qualitative terms whole-fiber level set tree clustering

was able to isolate the high-pseudo-density fiber bundles as well as

or better than two off-the-shelf methods.

Level Set Tree Variability
To assess the stability of the 30 subject template level set trees in

Figure 6, we created a set of trees by subsampling from the original

lateral and orbitofrontal fiber streamline data sets and constructing

a tree for each subsample. This simulates the variability seen when

repeating the tractography on the same data set multiple times.

The overlaid tree plots in Figures 8A and 8D indicate a high

degree of stability for the trees built from these subsampled data

Figure 4. Clustering with a level set tree. A, C, E) Striatal endpoints colored by cluster assignment for three different cluster labeling methods.
Gray points are unassigned because their estimated density is too low. Cluster colors match the tree node colors in the panels below. B) Tree nodes
corresponding to clusters in panel A. These nodes are selected by cutting across the tree at a desired density or mass level. D) Tree nodes
corresponding to clusters in panel C. Each leaf of the tree produces a cluster. F) Tree nodes corresponding to clusters in panel E. The tree is traversed
upward from the root (or roots) until the desired number of clusters first appears.
doi:10.1371/journal.pone.0093344.g004

Mapping Neural Topography with Level Set Trees

PLOS ONE | www.plosone.org 10 April 2014 | Volume 9 | Issue 4 | e93344



sets, although it appears there might be slightly less stability for the

orbitofrontal set. This conclusion is supported for both ROIs by

the mode function overlays (Figures 8B and 8E) and histograms of

mass values where each tree splits (Figures 8C and 8F). These plots

illustrate that the existence of each tree branch is consistent across

the subsamples, although there is variation in the mass levels

where the branches first appear.

The high degree of stability in these subsample trees conveys

certainty to the features of the level set trees constructed on the full

data set (Figures 6B and 6D). For example, the left branch of the

tree for the lateral frontal projections contains two prominent

nodes (red and dark red) that appear when 42 percent of the fibers

are in the background (i.e. not in the the upper level set). The fact

that this same split occurs in every one of the subsample trees is

evidence that such a split exists in the true (but unobserved)

distribution of fibers that generated this data set.

On the other hand, data sets that differ even in seemingly small

ways can lead to much more variation in the resulting level set

trees. For a subset of subjects, fiber streamlines were reconstructed

for two separate scans separated by six months. Figure 9 shows the

Figure 5. Comparison of clustering method accuracy in simulations. A, C, E) Example draws from each of three simulation scenarios
(Gaussians, arcs & Gaussians, and resampled striatal endpoints, from the top), with observations colored by true group label. B, D, E) Error rate for
each type of simulation over several degrees of clustering difficulty, created by contracting the groups toward the grand mean by various amounts.
For each type of simulation and each degree of difficulty, the mean and standard deviation of classification error are reported for 8 clustering
methods: DBSCAN (dbscan), level set tree clustering (density), diffusion maps (diffuse), Gaussian mixture models (gmm), K-means++ (kmeans),
hierarchical clustering with single linkage (s.link), spectral clustering (spectral), and hierarchical clustering with linkage by the Ward criterion (ward).
doi:10.1371/journal.pone.0093344.g005
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Figure 6. Level set tree clustering for whole fiber streamlines. A) Foreground fibers for the seven selected clusters from the 30 subject
template data set for streamlines tracked between the middle frontal gyrus and striatum, shown in both a sagittal and coronal view. Clusters are
colored according to an all-mode clustering of the tree. B) The level set tree for data in panel A. Tree leaves are matched to fiber clusters by color. C)
Same analysis as shown in A, but for a set of streamlines from the orbitofrontal cortex. Inset shows closeup of fiber streamlines in the striatal ROI
mask. D) Level set tree for data shown in panel C. The branch colors of trees in panels B and D match the clusters shown in the streamlines of panels
A and C respectively.
doi:10.1371/journal.pone.0093344.g006

Figure 7. Comparison of methods for whole-fiber segmentation. A, B) High-density fiber pathway clusters from the level set tree all-mode
method for middle frontal gyrus fibers in two subjects. C, D) Single linkage hierarchical clustering results for the same fiber pathways, with the
dendrogram cut to match the same number of clusters in the level set tree result. E, F) K-means clustering results for the sample fiber pathways.
doi:10.1371/journal.pone.0093344.g007
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level set trees constructed for the lateral frontal projections from

each scan in several example subjects, as well as the foreground

clusters produced by all-mode clustering. The foreground clusters

reveal that there does tend to be an overall high degree of

similarity between the fiber streamline sets across trials, with the

exception of one or two well-defined clusters that only appear in

one of the two scans (highlighted in gray in Figure 9).

The level set trees likewise reflect similar structure across scans,

but the non-overlapping tree nodes exaggerate the apparent

differences between trees. For example, panels E and F in Figure 9

show the foreground fiber streamlines and level set trees for two

scans of a single subject. The blue, green, cyan, violet, and yellow

clusters match well across scans and appear to share very similar

topography. However, panel E contains an obvious cluster on the

right side of the plot (in gray) that is not present in panel F, while

panel F contains its own obvious cluster on the left side of the plot

(also in gray) that is not present in panel E. Note that each

branch’s (or cluster’s) color was manually defined to match

between images of the same subject, but does not necessarily

reflect the same branch/cluster identified across subjects. While

some of the features of the trees reflect the overall similarity–for

example, the number of leaves is the same and the yellow, cyan,

and violet clusters are more similar to each other while the blue

cluster is much different–the overall shape of the trees is very

different.

These variations reflect actual differences between the test and

retest data, not just variability of the level set tree procedure. Not

only are some clusters present in only one of the two data sets

(shown in gray in Figure 9), but differing tree shapes and

branching locations indicate that the probability content and

relative hierarchy of even similar-looking clusters is not the same

across scans. Despite such marked differences in the test and retest

data sets, the output from all-mode clustering retains a very high

degree of consistency across scan sessions, demonstrating the

robustness of the proposed methodology.

Discussion

White matter pathways have highly complex shapes and spatial

organization, making it difficult to summarize their topographic

structure. We have shown that level set trees provide a concise

representation of this topography by describing the hierarchy of

modal regions in the pseudo-density function that describes the

probabilistic spatial distribution of a set of fiber pathways. We

demonstrated the usefulness of this hierarchy by simultaneously

identifying not only major anatomical boundaries in the striatum

(e.g., putamen vs. caudate), but also sub-regions within the same

Figure 8. Repeat reliability for level set tree results for the 30 subject template. For the middle frontal gyrus ROI, 28 random subsamples of
15,000 fibers were drawn from the total of 51,126 fibers, while 1,500 fibers were drawn for 23 subsamples from the 3,038 total fibers in the rectus. A)
All 28 level set trees plotted on the same canvas, illustrating the high degree of similarity between the data structure in the subsamples. B)
Histograms of the mass levels of the splits over the whole set of subsample trees. Split mass levels are matched across subsamples by rank order. C)
All 28 mode functions plotted together, illustrating that there is little variation in the number of clusters at each mass level. D) All 23 level set trees
plotted together. E) Distribution of mass values for splits, matched across subsamples by rank within each sample’s tree. F) All 23 mode functions
overlaid.
doi:10.1371/journal.pone.0093344.g008
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nucleus (e.g., shell vs. tail of the caudate; see Figure 4). Qualitative

comparisons of level set trees in repeated subsampling and test-

retest experiments highlight the reliability of our results and

suggest that level set trees have the potential be used as statistical

estimators of fiber streamline topography. Finally, we evaluated

the performance of level set trees in several simulations against a

suite of standard clustering methods that are commonly used to

describe fiber streamline organizational patterns. Level set trees

performed as well as any of the clustering methods, although we

emphasize that describing fiber pathway topography is not

equivalent to fiber pathway clustering. For the former purpose,

level set trees have several advantages over traditional clustering

Figure 9. Test-retest comparisons for four subjects, tested six months apart. Colored streamlines show clusters that were consistently
observed at both scan times. Gray streamlines show clusters detected at only one time point. Panels A, C, E, and G show results from the initial scan
session. Panels B, D, F, and H show results from the second scanning session six months later.
doi:10.1371/journal.pone.0093344.g009
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techniques: they are statistically principled; they are compact data

structures that enable fast retrieval of high-density clusters at any

density level; they allow a multi-scale visualization of the cluster

patterns in a data set; they are a natural platform for interactive

data exploration; and they offer several methods for obtaining

particular cluster labels without assuming the number of clusters

and with automatic removal of outliers.

Level set trees are traditionally based on an estimate of an

unobserved pdf that is assumed to have generated data, a realistic

assumption for the endpoints of fiber pathways. We show for this

type of data how level set trees can be used to visualize data

patterns, interactively explore structurally coherent data subsets,

and simultaneously present many different cluster labelings.

Where the assumption of a pdf is not realistic, as with infinite-

dimensional whole fibers, we extend the method by observing that

a pseudo-density estimator (along with a similarity measure) is

sufficient for level set tree construction.

Ideally, the level set tree would be used for statistical inference

when comparing white matter topographies across populations.

For example, one could ask if the organization of fiber streamlines

between two brain areas differs in individuals with neurological

disorders (e.g., autism) when compared to neurologically healthy

controls. By qualitatively demonstrating the reliability of level set

tree structure, we highlight this potential of the method.

Quantification of the uncertainty in level set trees is an open

research problem; the qualitative comparisons shown in this paper

as well as other preliminary work in this direction [47,72,73] show

that level set trees constructed on data drawn from the same

distribution tend to be very similar, while trees constructed on data

drawn from different distributions tend to be different. This

concept of stability is difficult to apply, however, because simply

identifying when two trees are similar is also an open research area

(one that is beyond the scope of the current project).

An important limitation of our methodology is the selection of

tuning parameters k for connectivity and pseudo-density estima-

tion and c for tree pruning (although the choice of cluster number

is not required as with most clustering methods). We could choose

these parameters based on the optimal values found in the

theoretical literature [40] but these values are only valid in

asymptotic regimes and tend to work poorly in practice. As a

result, as with much of applied statistics, selecting tuning

parameters requires sound empirical judgment. It should be

noted, however, that in our experiments the results tend to be

robust for a relatively large range of tuning parameter values.

Because there are several ways to obtain clusters from level set

trees, inserting level set tree methods into an automated data

analysis pipeline also requires a choice of cluster labeling method,

in addition to the tuning parameters.

Also critical in the application of level set tree methods is the

choice of function for measuring the distance between two fiber

pathways. For fiber endpoints, Euclidean distance is the obvious

choice, but for whole-fiber segmentation there is neither a clearly

superior method nor a community-wide standard. The max-

average-min distance used in this paper is popular in the fiber

segmentation field [19] and performed better than several related

distances in a comparison of hierarchical clustering methods in

fiber tractography [18]. Intuitively, the max-average-min distance

is appealing because it incorporates information from many points

along each streamline without excessive influence from any single

point on either pathway. The max-max-min distance (also known

as Hausdorff distance), in contrast, is heavily influenced by single

points that stray from the main curve of a fiber, causing fibers to

cluster together only if they are extremely similar [27].

Despite these limitations, level set trees are a novel and powerful

way to analyze the topography of fiber streamline data sets with

minimal a priori assumptions. As DWI methodologies improve, the

usefulness of this approach for characterizing sub-divisions in

anatomical pathways will allow for greater specificity of regions of

interest. Originally intended to describe probability density

functions, level set trees can be extended to model pseudo-density

functions as well, allowing us to apply the trees’ powerful data

visualization and clustering tools in the analysis of fiber streamline

data sets. This flexibility opens the door for density-based

clustering approaches to be used in a variety of neuroimaging

analyses beyond white matter tractography. Future work will focus

on these extended applications in a neuroimaging context.
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